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Abstract

We formulate the static mechanical coupling of a geometrically exact
Cosserat rod to a nonlinearly elastic continuum. In this setting, appro-
priate coupling conditions have to connect a one-dimensional model with
director variables to a three-dimensional model without directors. Two
alternative coupling conditions are proposed, which correspond to two
different configuration trace spaces. For both we show existence of so-
lutions of the coupled problems, using the direct method of the calculus
of variations. From the first-order optimality conditions we also derive
the corresponding conditions for the dual variables. These are then inter-
preted in mechanical terms.
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1 Introduction

In the mechanical simulation of large structures frequently the structure to be
simulated combines long slender parts together with bulky ones. A typical
example would be a suspension bridge, with bulky pillars and slender cables.
Discretizing such a heterogeneous structure with a single finite element mesh
is prohibitively expensive, because the usual shape regularity assumptions re-
quire a large amount of elements in the slender parts. As an alternative, struc-
tural mechanics has invented reduced models, which are mathematically one-
or two-dimensional objects, and which allow to model slender structures more
efficiently. There is quite a variety of such models. They may be linear or geo-
metrically exact, and may or may not comprise certain orientation or director
variables. A structure combining bulky and slender parts could be modeled
by a combination of full-dimensional continuum and lower-dimensional reduced
models.
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The problem then arises as to how to couple the lower-dimensional mod-
els with the bulk model. Coupling conditions need to be formulated, which
have to be adapted to the continuum and reduced model. In particular, if
lower-dimensional models with directors are involved, coupling conditions for
the director variables are needed. Coupling conditions can be derived ad hoc
from physical intuition. However, for a mathematically rigorous theory well-
posedness of the coupled problem has to be shown. By this we mean primarily
the existence of solutions. Uniqueness of these solutions can only be expected
as far as the bulk and reduced models themselves allow for unique solutions.

In this article we focus on the coupling of a three-dimensional continuum
model to a geometrically exact one-dimensional model with an orthonormal
director frame, a so-called Cosserat rod [1]. We assume that both objects are
governed by hyperelastic material laws, and consider the static case only.

We then propose two different coupling conditions and show that the coupled
problem has solutions for both of them. Our existence proof uses the direct
method of the calculus of variations. From the optimality criteria we also obtain
the corresponding dual conditions. These dual conditions can be interpreted
physically in terms of forces and moments transmitted at the interface.

Existence of more than one set of plausible coupling conditions is a general
feature of heterogeneous models (cf. [4] for the linear case without directors).
Indeed, coupling conditions need to be formulated in an interface space, which
is usually the trace space of the submodel configuration at the interface. When
coupling two instances of the same model across a common boundary, these
trace spaces coincide. This common trace space is then the canonical choice of
interface space to formulate the coupling conditions in.

The situation is more complicated when the two models differ in their kine-
matics. There are then two different trace spaces leading to two different families
of coupling conditions, which are both equally valid. In their treatment of the
coupling between linear elastic continua and beams, Blanco et al. [4] even intro-
duce an entire continuum of conditions by interpolating between the two trace
spaces. They note, though, that no truly new coupling conditions are produced
in this way.

The presence of orientation degrees of freedom in the reduced model adds
another set of difficulties. These orientations have no counterpart on the con-
tinuum side to couple to. Local rotations of a continuum obtained by polar
decomposition (microrotations) are a natural choice, but are difficult to work
with in combination with averaging (see [18] and Section 4.3). In this article we
choose a different approach which avoids the use of microrotations.

The coupling of mechanical models of differing dimensions has been treated
both in the engineering and the mathematical literature. Monaghan et al. [16]
describe a 3d–1d coupling between linear elastic elements in the discrete setting.
Lagnese et al. [15] have studied the coupling of beams to plates extensively. In
their work, however, the main focus is on the linearized equations. Modeling
of 3d–2d junctions between linear elastic objects of different dimensions using
a method of asymptotic expansion has been carried out by Ciarlet et al. [7].
Formaggia et al. [12] couple 3d and 1d variants of the Navier–Stokes equations
in a simulation of blood circulation.

As systematic treatment for coupling linear models of different dimensions
has been given by Blanco et al. [4]. In particular, they provide existence and
uniqueness of solutions for their coupled problem. To the knowledge of the
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authors, coupling conditions for a reduced model with director variables have
only been treated in Sander [18, 19]. There, coupling conditions were derived
by a heuristic dimensional reduction. An algorithm based on fixed-point itera-
tion was proposed to numerically solve heterogeneous coupling problems. Our
approach here instead suggests to treat the problem as a global minimization
problem with nonlinear constraints. A detailed treatment may appear in a
separate article.

We proceed as follows. In Chapters 2 and 3 we formally introduce the rod
and continuum models. Then, in Chapter 4 we propose two sets of coupling
conditions, which differ in the choice of interface space. In Chapter 5 we prove
existence of solutions for both of these conditions. Assuming some additional
regularity, in Chapter 6 we derive coupling conditions for the dual variables from
the optimality conditions of the minimization problem. In the final Chapter 7
these are interpreted in terms of physical quantities such as coupling forces and
torques.

2 Geometrically Exact Cosserat Rods

In this section we briefly present Cosserat rods, which model the large defor-
mation behavior of long, slender objects. For an in-depth presentation see the
book by Antman [1].

2.1 Rigid Body Motion

Consider R3, equipped with the Euclidean scalar product v, w 7→ v · w and the
cross product v, w 7→ v × w. Let SO(3) be the special orthogonal group in
R3, that is the group of orthogonal 3 × 3-matrices with positive determinant.
Elements R of SO(3) act on R3 by rotation around the origin.

Consider the product space R3 × SO(3). We denote elements of this space
as tuples ρ = (r,R). Together with the product

(r1, R1) · (r2, R2) := (R1r2 + r1, R1R2), (1)

this space becomes the special Euclidean group

SE(3) = R3 o SO(3).

An element ρ = (r,R) ∈ SE(3) acts on R3 by a rigid body motion ρ : x 7→ Rx+r,
and the group multiplication corresponds to a composition of these motions.
The inverse of a group element (r,R) is

(r,R)−1 = (−R−1r,R−1).

The group SO(3) has the structure of a three-dimensional compact C∞-
manifold. For any R ∈ SO(3) the tangent space of SO(3) at R (which is a three-
dimensional linear space) can be characterized in two different ways, namely

TRSO(3) =
{
δR ∈ R3×3 | δR = UR, U ∈ so(3)

}
, (2)

which is called the spatial representation, and

TRSO(3) =
{
δR ∈ R3×3 | δR = RU, U ∈ so(3)

}
,
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which is called the body representation. The Lie algebra so(3) of SO(3) is the
space of skew-symmetric 3× 3 matrices. Obviously, we have the relation

U = RUR−1,

and hence U arises from U by an orthogonal change of coordinates. Both can
be interpreted as infinitesimal rotations.

With each U ∈ so(3) we associate a vector u ∈ R3 via the relation

Uv = u× v ∀v ∈ R3,

and we will denote this relation (which is in fact a linear isomorphism) by
U = u×, with the inverse u = U×. The vector u is called the axial vector of the
skew-symmetric matrix U .

A combination of the above results yields a linear isomorphism that identifies
TRSO(3) with R3 via

ΦR : TRSO(3)→ R3

δR 7→ u := (δRR−1)×,

and we call u the spatial vector of δR. Similarly, we have an isomorphism

ΦR : TRSO(3)→ R3

δR 7→ u := (R−1δR)×,

where u is called the body vector of δR. A short computation that uses the
relation R(w × v) = Rw ×Rv for R ∈ SO(3) yields

u = Ru. (3)

When working with axial vectors, the well-known identity of cyclic permutation

u · (v × w) = v · (w × u) = w · (u× v) (4)

for vectors u, v, w ∈ R3 is a useful tool.
The cotangent space TRSO(3)∗ of SO(3) atR is the space of linear functionals

on TRSO(3). The adjoint mappings Φ∗R : (R3)∗ → TRSO(3)∗ and Φ∗R : (R3)∗ →
TRSO(3)∗ are isomorphisms, so that every linear functional B∗ ∈ TRSO(3)∗ has
a spatial representation m∗ and a body representation m∗ by

B∗ = Φ∗Rm∗ = Φ∗Rm∗.

This means, for example, that

B∗(δR) = (Φ∗Rm∗)(δR) = m∗(ΦRδR) = m∗((δRR−1)×)

for any δR ∈ TRSO(3). Finally, we can associate to m∗ ∈ (R3)∗ a vector m ∈ R3

via m ·u = m∗(u) for all u ∈ R3. Similarly, we can define a vector m associated
to m∗ via m · u = m∗(u) and compute, using m · u = m · u, Equation (3), and
R−1 = RT , that

m = Rm. (5)
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Figure 1: Kinematics of Cosserat rods. Under deformation, rod cross-sections
remain planar, but not necessarily orthogonal to the centerline.

The structure of the tangent spaces of SE(3) can be inferred from the general
rules about tangent spaces of product manifolds. For each ρ = (r,R) ∈ SE(3)
we have

TρSE(3) = TrR3 × TRSO(3).

By the above identifications, each element (δr, δR) ∈ TρSE(3) has a representa-
tion (v,u) = (δr,ΦRδR) in spatial coordinates and (v, u) = (R−1δr,ΦRδR) in
body coordinates. Clearly, (v,u) = (Rv, Ru). Note that the factor R−1 in the
definition of v originates from the action of SE(3) on its own tangent bundle.

For the cotangent space TρSE(3)
∗

we have analogously

TρSE(3)
∗

= (TrR3)∗ × TRSO(3)∗.

