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Abstra
t. Mortar �nite element methods provide a powerful tool for the numeri
al approxima-

tion of partial di�erential equations. Many domain de
omposition te
hniques based on the 
oupling

of di�erent dis
retization s
hemes or of nonmat
hing triangulations along interior interfa
es 
an be

analyzed within this framework. Here, we present a mortar formulation based on dual basis fun
tions

and a spe
ial multigrid method. The starting point for our multigrid method is a symmetri
 positive

de�nite system on the un
onstrained produ
t spa
e. In addition, we introdu
e a new algorithm

for the numeri
al solution of a nonlinear 
onta
t problem between two linear elasti
 bodies. It will

be shown that our method 
an be interpreted as an inexa
t Diri
hlet{Neumann algorithm for the

nonlinear problem. The boundary data transfer at the 
onta
t zone is essential for the algorithm.

It is realized by a s
aled mass matrix whi
h results from a mortar dis
retization on non{mat
hing

triangulations with dual basis Lagrange multipliers. Numeri
al results illustrate the performan
e of

our approa
h in 2D and 3D.
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tions, multigrid methods, 
onta
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1. Introdu
tion. We present domain de
omposition methods within the frame-

work of mortar te
hniques [BMP93, BMP94℄. Originally introdu
ed as a non
onform-

ing method for the 
oupling of spe
tral elements, these te
hniques 
an be used in

a large 
lass of situations. The 
oupling of di�erent physi
al models, dis
retization

s
hemes or non{mat
hing triangulations along interior interfa
es of the domain 
an

be analyzed by mortar methods. These domain de
omposition te
hniques provide

a more 
exible approa
h than standard 
onforming formulations, and are of spe
ial

interest for time dependent problems, rotating geometries, inhomogeneous materi-

als, problems with lo
al anisotropies, 
orner singularities, 
onta
t problems and when

di�erent terms dominate in di�erent regions of the simulation domain. One major re-

quirement to obtain optimal dis
retization s
hemes is that the interfa
es between the

di�erent regions are handled appropriately, see, e.g., [BD98, Ben99, BMP93, BMP94℄.

Very often, suitable mat
hing 
onditions at the interfa
es 
an be formulated as weak


ontinuity 
onditions. Here, we 
onsider mortar �nite element formulations based on

a dual basis for the Lagrange multiplier spa
e, see [Woh00℄, with spe
ial emphasis

on nonlinear 
onta
t problems. As a 
onsequen
e of the biorthogonality relation and

in 
ontrast to the standard mortar methods, the lo
ality of the support of the nodal

basis fun
tions of the 
orresponding 
onstrained spa
e is preserved. Based on this

observation, we analyze a modi�ed multigrid method and present numeri
al results in

2D and 3D illustrating the performan
e of the iterative solver, see [WK01℄. As appli-


ation, we 
hoose the deformation of linear elasti
 bodies, and we 
onsider 
omposite

materials, see [KW00b, KW00a℄ for the linear 
ase. In this 
ase, the a
tual zone of


onta
t between the bodies is known in advan
e. The resulting dis
rete problem is

�
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linear and 
an be solved eÆ
iently by a modi�ed variant of our multigrid method.

Here, we introdu
e suitable lo
ally de�ned rotations.

Moreover, we fo
us on a nonlinear problem modeling the 
onta
t of two linear elas-

ti
 bodies. Here, the a
tual zone of 
onta
t is not known in advan
e and has to be iden-

ti�ed during the iteration pro
ess. A lot of work has been done on 
onta
t problems,

see, e.g., [DNS99, WG97, HH80, HH81, ESW99℄ and [Wri95, IHL88, KO88℄ for survey

papers. Two main diÆ
ulties o

ur in the numeri
al simulation of 
onta
t problems.

The �rst is the handling of the boundary data transfer at the interfa
e between the

two bodies. In our setting, this information transfer is realized in terms of the s
aled

mass matrix from the mortar formulation. The se
ond diÆ
ulty is the intrinsi
 non-

linearity of the problem at the 
onta
t boundary. To over
ome this diÆ
ulty, we use a

monotone multigrid method as a subdomain solver, see [Kor97a, KK99, KK00℄. This

method provides an eÆ
ient iterative s
heme for ellipti
 obsta
le problems but 
an-

not be applied eÆ
iently to multi body problems with non{mat
hing triangulations.