Each element (b∗, B∗) ∈ TρSE(3)
∗

has a representation (n∗,m∗) = (b∗,Φ−∗R B∗)
in spatial coordinates and (n∗,m∗) = (R∗b∗,Φ−∗R B∗) in body coordinates, where
Φ−∗R := (Φ∗R)−1. Again, (n,m) = (Rn, Rm).

2.2 Static Rod Model

The theory of Cosserat rods views a rod as a curve in space, with a planar
cross-section attached at each point. The central assumption is that under
load, cross-sections do not change shape. They may, however, change their
orientations, and are in particular not restricted to remain normal to the curve
tangent vector (Figure 1). Hence, configurations of Cosserat rods are continuous
maps

ρ : [0, l]→ SE(3), s 7→ ρ(s) = (r(s), R(s)),

for some parameter interval [0, l]. While the first component r(s) ∈ R3 of ρ(s)
determines the position of the center curve of the rod at s, the second component
R(s) ∈ SO(3) determines the orientation of the cross-section A(s) (Figure 1).

We single out one configuration function ρ0 : [0, l] → SE(3) and call it the
reference configuration. It will be convenient (but not necessary) to choose ρ0

to be the stress-free configuration.

Let ρ : [0, l]→ SE(3) be a given rod configuration. We define the derivative

ρ′ : [0, l]→ TSE(3), s 7→ (r′(s), R′(s)),
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with respect to s, and the spatial strains

(v,u) := (r′,ΦRR
′).

Correspondingly, we write (v0,u0) for the spatial strain of the reference con-
figuration ρ0. The strains become invariant under rigid-body motions when
expressed in body coordinates. Using (3), we get (v, u) ∈ R3 × R3 with

(v, u) = (R−1r′,ΦRR
′) = (R−1v, R−1u),

and in particular the reference strains (v0, u0) = (R−1
0 v0, R

−1
0 u0).

The coefficients of v and u can be interpreted in a natural way. The two
values v1, v2 are the shear strains, and v3 is the stretching strain. Further, the
values u1, u2—infinitesimal rotations about axes in the cross section—are the
bending strain, and u3 is the strain related to torsion (cf. [14]).

Physically, the stress variables in an elastic Cosserat rod model are the total
resultant force n and moment m across a cross-section. Mathematically they
are elements of the cotangent bundle of SE(3), related to the force and moment
vectors by the relations Φ∗R and Φ∗R. Forces and moments are linked to the strain
by constitutive relations which describe the properties of specific materials. We
assume that the rod material is hyperelastic in the sense that there exists an
energy functional W : R3×R3 → R such that the body stresses n∗,m∗ are given
by a Legendre transform

n∗ =
∂W

∂v
(v, u), m∗ =

∂W

∂u
(v, u).

We assume the strain-energy function W to be convex, Fréchet-differentiable,
and coercive in the sense that

W (w, z)

|w|2 + |z|2
≥ α as |w|2 + |z|2 →∞ (6)

for some fixed α > 0.
The coefficients of the body stresses n and m have again a physical interpre-

tation. We refer to m1,m2 as the bending moments and to m3 as the twisting
moment. The values n1, n2 are shear forces and n3 is the tension.

2.3 Formulation as a Minimization Problem

The stable equilibrium configurations of a Cosserat rod with a hyperelastic
material law can be characterized as the minima of an energy functional

j : ρ 7→
∫

[0,l]

W
(
v(ρ), u(ρ)

)
ds, (7)

where for simplicity we have assumed absence of external volumes forces and
moments. To discuss the well-posedness of such minimization problems we need
to introduce Sobolev spaces for functions with values in SE(3). Note that SE(3)
arises naturally as a submanifold of R3 × R3×3. We define the manifold-valued
Sobolev space

H1([0, l],SE(3)) :=
{
ρ ∈ H1([0, l],R3 × R3×3) | ρ(s) ∈ SE(3) a.e.

}
.
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By [17, Thm. (6)], it is a Hilbert manifold. By the same theorem, tangent
vectors at a configuration ρ in the Hilbert manifold H1([0, l],SE(3)) correspond
to tangent vector fields along ρ in SE(3):

Lemma 2.1. For any given ρ ∈ H1([0, l],SE(3)) we have

TρH
1([0, l],SE(3)) := {δρ ∈ H1([0, l],R3 × R3×3) | δρ(s) ∈ Tρ(s)SE(3) a.e.

}
.

Since the domain [0, l] is one-dimensional, there is a continuous Sobolev
embedding

H1([0, l],SE(3)) ↪→ C([0, l],SE(3)), (8)

see, e.g., [3] for a proof. Further, we have the following density result

C∞([0, l],SE(3)) ↪→d H1([0, l],SE(3))

(cf. [3, 17]).
By our coercivity assumptions on W , the space H1([0, l],SE(3)) is the ap-

propriate framework for considering minimization problems for the functional j.

Lemma 2.2. Let W be coercive in the sense of (6). Then j is coercive as a
function of (u, v) ∈ L2([0, l],R3 ×R3), and weakly lower semi-continuous in the
space H1([0, l],SE(3)).

Proof. Coercivity of j in L2([0, l],R3 × R3) follows directly from (6). In [20]
sequential weak lower semi-continuity in the space L1([0, l],R3 × R3) of strains
is shown, which implies weak lower semi-continuity in L2([0, l],R3 × R3). This
corresponds to weak lower semicontinuity in H1([0, l],SE(3)).

If we impose Dirichlet boundary conditions

ρ(0) = ρD,0 and ρ(l) = ρD,l, (9)

and a corresponding constraint manifold

H1
D,0,l([0, l],SE(3)) :=

{
ρ ∈ H1([0, l],SE(3)) | ρ(0) = ρD,0, ρ(l) = ρD,l

}
, (10)

then the problem of finding stable equilibrium configurations of Cosserat rods
can be written as the optimization problem

minimize j in H1
D,0,l([0, l],SE(3)). (11)

Existence of solutions to this problem has been shown by Seidman and Wolfe
[20]. These solutions are generally not unique. However, the following regularity
result holds:

Theorem 2.1 ([20], Thm. 4.24). Let (u(ρ),v(ρ)) be a solution of the mini-
mization problem (7), with the boundary conditions (9). Then (u(ρ),v(ρ)) is
in (C1[0, 1])6.
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2.4 Weak formulation and Neumann-type boundary con-
ditions

We now want to investigate Neumann-type boundary conditions in a variational
form. These appear as additional terms in the Euler–Lagrange equations of the
energy functional (7).

Let us, however, recall first the well-known case of Dirichlet boundary condi-
tions on both ends (cf., e.g., [6, 20]). Let Yρ,D,0,l be the subspace of TρH

1([0, l],SE(3))
where δρ(0) = 0 and δρ(l) = 0 holds in the sense of traces. Then solutions to
the minimization problem (11) solve the weak formulation

ρ ∈ H1
D,0,l([0, l],SE(3)) : 0 = Tρj δρ for all δρ ∈ Yρ,D,0,l, (12)

where the prescribed Dirichlet values are incorporated into the configuration
space (10). Explicit computation of Tρj δρ and integration by parts yields the
well-known strong equilibrium equations of forces and moments

n′ = 0, on [0, l], (13)

m′ + r′ × n = 0, on [0, l]. (14)

We now assume that the rod is clamped only at the far end s = l, but free
to move at s = 0. We introduce the rod Neumann boundary γ := {0} ⊂ ∂[0, l],
and the modified configuration and test function spaces

H1
D,l([0, l],SE(3)) := {ρ ∈ H1([0, l],SE(3)) | ρ(l) = ρD,l} (15)

Yρ,D,l := {TρH1([0, l],SE(3)) | δρ(l) = 0}. (16)

We assume that external loads act on the rod boundary γ, given by the linear
functional

β ∈ Tρ|γSE(3)
∗

: (δr, δR) 7→ b∗(δr) +B∗(δR).

Subtracting this functional from the weak formulation (12), we obtain the new
problem

ρ ∈ H1
D,l([0, l],SE(3)) : 0 = Tρj δρ− β(δρ|γ) for all δρ ∈ Yρ,D,l.

The following result shows that the additional term can really be interpreted as
a Neumann boundary condition at s = 0.

Theorem 2.2. Let ρ ∈ H1
D,l([0, l],SE(3)) be a rod configuration such that

0 = Tρj δρ− β(δρ|γ) (17)

for all admissible variations δρ = (δr, δR) ∈ Yρ,D,l, and let ρ be twice differ-
entiable. Then ρ solves the spatial Euler–Lagrange equations (13) and (14).
Moreover, it fulfills the boundary conditions

−n∗|γ = b∗ (18)

−m∗|γ = Φ−∗R B∗. (19)
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Remark 2.1. Using test functions, (18) and (19) can be written equivalently
as

−n|γ · δr = b∗(δr)

−m|γ · δw = B∗(δR)

for all δr ∈ TrR3 and δR ∈ TRSO(3), and with δw = ΦRδR = (δRR−1)×.

Proof. Writing out Tρj δρ in (17) we obtain

0 =

∫
[0,l]

∂W

∂v
·
(
∂v

∂r
δr +

∂v

∂R
δR

)
+
∂W

∂u
·
(
∂u

∂r
δr +

∂u

∂R
δR

)
ds

− b∗(δr|γ)−B∗(δR|γ). (20)

We then compute the partial derivatives of v(s) = R−1(s)r′(s) and u(s) =
(R(s)−1R′(s))×. For the derivatives with respect to r we obtain immediately

∂v

∂r
δr = R−1δr′ and

∂u

∂r
δr = 0.