Using mortar te
hniques for the dis
retization and a monotone multigrid method as

subdomain solver, we introdu
e a new algorithm for the numeri
al solution of 
onta
t

problems. It 
an be interpreted as a nonlinear Diri
hlet{Neumann type pre
ondi-

tioner.

The rest of the paper is organized as follows: In Se
tion 2, we apply mortar

te
hniques to linear elasti
ity problems. We brie
y dis
uss the idea of a dual basis

for the Lagrange multiplier spa
e, and we re
all the mortar formulation. Pie
ewise


onstant and pie
ewise linear dual basis fun
tions are given in 2D and for hexahedral

triangulations in 3D. We fo
us on a new mortar formulation on the un
onstrained

produ
t spa
e in Se
tion 3. It is de�ned in terms of a lo
al proje
tion operator

based on a dual Lagrange multiplier spa
e. In Se
tion 4, we present our multigrid

method. Level independent 
onvergen
e rates are obtained for the W{
y
le provided

that the number of smoothing steps is large enough. The grid transfer operators have

to be modi�ed by a lo
al proje
tion. Numeri
al results illustrate, in Se
tion 5, the

performan
e of our multigrid method in 2D and 3D. Se
tion 6 shows the 
exibility

of the mortar approa
h 
ombined with the 
on
ept of dual basis fun
tions. The


oupling 
ondition at the interfa
e is weakened, and free displa
ement in tangential

dire
tion is permitted. The main result of our paper 
an be found in Se
tion 7.

We 
onsider a nonlinear 
onta
t problem for two linear elasti
 bodies and present

a nonlinear Diri
hlet{Neumann algorithm. In ea
h iteration step, we have to solve

a linear Neumann problem and a nonlinear one{sided 
onta
t problem with given

obsta
le. Numeri
al examples show the deformation of the bodies and the stresses at

the 
onta
t zone.

2. Dual Lagrange multiplier spa
es and mortar formulation. We 
on-

sider the deformation of a body of hyperelasti
 Hookean material as model problem.

The body in its referen
e 
on�guration is identi�ed with the domain 
 in IR

d

. The

displa
ement �eld u of the body is given as the solution of the following boundary

value problem

��

ij

(u)

;j

= f

i

; in 
 ;

u = 0; on �

D

;

�

ij

(u) � n

j

= p

i

; on �

F

;

where we assume 
 to be a bounded, polyhedral domain in IR

d

, d = 2; 3, and n

is the unit outer normal on the boundary of 
. The volume for
es are denoted by

f 2 (L

2

(
))

d

, and p 2 (L

2

(�

F

))

d

are the surfa
e stresses. We denote ve
tor quantities



3

by bold symbols, e.g., v, and its i{th 
omponent by v

i

. The partial derivative with

respe
t to x

j

is abbreviated with the index

;j

. Furthermore, we enfor
e the summation


onvention on all repeated indi
es ranging from 1 to d. The stress tensor � is given

by Hooke's law

�

ij

(u) := E

ijlm

u

l;m

;

where Hooke's tensor E := (E

ijlm

)

d

i;j;l;m=1

, E

ijlm

2 L

1

(
), is assumed to be suf-

�
iently smooth, symmetri
, i.e., E

ijlm

= E

jilm

= E

lmij

, 1 � i; j; l;m � d, and

uniformly positive de�nite, i.e., E

ijlm

�

ij

�

lm

� 
 �

ij

�

ij

for ea
h symmetri
 tensor �,

�

ij

= �

ji

. For homogeneous isotropi
 materials, Hooke's tensor depends only on the

Poisson ratio � and Young's modulus E. Then, the stress tensor 
an be written as

�

ij

(u) =

E �

(1 + �)(1� 2�)

Æ

ij

�

kk

(u) +

E

1 + �

�

ij

(u) ;

where �(u) :=

1

2

(ru

T

+ ru) is the linearized strain tensor. The boundary �
 =

�

D

[�

F

is de
omposed into two non{overlapping parts, a Diri
hlet part �

D

with non

zero measure and a Neumann part �

F

. Let u 2 H

1

�

(
) be the solution of the following

variational problem

a(u;v) = f(v); v 2 H

1

�

(
) ; (2.1)

where H

1

�

(
) is a subspa
e of H

1

(
) := (H

1

(
))

d

given by

H

1

�

(
) :=

�

v 2 H

1

(
) j vj

�

D

= 0

	