Next, we use the formula (∂(R−1)/∂R)δR = −R−1δRR−1 to compute

∂v

∂R
δR = −R−1(δRR−1)r′.

Finally, using that

∂R−1R′

∂R
δR = −R−1δRR−1R′ +R−1δR′

= R−1(−δRR−1R′R−1 + δR′R−1)R = R−1(δRR−1)′R,

we obtain

∂u

∂R
δR =

∂(R−1R′)×
∂R

δR =

(
∂R−1R′

∂R
δR

)
×

= (R−1(δRR−1)′R)× = R−1(δRR−1)′×.

Inserting these results into (20) yield

0 =

∫
[0,l]

n · (R−1δr′) ds− b∗(δr|γ)

+

∫
[0,l]

−R−1(δRR−1)r′) + m ·R−1(δRR−1)′× ds−B∗(δR|γ).

Let us now define δw := ΦRδR = (δRR−1)×, noting that m∗(δw) = B∗(δR).
Performing integration by parts and and setting (n,m) = (Rn, Rm) as in (5)
we obtain

0 =

∫
[0,l]

−(Rn)′ · δr ds+ [−(R|γn|γ) · δr|γ − b∗(δr|γ)]

+

∫
[0,l]

−(Rm)′ · δw − (Rm) · δw × r′ ds+ [−(R|γm|γ) · δw|γ −B∗(δR|γ)]

=

∫
[0,l]

−n′ · δr ds−
[
n|γ · δr|γ + b∗(δr|γ)

]
+

∫
[0,l]

−m′ · δw − (r′ ×m) · δw ds−
[
m|γ · δw|γ + Φ−∗R B∗(δw|γ)

]
.

9



There is no boundary term at s = l by construction of the test functions.
Since the equation must hold for all test functions δr and δR, the equilibrium
equations (13) and (14) follow from the integral terms. Likewise, the boundary
conditions (18) and (19) follow from the non-integral terms.

Remark 2.2. The minus signs in (18) and (19) originate from the integration
by parts performed in the proof, and reflect the fact that we apply Neumann
conditions at the left end of the rod parameter domain. Indeed, if we use νr to
denote the unit outer normal of the rod parameter domain [0, l] we get νr(0) =
−1 and νr(l) = 1. A more general way to write conditions (18) and (19) would
hence be

n∗|γν|γ = b∗

m∗|γν|γ = Φ−∗R B∗,

which involves the outer normal boundary stresses of the rod on the left. For a
simpler notation, though, we stick with the form used in Theorem 2.2 for the
rest of the paper.

3 Elastic Continua

We now describe our model of the elastic continuum. Let E3 be a three-
dimensional Euclidean space, which we will use as the parameter space. A
body is an open connected subset B ⊂ E3, and a configuration of B is a map-
ping φ : B → R3 such that φ(B) is open and connected, and φ has an inverse
φ−1 : φ(B) → B. We single out one configuration φ0 : B → R3 and call it
the reference configuration. In principle it is possible to use any configura-
tion as the reference configuration. For simplicity we assume only that φ0 is a
C∞-diffeomorphism.

We assume the boundary ∂B to be Lipschitz continuous and to consist of two
disjoint parts ∂DB and ∂NB such that ∂B = ∂DB ∪ ∂NB. The unit boundary
normals of the domain B are denoted by ν. Our space of admissible configura-
tions is H1(B), the usual first-order Sobolev space of three-valued functions on B,
constraint to fulfill Dirichlet conditions if present. We consider hyperelastic con-
tinua, i.e., we assume the existence of a stored energy function Ŵ : B×R3×3 → R
such that equilibrium configurations of the continuum are stationary points of
the functional

E(φ) =

∫
B

[
Ŵ (x,∇φ)− Vf (φ)

]
dV −

∫
∂NB

Vg(φ) dA. (21)

The volume loads Vf and surface loads Vg are assumed to be dead loads, i.e.,
there are functions f : B → R3 and g : ∂NB → R3 such that Vf (φ) = f · φ and
Vg(φ) = g · φ.

In this article we focus only on minimizers of E. To guarantee the existence
of such minimizers, we make the following assumption.

Assumption 3.1. The energy functional E is weakly lower semi-continuous
and coercive in the semi-normed space (H1(B), ‖∇ · ‖L2(B)).
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Since Ŵ depends on φ through ∇φ only, we cannot expect more than co-
ercivity in the above semi-normed space. The energy E will be coercive with
respect to the full norm ‖ · ‖H1 if ∂DB has non-zero two-dimensional measure.

Large classes of stored energy functionals satisfy Assumption 3.1. Partic-
ular examples are linearly elastic materials, and polyconvex materials such as
Mooney–Rivlin materials. In the case of linear elasticity E is a quadratic energy
functional. Convexity and coercivity of E follow from Korn’s inequality, and
weak lower semi-continuity is in turn a consequence of the convexity of E. In
the polyconvex case, showing weak lower semi-continuity of E is more involved
and depends on several delicate assumptions on Ŵ . Details can be found, e.g.,
in [8, Chap. 7].

The minimization formulation of the continuum elasticity problem is con-
venient, because it makes only few regularity assumptions. We will use this
formulation later as the basis of our proof showing existence of solutions to
coupled rod–continuum systems. However, to properly interpret the resulting
dual coupling conditions, we need the weak and strong forms of the equilib-
rium equations as well. These can only be stated under additional smoothness
assumptions.

Consider an energy minimizer φ∗ of E and assume that E is Gâteaux-
differentiable at φ∗ for all directions δφ ∈ C1(B). Then differentiation of (21)
yields the corresponding Euler–Lagrange-equation

0 = Tφ∗E(δφ)

=

∫
B

[
P (x,∇φ∗)∇δφ− f · δφ

]
dV −

∫
∂NB

g · δφ dA (22)

for all test functions δφ ∈ C1(B) with a zero trace on ∂DB. Here, P is the first
Piola–Kirchhoff stress tensor [8, Chap. 4]

P (x) = P (x,∇φ∗) =
∂Ŵ (x,∇φ∗)

∂∇φ
.

To derive a strong form of the equilibrium conditions (22) we have to inte-
grate by parts (which is, of course, only possible if φ∗ is sufficiently smooth),
and obtain

− divP = f in B,

Pν = g on ∂NB,

in the reference domain.

4 Coupling Conditions

In this chapter we formulate coupling conditions for a model consisting of one
Cosserat rod and one continuum, where the rod is attached by one of its end-
points to a part of the boundary of the continuum, and the other end of the
rod is clamped (Figure 2). We discuss two different sets of coupling conditions,
which correspond to different choices of the interface space.

Let B ⊂ E3 as in Section 3. However, the boundary ∂B is now supposed
to consist of two disjoint parts ∂NB and Γ, such that ∂B = ∂NB ∪ Γ. We

11



Figure 2: Coupling between a three-dimensional continuum and a Cosserat rod.

assume that Γ has positive two-dimensional measure and contains a subset that
is diffeomorphic to a disc. Additionally, we assume that the trace mapping

(·)|Γ : H3(B)→ H5/2(Γ) (23)

is continuous and surjective. All these assumptions are fulfilled if Γ is a smoothly
bounded relatively open subset of ∂B, and B is a C2,1-domain (cf., e.g., [22,
Sec. I §8]). Note that by the Sobolev embedding theorems we have the contin-
uous embedding H3(B) ↪→ C1(B), which will be needed later in view of (22).

The three-dimensional object represented by B will couple with the rod
across Γ, and we call Γ the coupling boundary. On ∂BN boundary forces may
act. For simplicity of presentation we do not consider Dirichlet boundary con-
ditions on any part of ∂B, which would, however, be straightforward to incor-
porate.

Consider also a Cosserat rod defined on the parameter interval [0, l], with
smooth reference configuration ρ0 : [0, l] → SE(3). The boundary ∂[0, l] of the
parameter domain [0, l] consists of the two points {0} and {l}. We call γ ⊂ ∂[0, l]
the coupling boundary of the rod. To be specific, we pick γ = {0}. On the other
boundary s = l we will impose Dirichlet boundary conditions. As in Section 2
we use the constraint manifold H1

D,l([0, l],SE(3)) defined in (15) to incorporate
these Dirichlet conditions.

Our coupling conditions involve only the primal variables restricted to the
coupling boundaries Γ and γ. For the continuum model we have

φ|Γ ∈ H1/2(Γ),

and for the rod we have

ρ|γ = ρ(0) = (r(0), R(0)) ∈ SE(3).

This is the position and orientation of the rod cross-section at the coupling
boundary.

To prepare for the existence results in Section 5 we will formulate the coupled
problems in a variational form. First, we will write the coupling conditions as

12



equations
c(φ|Γ,ρ|γ) = 0

with a constraint mapping

c : H1/2(Γ)× SE(3)→ V

into a linear space V . The precise forms of c and V will depend on the actual
coupling conditions (see Chapters 4.1 and 4.2). Then we add (7) and (21) to
obtain the total energy minimization problem

min
[
E(φ) + j(ρ)

]
(24)

restricted to those φ ∈ H1(B) and ρ ∈ H1
D,l([0, l],SE(3)) with

c(φ|Γ,ρ|γ) = 0. (25)

The coupled problem thus assumes the form of a single constrained minimization
problem, and can be treated using the calculus of variations.

In the rest of this chapter we will now discuss two alternative coupling con-
ditions. In Section 5 we will show existence of minimizers (φ∗,ρ∗) to the con-
strained problem (24) + (25) for both of them. Then we will derive existence
of Lagrange multipliers λ ∈ V ∗ at a minimizer (φ∗,ρ∗) such that the first or-
der optimality conditions are fulfilled. Finally, we will interpret this system of
equations as equilibrium conditions, where the Lagrange multipliers yield the
constraint forces.

4.1 Rigid coupling

For the first set of coupling conditions we assume that under load, the pair of
coupling boundaries φ|Γ and ρ|γ moves rigidly from their reference configura-
tions φ0|Γ and ρ0|γ . That means there is a rigid body motion R ∈ SE(3) such
that both

R(φ0|Γ) = φ|Γ (26)

and
R(ρ0|γ) = ρ|γ . (27)

Here, (26) is to be understood as an action of R on the points φ0|Γ(x) for almost
all x ∈ Γ. Since both R and ρ0|γ are elements of SE(3) we have R(ρ0|γ) =
R·ρ0|γ , i.e., group multiplication in SE(3). Hence we can use the group structure
of SE(3) to get

R = ρ|γ · (ρ0|γ)−1.

Inserting this into (26) yields

ρ|γ · (ρ0|γ)−1(φ0|Γ) = φ|Γ.

Introduce r, r0 ∈ R3 and R,R0 ∈ SO(3) such that ρ|γ = (r,R) and ρ0|γ =
(r0, R0). The multiplication rule (1) in SE(3) gives

ρ|γ · (ρ0|γ)−1 = (r,R) · (−R−1
0 r0, R

−1
0 ) = (−RR−1

0 r0 + r,RR−1
0 ). (28)

Hence we obtain the coupling condition

(−RR−1
0 r0 + r,RR−1

0 )(φ0|Γ) = φ|Γ

13



or, equivalently,
RR−1

0 (φ0|Γ)−RR−1
0 r0 + r = φ|Γ. (29)

Note that this is an equation in the function space H1/2(Γ), i.e., it holds point-
wise almost everywhere on Γ.

We now write this condition in the variational form of the previous section.
For this we set V = H1/2(Γ) and define the constraint function

cr : H1/2(Γ)× SE(3)→ H1/2(Γ)

cr(φ|Γ,ρ|γ) = (φ|Γ − r)−RR−1
0 (φ0|Γ − r0).

(30)

It is evident that cr(φ|Γ,ρ|γ) = 0 if and only if (29) holds.
The following two lemmas state a few technical properties of cr.

Lemma 4.1. The subset of H1(B)×H1
D,l([0, l],SE(3)) defined by cr(φ|Γ,ρ|γ) =

0 is weakly closed.

Proof. Consider a weakly converging sequence (φk,ρk) ⇀ (φ∗,ρ∗) such that
cr(φk|Γ,ρk|γ) = 0 for all k ∈ N. Since the trace operators are linear and
continuous in the spaces that we have chosen, the sequence (vk, (rk, Rk)) :=
(φk|Γ,ρk|γ) is weakly converging as well, with limit (v∗, (r∗, R∗)) = (φ∗|Γ,ρ∗|γ).
We have to show that cr(v∗, (r∗, R∗)) = 0. Since SE(3) is finite dimensional we
conclude that (rk, Rk)→ (r∗, R∗) strongly. It follows that

(rk +RkR
−1
0 (φ0|Γ − r0))→ (r∗ +R∗R

−1
0 (φ0|Γ − r0))

in H1/2(Γ). Hence in the equation

0 = cr(vk, (rk, Rk)) = (vk − rk −RkR−1
0 (φ0|Γ − r0)),

the right hand side converges weakly to

(v∗ − r∗ −R∗R−1
0 (φ0|Γ − r0)) = cr(v∗, (r∗, R∗)).

Thus cr(v∗, (r∗, R∗)) = 0.

Lemma 4.2. The derivative T of cr at (φ|Γ,ρ|γ) = (φ|Γ, (r,R)) is a surjective
mapping

T(φ|Γ,ρ|γ) cr : H1/2(Γ)× Tρ|γSE(3)→ H1/2(Γ)

and is given by

T(φ|Γ,ρ|γ) cr(δφ|Γ, (δr, δR)) = (δφ|Γ − δr)− δRR−1
0 (φ0|Γ − r0).

Proof. The formula for the derivative follows from the linearity of cr in φ, r, and
R. Setting (δr, δR) = (0, 0) we immediately obtain surjectivity of T(φ|Γ,ρ|γ) cr,
since

T(φ|Γ,ρ|γ) cr(δφ|Γ, (0, 0)) = δφ|Γ.

Note that in Lemma 4.2 we have used the canonical identifications of the
linear space H1/2(Γ) with its tangent spaces.
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Remark 4.1. Clearly, T(φ|Γ,ρ|γ) cr remains surjective if we replace the domain

and codomain space H1/2(Γ) by any subspace.

Finally, we show a density result, which will be needed in Section 6. Let us
define the subspace

Kr
φ,ρ :=

{
(δφ, δρ) ∈ H1(B)× Yρ,D,l

∣∣ T(φ|Γ,ρ|γ) cr(δφ|Γ, δρ|γ) = 0
}
. (31)

Proposition 4.1. The intersection

Kr
φ,ρ ∩H3(B)×H2([0, l],R3 × R3×3)

is dense in Kr
φ,ρ.

Proof. We will show that any given (δφ, δρ) ∈ Kφ,ρ can be approximated by
an element of Kr

φ,ρ ∩H3(B)×H2([0, l],R3 ×R3×3). By the well known density
result in Sobolev spaces δρ can be approximated by C∞ functions, and thus also
by a H2 function ρ̃; we may choose ρ̃ such that ρ̃|γ = δρ|γ . Since δρ|γ acts as an
affine mapping on Γ, (δφ|Γ, δρ|γ) ∈ kerT(φ|Γ,ρ|γ) cr implies that δφ|Γ is an affine

mapping as well, and thus in particular an element of H5/2(Γ). By surjectivity
of the trace operator (23) we find an extension φT ∈ H3(B) of δφ|Γ such that
φT |Γ = δφ|Γ. By density in Sobolev spaces, we may now approximate δφ−φT
(which satisfies (δφ − φT )|Γ = 0) by some φA ∈ H3(B), such that φA|Γ = 0.
Then φT + φA ∈ H3(B) satisfies (φT + φA)|Γ = δφ|Γ and approximates δφ in
H1(B). Hence, the pair (φT +φA, ρ̃) is in Kφ,ρ∩H3(B)×H2([0, l],R3×R3×3),
and approximates (δφ, δρ).

4.2 Averaged Coupling

Our second coupling condition is formulated in se(3), the Lie algebra of the
rod configuration space restricted to γ. The main idea here is to drop the
condition (26) that φ|Γ is transformed by a rigid body motion. Instead, for
any φ|Γ we seek a rigid body motion R that minimizes the least squares error
between φ|Γ and R(φ0|Γ). Thus, (26) is replaced by

R ∈ arg min
Q∈SE(3)

1

2

∥∥φ|Γ −Q(φ0|Γ)
∥∥2

L2(Γ)
, (32)

which, together with (27) yields our second set of coupling conditions.
An alternative formulation gets rid of the minimization problem. Note that

instead of writing the orientation condition on so(3), we choose a formulation
in R3 using axial vectors. This allows an easier interpretation.

Proposition 4.2. Assume that (φ|Γ,ρ|γ) are such that (27) and (32) hold, and
write ρ|γ as (r,R). Then we also have the coupling conditions

0 =

∫
Γ

(φ|Γ − r)−RR−1
0 (φ0|Γ − r0) dA (33)

0 =

∫
Γ

(φ|Γ − r)×RR−1
0 (φ0|Γ − r0) dA. (34)
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Proof. In the following we will frequently use the function

ψ : Γ→ R3, ψ(x) := R−1
0 (φ0|Γ(x)− r0) (35)

to shorten the notation. Let R be a minimizer of (32). Then it satisfies the
first order optimality conditions

0 =
〈
φ|Γ −R(φ0|Γ),−δR(φ0|Γ)

〉
L2(Γ)

∀ δR ∈ TRSE(3). (36)

Using the coupling condition (27), which implies (28), we compute

R(φ0|Γ) = r +RR−1
0 (φ0|Γ − r0) = r +Rψ

δR(φ0|Γ) = δr + δRR−1
0 (φ0|Γ − r0) = δr + δRψ,

(with (δr, δR) ∈ Tρ|γSE(3)). Inserting this into (36) we obtain

0 =
〈
φ|Γ − r −Rψ,−δr − δRψ

〉
L2(Γ)

∀δr ∈ R3, δR ∈ TRSO(3).

Hence, setting δR = 0 yields

0 =
〈
φ|Γ − r −Rψ, δr

〉
L2(Γ)

=

∫
Γ

(φ|Γ − r −Rψ) dA · δr ∀δr ∈ R3,

which implies (33).
If we set δr = 0 instead, we obtain

0 =
〈
φ|Γ − r −Rψ, δRψ

〉
L2(Γ)

∀δR ∈ TRSO(3). (37)

Using the spatial representation (2) we may write δR = UR for some U ∈ so(3),
which implies

0 = 〈φ|Γ − r,URψ〉L2(Γ) ∀U ∈ so(3),

because in (37) we have

〈Rψ, δRψ〉 = 〈Rψ,URψ〉 = 0

by skew-symmetry of U. Defining u := U× we can continue

0 = 〈φ|Γ − r,u×Rψ〉L2(Γ) =

∫
Γ

(φ|Γ − r) · (u×Rψ) dA

=

∫
Γ

u · (Rψ × (φ|Γ − r)) dA =

∫
Γ

Rψ × (φ|Γ − r) dA · u for all u ∈ R3,

where we have used (4). This implies (34).