;

and f(v) := (v; f)

0;


+ (v;p)

0;�

F

. The bilinear form a(�; �) is de�ned as

a(w;v) :=

Z




E

ijlm

w

i;j

v

l;m

dx; w;v 2 H

1

(
) :

Asso
iated with a(�; �) is the energy norm jjj � jjj, jjjvjjj

2

:= a(v;v). Korn's inequality

yields the unique solvability of the variational problem (2.1).

We assume that the domain 
 has been de
omposed into K non{overlapping

polyhedral subdomains 


k

, 
 =

S

K

k=1




k

, and 


l

\


k

= ;, k 6= l. Ea
h subdomain 


k

is asso
iated with a family of shape regular triangulations T

h

k

, h

k

� h

k;0

, where h

k

is

the maximum of the diameters of the elements in T

h

k

. We use Lagrangian 
onforming

�nite elements S(


k

; T

h

k

) � H

1

(


k

) of order one on the individual subdomains and

enfor
e homogeneous Diri
hlet boundary 
onditions on �

D

\ �


k

. For the moment,

we restri
t ourselves to the geometri
al 
onforming situation where the interse
tion

between the boundary of any two di�erent subdomains �


l

\ �


k

, k 6= l, is either

empty, a vertex, a 
ommon edge in 2D or fa
e in 3D. Furthermore, we assume that

the interfa
es in 3D are axiparallel re
tangulars.

To obtain an optimal dis
retization s
heme, one has to impose suitable mat
hing


onditions at the interfa
es. In [BMP93, BMP94℄, it has been shown that weak 
on-

straints a
ross the interfa
es are suÆ
ient to guarantee approximation and 
onsisten
y

errors of optimal order. The mortar method is 
hara
terized by introdu
ing Lagrange

multiplier spa
es given on the interfa
es, whi
h are used to "glue" the di�erent parts

of the weak solution together. A suitable triangulation on the interfa
es is ne
essary

for the de�nition of a dis
rete Lagrange multiplier spa
e. Ea
h interfa
e �


l

\ �


k
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is asso
iated with a (d� 1){dimensional mesh, inherited either from T

h

k

or from T

h

l

.

In general, these triangulations do not 
oin
ide, see Figure 2.1. The interfa
es are

denoted by 


m

; 1 � m �M . For ea
h interfa
e, there exists a 
ouple 1 � l < k � K

su
h that 


m

= �


l

\ �


k

. The elements of the (d� 1){dimensional mesh on 


m

are

boundary edges in 2D or boundary fa
es in 3D of T

h

l

or T

h

k

. The 
hoi
e is arbitrary

but �xed. Then, the non{mortar side is the one from whi
h the Lagrange multiplier

spa
e inherits its mesh, see Figure 2.1. The adja
ent side is 
alled mortar side. We

denote the set of verti
es on the non{mortar side in the interior of 


m

by P

m

.
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non-mortar side

mortar side

Lagrange multiplier

Fig. 2.1. Non{mat
hing triangulations at the interfa
e

In the rest of this se
tion, we 
onsider the saddle point formulation of the mortar

method using dual spa
es. It is de�ned on the un
onstrained produ
t spa
e and a

suitable Lagrange multiplier spa
e. A standard 
hoi
e for the Lagrange multiplier

spa
e on ea
h interfa
e is a modi�ed tra
e spa
e on the non{mortar side, [BMP93,

BMP94℄. Here, we work with dual basis fun
tions. In both 
ases, the dimension is

equal to the number of verti
es in P

m

, and optimal a priori estimates 
an be obtained

for the dis
retization error in the energy norm.