Following our variational program we rewrite (33) and (34) as a constraint
function. This time, the function is defined as

ca : H1/2(Γ)× SE(3)→ R3 × R3

ca(φ|Γ,ρ|γ) =


∫

Γ

(φ|Γ − r)−RR−1
0 (φ0|Γ − r0) dA∫

Γ

(φ|Γ − r)×RR−1
0 (φ0|Γ − r0) dA

 . (38)

We prove the same properties for ca as for cr.
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Lemma 4.3. The subset of H1(B)×H1
D,l([0, l],SE(3)) defined by ca(φ|Γ,ρ|γ) =

0 is weakly closed.

Proof. As in the proof of Lemma 4.1 for rigid coupling, this follows from linearity
of ca with respect to φ, and continuity of ca with respect to variables (r,R) in
the finite dimensional space SE(3).

Lemma 4.4. The derivative of ca is a surjective mapping

T(φ|Γ,ρ|γ) ca : H1/2(Γ)× Tρ|γSE(3)→ R3 × R3,

and is given by

T(φ|Γ,ρ|γ) ca(δφ|Γ, (δr, δR))=



∫
Γ

(δφ|Γ − δr)− δRR−1
0 (φ0|Γ − r0) dA∫

Γ

(δφ|Γ − δr)×RR−1
0 (φ0|Γ − r0) dA

+

∫
Γ

(φ|Γ − r)× δRR−1
0 (φ0|Γ − r0) dA

. (39)

Proof. Equation (39) follows from the product rule for the cross product. To
prove surjectivity of T(φ|Γ,ρ|γ) ca, let (w1, w2) ∈ R3 × R3. We will show that〈

T(φ|Γ,ρ|γ) ca(δφ|Γ, (δr, δR)), (w1, w2)
〉
R3×R3

= 0 ∀δφ|Γ, δr, δR (40)

implies (w1, w2) = (0, 0).
Set δr = 0, δR = 0 in (40) to obtain∫

Γ

δφ|Γ(x) · w1 + (δφ|Γ(x)×Rψ(x)) · w2 dA = 0,

where we use again the function ψ defined in (35). By (4), this is the same as∫
Γ

δφ|Γ(x) · (w1 − w2 ×Rψ(x)) dA = 0.

Since this holds for all δφ|Γ ∈ H1/2(Γ) it follows that

w1 − w2 ×Rψ(x) = 0 ∀x ∈ Γ. (41)

Since φ0 is a diffeomorphism, so is Rψ = RR−1
0 (φ0|Γ − r0), the range I =

Rψ(Γ) of which thus contains a subset that is diffeomorphic to a disc by our
assumptions on Γ. Hence, we can find three points p1, p2, p3 in I which are not
collinear. Then (41) yields w2 × p1 = w2 × p2 = w2 × p3 = w1, and hence
w2 × (p1 − p2) = w2 × (p1 − p3) = 0. It follows that any nonzero w2 would be
parallel to both p1 − p2 and p1 − p3. But since these are linearly independent,
we conclude w2 = 0 and thus also w1 = 0.

Remark 4.2. As one can see from the proof, the same surjectivity result holds,
if in the domain of T(φ|Γ,ρ|γ)ca the space H1/2(Γ) is replaced by another space
that contains C∞(Γ).

Finally, we need a density result, which will be a consequence of the following
general lemma.
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Lemma 4.5. Let X and X̃ be two Banach spaces, such that X̃ is densely and
continuously embedded into X. Let Y be a Banach space and A : X → Y
continuous and surjective. Assume that the restriction Ã : X̃ → Y of A is also
surjective. Then ker Ã is dense in kerA.

Proof. Let x ∈ kerA be given. We will construct a sequence in ker Ã that
approximates x in X. To this end, consider a sequence xk in X̃ with xk → x
in X. By continuity of A it follows that yk := Axk = Ãxk → Ax = 0 in Y .
Hence, since Ã is surjective, and thus an open mapping, there is a sequence
vk → 0 in X̃, such that yk = Ãvk. Consequently, wk := xk − vk ∈ ker Ã. Since
‖x − wk‖X ≤ ‖x − xk‖X + ‖vk‖X ≤ ‖x − xk‖X + c‖vk‖X̃ → 0, we have shown

existence of a sequence wk in ker Ã that converges to x in X. This gives our
assertion.

In analogy to the last section let us now define the subspace

Ka
φ,ρ :=

{
(δφ, δρ) ∈ H1(B)× Yρ,D,l | T(φ|Γ,ρ|γ) ca(δφ|Γ, δρ|γ) = 0

}
. (42)

Then Remark 4.2 and Lemma 4.5 imply the following:

Corollary 4.1. The intersection

Ka
φ,ρ ∩H3(B)×H2([0, l],R3 × R3×3)

is dense in Ka
φ,ρ.

Proof. Defining A as the composition of T(φ|Γ,ρ|γ) ca and the trace operators |Γ
and |γ (i.e. A(δφ, δρ) := T(φ|Γ,ρ|γ) ca(δφ|Γ, δρ|γ)), it is easy to see that A is
continuous, linear, and surjective due to Lemma 4.4 and the surjectivity and
continuity of the trace operators. Moreover, by definition Ka

φ,ρ = kerA. If

we define Ã as the restriction of A to H3(B) × H2([0, l],R3 × R3×3), we can
conclude continuity and surjectivity of Ã as well, taking into account (23) and
Remark 4.2. Hence, Lemma 4.5 applies and yields the desired result.

4.3 Further coupling conditions

The heterogeneous structure of our coupling problem, involving rotation degrees
of freedom on only one side, lends itself to propose even more coupling conditions
than the two discussed in the previous section. In this sense our setting differs
from the linear one treated in [4], where two different conditions very similar
to ours appeared as canonical. We will here briefly discuss two more coupling
conditions.

The first author proposed the following conditions in [19]. First, with ρ|γ =
(r,R) we require that the centerline at the coupling boundary γ be at the center
of mass of the continuum coupling boundary

1

|Γ|

∫
Γ

φ(x) dA = r. (43)

We then define an average orientation of the continuum configuration at Γ.
Using the deformation gradient ∇φ(x) we first define the average deformation
of the interface boundary Γ as

FΓ(φ) =
1

|Γ|

∫
Γ

∇φ(x) dA. (44)
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For sufficiently well-behaved φ the matrix FΓ(φ) can then be split up uniquely
into a rotation and a stretching, using the polar decomposition. Let polar(FΓ(φ))
be the rotation part of the polar decomposition of FΓ(φ). We call polar(FΓ(φ))
the average orientation of Γ induced by φ.

The average orientation can now be set in relation to R, the orientation of
the cross-section at the rod coupling boundary γ. We postulate the condition

polar(FΓ(φ))R0 = R, (45)

where R0 ∈ SO(3) is the rotational part of ρ0|γ . The condition is constructed
such that it is fulfilled in particular by the reference configurations φ0,ρ0, pro-
vided that φ0 = Id.

Equation (45) is an equation in the three-dimensional space SO(3). Together
with (43) we get six independent conditions for the six primal rod variables.
Existence of solutions for these conditions was shown in [18] using a fixed-point
argument, but only under very restrictive symmetry assumptions.

The coupling conditions (43) and (45) appear to be related to the notion
of averaged coupling introduced in Chapter 4.2. Indeed, (33) reduces to (43)

under the assumption that r0 = |Γ|−1 ∫
Γ
φ0 dA. Formally, Equation (45) is close

to (27), however the precise relationship between (34) and (45) is unclear. We
suspect (45) not to be a special case of (34).

The conditions (43) and (45) are dissatisfactory for several reasons. First of
all they are challenging to handle analytically, because of the implicit definition
of the polar decomposition. Secondly, they implicitly require additional regu-
larity assumptions. Indeed, we take the continuum displacement field φ to be
in H1(Ω). The usual Sobolev trace theorems then give us a trace of only the
normal component of ∇φ only in H−1/2(Γ) [21, Thm. 1.2]. However, for the
integral in (44) to make sense we would need the complete trace to exist and to
be in L1. This is a severe functional analytic obstacle for a rigorous treatment
of such kinds of conditions. Finally, the averaging (44) only leads to a regular
matrix if φ is sufficiently well-defined. This may not be the case in finite-strain
mechanics.

This last problem is much less severe if the averaging is done in SO(3) instead
of R3×3. This leads to a set of conditions that are much more elegant, and
provide well-defined averages on a much larger set of configurations. Averaging
in SO(3) is possible using the Riemannian center of mass. One obtains the
following definition for an average orientation of Γ under φ

OΓ(φ) := arg min
Q∈SO(3)

1

2

∫
Γ

dist(polar(∇φ(x)), Q)2 dA,

where dist(·, ·) is the Riemannian distance in SO(3). Well-posedness of the
minimization problem is given in a large and fairly well-defined set of configu-
rations [13]. With this definition we can state a new coupling condition for the
orientation

OΓ(φ)R0 = R,

which is identical to (45) except for the definition of average orientation.
It is even possible to include the translational coupling condition (43) and

obtain a single condition

(r,RR−1
0 ) = arg min

(q,Q)∈SE(3)

1

2

∫
Γ

dist
(
(φ(x),polar(∇φ)), (q,Q)

)2
dA,
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where we have used that |Γ|−1 ∫
Γ
φ dA = arg minq∈R3

∫
Γ
‖q − φ(x)‖2 dA.

The approach based on the Riemannian center of mass is much more concise
and mathematically elegant than the one based on (44). However, it suffers
from the same regularity problems. Also, the definition of the average as a
minimizer in a nonlinear space makes the definition even more difficult to grasp
analytically. We will not treat those conditions any further in this article.

5 Existence of energy minimizers for the cou-
pled problem

This chapter is devoted to showing the existence of energy minimizers for the
minimization problem (24) with (25). These minimizers are solutions of the
coupled problem.

To proceed, we denote by R := R ∪ {+∞} the set of extended real values,
and recall the well-known definition of the indicator functional ιS : X → R of a
set S ⊂ X

ιS(x) :=

{
0 x ∈ S,
∞ x /∈ S.

Finally we define the feasible set

F :=
{

(φ,ρ) ∈ H1(B)×H1
D,l([0, l],SE(3)) | c(φ|Γ,ρ|γ) = 0

}
,

where c is a placeholder for either cr (30) or ca (38).

Lemma 5.1. Any bounded sequence in H1(B)×H1
D,l([0, l],SE(3)) has a weakly

converging subsequence with limit in H1(B)×H1
D,l([0, l],SE(3)). The functional

ιF : H1(B)×H1
D,l([0, l],SE(3))→ R is weakly lower semi-continuous.

Proof. Since H1(B) is a Hilbert space, and hence reflexive, any bounded se-
quence in H1(B) has a weakly converging subsequence. In contrast (see Sec-
tion 2), H1

D,l([0, l],SE(3)) is an infinite dimensional nonlinear manifold, em-

bedded in the Sobolev space H1([0, l],R3 × R3×3). Thus, a bounded sequence
ρk ∈ H1([0, l],SE(3)) has, first of all, a weakly converging subsequence with
limit ρ∗ only in H1([0, l],R3 × R3×3). We have to show that this limit is in
H1
D,l([0, l],SE(3)). By the compactness result of Rellich, weak convergence in

H1([0, l],R3×R3×3) implies strong convergence ρk → ρ∗ in C([0, l],R3×R3×3).
Since SE(3) is closed in R3×R3×3, we thus obtain ρ∗(s) ∈ SE(3) for all s ∈ [0, l].
This shows our first assertion.

For our second assertion consider a weakly converging subsequence (φk,ρk) ⇀
(φ∗,ρ∗) in H1(B)×H1

D,l([0, l],SE(3)). By continuity and linearity of the trace
operators (·)|Γ and (·)|γ this implies also (φk|Γ,ρk|γ) ⇀ (φ∗|Γ,ρ∗|γ). Thus, due
to the weak closedness results of Lemma 4.1 and Lemma 4.3 we obtain that F
is weakly closed. Hence, as the indicator functional of a weakly closed set, ιF is
weakly lower semi-continuous.

Lemma 5.2. For φ ∈ H1(B) define the componentwise average on Γ by

φΓ := |Γ|−1
∫

Γ

φ|Γ dA. (46)

20



Then the Poincaré-type inequality

‖φ‖L2(B) ≤ ‖∇φ‖L2(B) + η|φΓ| (47)

holds for some η > 0.

Proof. Interpret (46) as a vector-valued linear functional on H1(B). This func-
tional does not vanish on the constant functions. Then [11, Lem. B.63] as-
serts (47).

We use the previous definitions to write the constrained minimization prob-
lem as a nonsmooth unconstrained problem for the energy

E : H1(B)×H1
D,l([0, l],SE(3))→ R,

E(φ,ρ) = E(φ) + j(ρ) + ιF (φ,ρ).
(48)

This allows to state the main result of this section.

Theorem 5.1. The energy functional E has a global minimizer in H1(B) ×
H1
D,l([0, l],SE(3)).

Proof. As a sum of weakly lower semi-continuous functionals, E is weakly lower
semi-continuous as well.

Let us now show coercivity of E . By Lemma 2.2 we know that j is coercive
in H1

D,l([0, l],SE(3)). Here, the Dirichlet boundary condition at s = l is crucial.
By the Sobolev embedding (8) we also get coercivity of j in C([0, l],SE(3)) and
thus, in particular, ρ|γ →∞ implies j →∞.

Further, by Assumption 3.1, E is coercive in the semi-norm ‖∇ · ‖L2(B). By
the Poincaré inequality (47) we have

‖φ‖H1(B) ≤ η(‖∇φ‖L2(B) + |φΓ|) ≤ η(E(φ) + |φΓ|).

Hence, it remains to prove that |φΓ| → ∞ implies E → ∞. Here we have to
exploit the coupling conditions. Both conditions imply (see (30) and (33)) that
(writing ρ|γ = (r,R))

0 =

∫
Γ

(φ|Γ− r)−RR−1
0 (φ0|Γ− r0) dA = |Γ|(φΓ− r) +

∫
Γ

RR−1
0 (φ0|Γ− r0) dA,

where the last integral is bounded independently of R, because R ∈ SO(3).
Hence, |φΓ| → ∞ implies |r| → ∞, and thus in turn j → ∞. This shows
coercivity of E .

Consider a minimizing sequence (φk,ρk). By coercivity we conclude that φk
is bounded in the Hilbert space H1(B), and ρk is bounded in H1

D,l([0, l],SE(3)).
Hence, by Lemma 5.1 we obtain a weakly converging subsequence with limit
(φ∗,ρ∗). Since (φk,ρk) is a minimizing sequence, we know that E(φk,ρk) →
inf E . Since E is weakly lower semi-continuous (Lemma 5.1) we can conclude
that

inf E ≤ E(φ∗,ρ∗) ≤ lim
k→∞

E(φk,ρk) = inf E ,

and hence E(φ∗,ρ∗) = inf E . Thus, (φ∗,ρ∗) is a minimizer of E .
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Theorem 5.1 asserts the existence of a global minimizer. Since the energy
functional usually is not convex, as for example in the case of nonlinear elasticity,
this minimizer may be non-unique, which also reflects physical reality. The best
one can hope for is local uniqueness, for which certain second order sufficient
optimality conditions would have to be imposed.

Remark 5.1. We may easily extend our analysis to an arbitrary number of
finitely many continua, rods, and couplings. Then our combined functional is a
sum

E =

nE∑
i=1

Ei(φi) +

nj∑
k=1

jk(ρk) +

nc∑
l=1

ιFl(φi(l),ρk(l)).

In this more general setting, E is coercive if and only if there is a Dirichlet
boundary condition for each connected component of the model.

6 First order optimality conditions and weak
formulations

In this section we rigorously derive the first order necessary conditions for en-
ergy minimizers of our coupled problem. Existence of such minimizers has been
shown in the previous section. Let in the following (φ∗,ρ∗) be a local mini-
mizer of E , as defined in (48), equipped with either rigid or averaged coupling
conditions.

In Section 5 we have not used any assumptions on the smoothness of j and
E at a minimizer. To derive the first-order optimality conditions we require
differentiability of these functionals there.

Assumption 6.1. The continuum energy E is Fréchet differentiable at φ∗
with respect to perturbations in C1(B), with derivative Tφ∗E ∈ H1(B)∗. The
rod energy j is Fréchet differentiable at ρ∗ in C1

D,l([0, l],SE(3)) with derivative
Tρ∗j ∈ Y ∗ρ∗,D,l (cf. (16)).

By our use of C1-spaces we can include stored energy functionals with singu-
larities, used for example in nonlinear elasticity to exclude local self-penetration [9].

If j and E are both quadratic functionals of the strains, then these spaces can
be replaced by their H1-counterparts. In this case, the following proofs could
be simplified to some degree, but realistic stored energy functionals would be
excluded. Still, Assumption 6.1 can usually not be verified a-priori for realistic
stored energy functionals (cf. [2]), but only under the assumption that det∇φ∗
is bounded away from zero on B.

In the following results, c will mean either the rigid-coupling function cr (30)
or the averaged-coupling function ca (38).

Lemma 6.1. Let (φ∗,ρ∗) be a minimizer of E and

(δφ, δρ) ∈ H1(B)× Yρ∗,D,l

such that
T(φ∗|Γ,ρ∗|γ)c(δφ|Γ, δρ|γ) = 0.

Suppose that Assumption 6.1 holds. Then

Tφ∗E δφ + Tρ∗j δρ = 0. (49)
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Proof. Since we can interpret ρ∗ as the solution of a Dirichlet problem with ρ∗(l)
and ρ∗(0) given, we can conclude by Theorem 2.1 that ρ∗ ∈ C2([0, l],SE(3)).

Consider a C1-neighborhood U of (φ∗,ρ∗) in H1(B)×C1
D,l([0, l],SE(3)), and

a local chart θ of U into C1(B)×(Yρ∗,D,l∩C1([0, l],R3×R3×3)). Assume w.l.o.g.
that θ(φ∗,ρ∗) = (0, 0).

In order to stay in a Hilbert space context we consider small local perturba-
tions

(φθ,ρθ) ∈ H3(B)× (Yρ∗,D,l ∩H2([0, l],R3 × R3×3))

↪→ C1(B)× (Yρ∗,D,l ∩ C1([0, l],R3 × R3×3)

and their corresponding preimages

(φ,ρ) := θ−1(φθ,ρθ) ∈ H1(B)×H1
D,l([0, l],SE(3)),

which lie in our C1-neighborhood U . Then we obtain the local representations

(E + j)θ(φθ,ρθ) := E(φ) + j(ρ),

cθ(φθ,ρθ) := c(φ|Γ,ρ|γ).

Thus, cθ is defined as the local representation of the composition of c and the
trace mappings. We conclude that cθ(0, 0) = c(φ∗|Γ,ρ∗|γ) = 0, and that (0, 0)
is a local minimizer of the problem

min(E + j)θ(φθ,ρθ) on H3(B)× (Yρ∗,D,l ∩H2([0, l],R3 × R3×3)),

subject to
cθ(φθ,ρθ) = 0.

Unlike the original problem the coordinate formulation is now posed in a
linear space. By Lemmas 4.2 and 4.4 we know that cθ is differentiable, and
(E + j)θ is differentiable by Assumption 6.1. Let us denote their derivatives by
(E + j)′θ and c′θ, respectively. To derive the equality (49) we will show that

(E + j)′θ(0, 0)(φθ,ρθ) ≤ 0, (50)

for all (φθ,ρθ) ∈ ker c′θ(0, 0). To achieve this, we first construct a local dif-
feomorphism Ψ between ker c′θ(0, 0) and the set cθ = 0 near (0, 0). We will
use the surjective implicit function theorem [23, Thm. 4.H]. For this, we need
surjectivity of c′θ(0, 0). In the case of rigid coupling,

c′θ = (cr)
′
θ : H3(B)× (Yρ∗,D,l ∩H2([0, l],R3 × R3×3))→ H5/2(Γ)

is surjective directly due to assumption (23), while the surjectivity of

c′θ = (ca)′θ : H3(B)× (Yρ∗,D,l ∩H2([0, l],R3 × R3×3))→ (R3 × R3×3)∗

in the case of averaged coupling is due to Lemma 4.4 and (23). Taking into
account that the domain of c′θ is a Hilbert space (and thus its kernel has a
closed complement), we can apply the surjective implicit function theorem to
establish existence of a diffeomorphism Ψ between ker c′θ(0, 0) and the set cθ = 0
near (0, 0) in H3(B)× (Yρ∗,D,l∩H2([0, l],R3×R3×3)). This diffeomorphism can
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be chosen in a way such that Ψ′(0, 0) is the identity. By differentiability of
(E + j)θ and Ψ, and the minimizing property of (0, 0) we conclude that

0 ≥ lim
t→0

(E + j)θ(Ψ(tφθ, tρθ))− (E + j)θ(0, 0)

t
= (E + j)′θ(0, 0)(φθ,ρθ),

which is (50).
The converse inequality can then be shown by inserting (−φθ,−ρθ). Since

our result is invariant under changes of charts, we may switch to tangent vectors
and tangent spaces by taking equivalence classes and obtain

Tφ∗E δφ + Tρ∗j δρ = 0 (51)

for all
(δφ, δρ) ∈ H3(B)× (Yρ∗,D,l ∩H2([0, l],R3 × R3×3))

such that (δφ|Γ, δρ|γ) ∈ Kφ∗,ρ∗ , whereKφ∗,ρ∗ is eitherKr
φ∗,ρ∗

(31) orKa
φ∗,ρ∗

(42).
Equation (51) is the desired assertion (49), but for a smaller set of test

functions. To show (49) we have to extend (51) from the dense subspace H3(B)×
(Yρ∗,D,l ∩H2([0, l],R3 ×R3×3)) of H1(B)× Yρ∗,D,l to the whole space. For this
we need that the intersection of Kφ∗,ρ∗ and the smoother space is dense in
Kφ∗,ρ∗ . This has been shown in Proposition 4.1 for the rigid coupling and in
Corollary 4.1 for the averaged coupling.

By Assumption 6.1 Tφ∗E and Tρ∗j are continuous on H1(B)× Yρ∗,D,l, and
T(φ∗,ρ∗)(E+j) is continuous on this space, too. By these density and continuity
assumptions, we can perform the desired extension by a simple approximation
argument and passing to the limit.

We can now derive the first-order optimality conditions.

Theorem 6.1. Set V as in Chapter 4, i.e., V = H1/2(Γ) if c = cr (rigid
coupling), and V = R3 × R3 if c = ca (averaged coupling). Suppose that As-
sumption 6.1 holds.

There exists a Lagrange multiplier λ ∈ V ∗ such that the equation

Tφ∗E δφ + Tρ∗j δρ− λT(φ∗|Γ,ρ∗|γ)c (δφ|Γ, δρ|γ) = 0 (52)

is satisfied for all (δφ, δρ) ∈ H1(B)× Yρ∗,D,l.

Proof. Define Kφ∗,ρ∗ by either (31) or (42), and consider the functional

F (δφ, δρ) := Tφ∗E δφ + Tρ∗j δρ + ιKφ∗,ρ∗
(δφ, δρ).

We apply the rules of subdifferential calculus [10, Sec. I.5] to this functional.
Recall that the subdifferential of a functional f : X → R at a point x0 ∈ X is
defined by

∂f(x0) :=
{
` ∈ X∗ | `(x− x0) ≤ f(x)− f(x0) ∀x ∈ X

}
.

By (49) we have F = 0 on Kφ∗,ρ∗ and +∞ otherwise. Hence,

0 ∈ ∂F (0, 0) = ∂(Tφ∗E + Tρ∗j + ιKφ∗,ρ∗
)(0, 0).
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Since Tφ∗E and Tρ∗j are linear and continuous in H1(B)× Yρ∗,D,l, application
of the sum-rule of subdifferential calculus [10, Prop. I.5.6] provides the existence
of an ` ∈ ∂ιKφ∗,ρ∗

(0, 0) such that

0 = Tφ∗E + Tρ∗j + `. (53)

It is easy to see that the subdifferential of an indicator function of a closed linear
subspace can be characterized as its annihilator, i.e.,

∂ιKφ∗,ρ∗
(0, 0) = K⊥φ∗,ρ∗ =

{
` ∈ H1(B)∗ × Y ∗ρ∗,D,l | `(x) = 0 ∀x ∈ Kφ∗,ρ∗}.

Let us define the linear operator A as the composition of T(φ∗,ρ∗)c and the
trace operators, via A(δφ, δρ) := T(φ∗,ρ∗)c(δφ|Γ, δρ|γ), which is continuous and
surjective as a composition of continuous and surjective operators. By definition
kerA = Kφ∗,ρ∗ . Application of the closed range theorem [5, Thm. 2.19] yields

K⊥φ∗,ρ∗ = (kerA)⊥ = ran (A∗) ,

for the adjoint A∗ of A. Hence, since ` ∈ K⊥φ∗,ρ∗ = ran (A∗), there exists a
λ ∈ V ∗ such that

` = −A∗ λ

(the minus sign is chosen deliberately), which means that

`(δφ, δρ) = −λT(φ∗,ρ∗)c(δφ|Γ, δρ|γ) ∀(δφ, δρ) ∈ H1(B)× Yρ∗,D,l.

Inserting this into (53) proves our assertion.

Equation (52) is the first-order optimality condition for our coupled problem,
both with rigid and averaged coupling conditions. Splitting of (52) into the com-
ponents corresponding to elastic body and rod yields the following alternative
representation

Tφ∗Eδφ− λT(φ∗|Γ,ρ∗|γ)c(δφ|Γ, 0) = 0 ∀δφ ∈ H1(B) (54a)

Tρ∗jδρ− λT(φ∗|Γ,ρ∗|γ)c(0, δρ|γ) = 0 ∀δρ ∈ Yρ∗,D,l (54b)

c(φ∗|Γ,ρ∗|γ) = 0.

We have chosen the negative sign in front of λ in order to make λ easier to
interpret as a boundary force in the following section.

7 Coupling conditions for the dual variables

Theorem 6.1 allows to derive coupling conditions for the dual variables. These
conditions can be interpreted in terms of forces and moments. Unlike in the
previous chapters we treat rigid and averaged coupling separately again.

7.1 Rigid coupling

In the case of rigid coupling, the codomain of cr is the infinite dimensional space
H1/2(Γ). Thus, we will obtain boundary stresses in H1/2(Γ)∗.
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Proposition 7.1 (Dual conditions). Suppose that (φ∗,ρ∗) satisfies the first
order optimality conditions (52) with c = cr, and is sufficiently smooth. Let
(r,R) = ρ∗|γ . Then the dual conditions

n|γ =

∫
Γ

Pν(x) dA

m|γ =

∫
Γ

(φ∗|Γ(x)− r)× Pν(x) dA

hold, and Pν = λ on Γ.

Proof. Inserting the definitions of Tφ∗E (Eq. (22)) and T(φ∗|Γ,ρ∗|γ)cr (given in
Lemma 4.2) into (54a) we obtain∫

B
P (∇φ∗) : ∇δφ− f · δφ dV

−
∫
∂NB

g · δφ|∂NB dA− 〈λ, δφ|Γ〉H1/2(Γ) = 0 ∀δφ ∈ H1(B).

Formal integration by parts yields Neumann boundary conditions

Pν = λ on Γ, and Pν = g on ∂NB,

where λ is an element of H1/2(Γ)∗. Thus, λ can be interpreted as a boundary
force on Γ.

We will assume in the following that λ is an integrable function, which holds
if φ∗ is sufficiently smooth. Plugging the definition of T(φ∗|Γ,ρ∗|γ)cr given in
Lemma 4.2 into (54b) yields

Tρ∗jδρ−
∫

Γ

λ · (−δr − δRR−1
0 (φ0|Γ − r0)) dA = 0 ∀δρ ∈ Yρ∗,D,l,

with (δr, δR) = δρ|γ . Writing λT(φ∗|Γ,ρ∗|γ)cr = b∗(δr) + B∗(δR) we can use
Theorem 2.2 with

b∗(δr) = −
∫

Γ

λ · δr dA and B∗(δR) = −
∫

Γ

λ · (δRR−1
0 (φ0|Γ− r0)) dA.

In particular, from (18) follows

n∗|γ(δr) = −b∗(δr) =

∫
Γ

λ · δr dA =

∫
Γ

λ dA · δr,

i.e.,

n|γ =

∫
Γ

λdA =

∫
Γ

Pν(x)dA.

For the moments m|γ we obtain, using (30)

−B∗(δR) =

∫
Γ

λ · δRR−1
0 (φ0|Γ − r0) dA =

∫
Γ

λ · (δRR−1)(φ∗|Γ − r) dA.
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We rewrite this expression in terms of δw := (δRR−1)×. Using (4) we obtain

m∗|γ(δw) =

∫
Γ

λ · (δRR−1)(φ∗|Γ − r) dA =

∫
Γ

λ · (δw × (φ∗|Γ − r)) dA

=

∫
Γ

δw · ((φ∗|Γ − r)× λ) dA =

∫
Γ

(φ∗|Γ − r)× λ dA · δw.

Thus, we can identify

m|γ =

∫
Γ

(φ∗|Γ − r)× λ dA =

∫
Γ

(φ∗|Γ − r)× Pν(x) dA.

As mentioned, λ ∈ H1/2(Γ)∗ can be interpreted as a normal stress density
on the continuum coupling boundary Γ. The equations in Proposition 7.1 then
signify equality of the total force and moment transmitted by the continuum
across Γ and by the rod across the cross-section at γ.

7.2 Averaged coupling

In the case of average coupling, the codomain space of ca is R3 × R3, so that
the dual variables correspond to a force vector and a moment vector. Before we
proceed, we prove the following technical lemma.

Lemma 7.1. Let u ∈ R3, and v(x), w(x) ∈ L2(Γ) with
∫

Γ
v(x) × w(x) dx = 0.

Then ∫
Γ

w(x)× (u× v(x)) dx =

∫
Γ

v(x)× (u× w(x)) dx.

Proof. We can compute pointwise almost everywhere

w × (u× v)− v × (u× w) = w × (u× v) + (u× w)× v
= −u× (v × w),

where the last equality is the Jacobi identity. Integration over Γ yields∫
Γ

w(x)× (u× v(x))− v(x)× (u× w(x)) dx = −u×
(∫

Γ

v(x)× w(x) dx

)
= 0,

which was asserted.

Proposition 7.2 (Dual conditions). Suppose that (φ∗,ρ∗) satisfies the first
order optimality conditions (52) with c = ca, and is sufficiently smooth. Let
(r,R) = ρ∗|γ . Then the dual conditions

n|γ =

∫
Γ

Pν dA (55)

m|γ =

∫
Γ

(φ∗|Γ(x)− r)× Pν dA, (56)

hold at the contact boundary, where Pν is of the form

Pν(x) = λ1 − λ2 ×RR−1
0 (φ0|Γ(x)− r0) (57)

for some (λ1, λ2) ∈ R3 × R3.
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Proof. Let us denote again for brevity

ψ : Γ→ R3, ψ(x) := R−1
0 (φ0|Γ(x)− r0).

The first line of the dual coupling conditions (54) is

Tφ∗Eδφ− λT(φ∗|Γ,ρ∗|γ)c(δφ|Γ, 0) = 0 ∀δφ ∈ H1(B).

We write λ = (λ1, λ2) with λ1 ∈ R3 and λ2 ∈ R3, and insert the definitions of
Tφ∗E (Eq. (22)) and T(φ∗|Γ,ρ∗|γ)ca (Eq. (39)) to obtain∫

B

(
P (∇φ∗) : ∇δφ− f · δφ

)
dV −

∫
∂NB

g · δφ dA

−
[
λ1 ·

∫
Γ

δφ dA+ λ2 ·
∫

Γ

δφ×Rψ dA
]

= 0 ∀δφ ∈ H1(B).

The second term in the brackets is

λ2 ·
∫

Γ

(δφ×Rψ) dA =

∫
Γ

δφ · (Rψ × λ2) dA =

∫
Γ

−δφ · (λ2 ×Rψ) dA,

where we have used (4) and the anti-symmetry of the cross product. Together
with the first term in the brackets, integration by parts yields

Pν(x) = λ1 − λ2 ×Rψ(x)

for almost all x on Γ.

The second line of the optimality conditions is

Tρ∗jδρ− λT(φ∗|Γ,ρ∗|γ)ca(0, δρ|γ) = 0 ∀δρ ∈ Yρ∗,D,l.

Inserting the definition of T(φ∗|Γ,ρ∗|γ)ca from Lemma 4.4 we obtain

Tρ∗jδρ− λ1 ·
∫

Γ

(−δr − δRψ) dA

− λ2 ·
∫

Γ

[
(−δr)×Rψ + (φ− r)× δRψ

]
dA = 0 ∀δρ ∈ Yρ∗,D,l,

where we have again set λ = (λ1, λ2). We write this as

Tρ∗jδρ− β(δr, δR) = 0 ∀δρ ∈ Yρ∗,D,l,

with β(δr, δR) = b∗(δr) +B∗(δR),

b∗(δr) = −λ1 ·
∫

Γ

δr dA− λ2 ·
∫

Γ

δr ×Rψ dA

and

B∗(δR) = −λ1 ·
∫

Γ

δRψ dA+ λ2 ·
∫

Γ

(φ∗|Γ − r)× δRψ dA.
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Using Theorem 2.2 we get with (4)

n|γ · δr = −b∗(δr) = λ1 ·
∫

Γ

δr dA+ λ2 ·
∫

Γ

δr ×Rψ dA

= λ1 ·
∫

Γ

δr dA+ δr ·
∫

Γ

Rψ × λ2 dA =

∫
Γ

δr · (λ1 − λ2 ×Rψ) dA.

For the orientation part, Theorem 2.2 gives (using again δw := (δRR−1)×)

m|γ · δw = −B∗(δR) = −B∗(δw×R)

= λ1 ·
∫

Γ

(δw ×Rψ) dA− λ2 ·
∫

Γ

(φ∗|Γ − r)× (δw ×Rψ) dA.

Consider the first term of the second line. We can use (4), the coupling condi-
tions (33) and again (4) to compute∫

Γ

λ1 · (δw ×Rψ(x)) dA =

∫
Γ

Rψ(x) · (λ1 × δw) dA

=

∫
Γ

(φ∗|Γ − r) · (λ1 × δw) dA =

∫
Γ

(φ∗|Γ − r)× λ1 dA · δw.

For the second term we use (4) twice and Lemma 7.1, which applies due to (34)
to compute

λ2 ·
∫

Γ

(φ∗|Γ − r)× (δw ×Rψ) dA =

∫
Γ

(δw ×Rψ(x)) · (λ2 × (φ∗|Γ − r)) dA

=

∫
Γ

δw · (Rψ(x)× (λ2 × (φ∗|Γ − r))) dA

=

∫
Γ

(φ∗|Γ − r)× (λ2 ×Rψ(x)) dA · δw.

Adding both terms yields finally

m∗|γ(δw) =

∫
Γ

(φ∗|Γ − r)× (λ1 − λ2 ×Rψ(x)) dA · δw,

for all δw ∈ R3 and thus the desired result.

In contrast to the case of rigid coupling, the possible constraint forces given
by (57) form a vector space of only six dimensions, parametrized by the Lagrange
multipliers (λ1, λ2).

To gain additional insight into these results, we consider the case that r0 is
at the center of gravity of φ0(Γ). In this case λ1 and λ2 decouple. The vector
λ1 is then the average force density transmitted, and λ2 is related to the average
moment density.

Proposition 7.3. Assume that r0 is the center of gravity of φ0(Γ)∫
Γ

(φ0|Γ(x)− r0) dA = 0. (58)

Then

n|γ =

∫
Γ

λ1 dA (59)

m|γ =

∫
Γ

(φ∗(x)− r)× (−λ2 ×RR−1
0 (φ0(x)− r0)) dA. (60)
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Proof. Inserting (57) into (55) we obtain

n|γ =

∫
Γ

(
λ1 − λ2 ×RR−1

0 (φ0|Γ(x)− r0)
)
dA.

Taking into account (58) we obtain (59) because λ2 × RR−1
0 is independent of

x. Inserting (57) into (56) we get

m|γ =

∫
Γ

(φ∗(x)− r)× (λ1 − λ2 ×RR−1
0 (φ0|Γ(x)− r0)) dA,

where, due to (33) and (58)∫
Γ

(φ∗|Γ(x)− r) dA = 0.

Hence, (60) follows, since λ1 is independent of x.

8 Outlook

In this article we have analyzed a coupled problem involving models of different
dimensions and orientation degrees of freedom from a constraint minimization
perspective. Under increasing regularity assumptions we arrived at a hierarchy
of results: from energy minimizers via weak formulations to balance equations.

Our work can be extended in several directions. First of all, as already noted,
it is straightforward to consider multiple rods and elastic continua, and multiple
couplings. Further, in many situations of interest, there are also Signorini-type
contact conditions present. In principle, our approach can be extended to this
case. One would then have to replace the differentiability assumption on the
energy functional of the elastic body by subdifferentiability. Dynamic coupling
problems can be analyzed by a semi-group approach, where discretization in
time leads to a sequence of stationary problems. Coupling of elastic continua
to two-dimensional Cosserat shells is another interesting topic.

Our approach may also prove beneficial for solution algorithms. In principle,
the problem (24) together with (25) can be treated directly with a constraint
minimization algorithm, resulting in a “monolithic” method for the coupled
problem. On the other hand, the availability of an energy formulation may help
to analyze Steklov–Poincaré-type algorithms, or provide viable globalization
strategies. This is a topic for future research.
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