2.1. Dual basis fun
tions. In this subse
tion, we brie
y review the de�nition

of dual basis fun
tions for the s
alar Lagrange multiplier spa
e M

h

(


m

) asso
iated

with the interfa
e 


m

, see [Woh00℄. The nodal basis fun
tions �

p

, p 2 P

m

, are lo
ally

de�ned, pie
ewise 
onstant or linear and satisfy the following biorthogonality relation

Z




m

�

p

�

p

0

ds = Æ

p;p

0

Z




m

�

p

0

ds; p; p

0

2 P

m

; (2.2)

where �

p

is the standard 
onforming nodal basis fun
tion of S(


n(m)

; T

h

n(m)

) asso
i-

ated with the vertex p, i.e., �

p

(p

0

) = Æ

p;p

0

. Here, n(m) is the subdomain index of the

non{mortar side of 


m

. Figure 2.2 shows pie
ewise linear and pie
ewise 
onstant dual

basis fun
tions in 2D at the interfa
e.

-1

1

-1

1

Fig. 2.2. Pie
ewise linear and pie
ewise 
onstant dual basis fun
tions in 2D

We observe that the basis fun
tions asso
iated with the verti
es adja
ent to the

endpoints of 


m

have to be modi�ed. Figure 2.3 illustrates the isolines of the dual ba-

sis fun
tion �

p

in 3D restri
ted to its support in the 
ase of a hexahedral triangulation.

We remark that the support of a nodal dual basis fun
tion is the union of four bound-

ary fa
es of T

h

n(m)

sharing one vertex. As in the 2D 
ase, the de�nition of �

p

has to

be modi�ed if the vertex p is 
lose to the boundary of 


m

, see [BD98, WK01, Woh99a℄
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for more details. In the 
ase of a simpli
ial triangulation, the 
onstru
tion follows the

same lines, and we refer to [BD98, KLPV00, Woh99a℄ for details.

 1

 1

 1

 1

−2 −2

−2

−2

 4

1/4

1/4

1/4

1/4

−3/4 −3/4

−3/4

−3/4

 9/4

Fig. 2.3. Isolines of pie
ewise bilinear and pie
ewise 
onstant dual basis fun
tions in 3D

Figure 2.4 shows the modi�
ations in the neighborhood of the boundary of 


m

for

pie
ewise bilinear dual basis fun
tions. We distinguish between three di�erent types

of verti
es p 2 P

m

. The inner ones, i.e., � supp(�

p

j




m

) \ �


m

= ;, are marked with

empty squares, the ones 
lose to the 
orners, i.e., � supp(�

p

j




m

) 
ontains one 
orner of




m

, by empty 
ir
les, and all other verti
es are marked by �lled 
ir
les. In the left of

Figure 2.4, the di�erent groups of verti
es are shown. For ea
h vertex type, one dual

basis fun
tion is given in the right part of Figure 2.4. The other ones 
an be obtained

by rotations of �=2. We observe that the dual basis fun
tions in 3D re
e
t the tensor

produ
t stru
ture of the triangulation, i.e., they 
an be written as the produ
t of two

pie
ewise linear dual basis fun
tions in 1D.

γ
m

4 4

4 4

-2

-2 -2

-2

-2 -2

-2-2

1 1

11

1 1

1 1

4-2

-21

2

22

2

-1        -1 

-1-1

4 4-2 -2

1 -2 -2 1

2 2 -1-1

-1 2 2 -1

Fig. 2.4. Modi�
ations near the boundary of 


m

for pie
ewise bilinear dual basis fun
tions

Optimal a priori estimates for the dis
retization error in both the L

2

{ and H

1

{

norm as well as for the Lagrange multiplier in the H

1=2

00

{dual norm and a weighted

L

2

{norm are obtained for s
alar ellipti
 equations [Woh99a℄.

2.2. Mortar formulation. We 
onsider two di�erent types of 
oupling at the

interfa
es. The �rst one is the weak 
oupling of the solution in both, normal and

tangential, dire
tions. In this situation, the di�erent bodies or materials are glued

together, i.e., there is no relative displa
ement in tangential and normal dire
tion. The

se
ond interesting 
ase 
an be used for the modeling of a 
onta
t problem and will be

dis
ussed in Se
tion 6. In that 
ase, we do not have a weak 
ontinuity 
ondition in

tangential dire
tion. The 
onstraints at the interfa
es are given for the displa
ements

in normal dire
tion. Both situations will be 
onsidered within the mortar framework,

and the resulting systems will be solved by a modi�ed multigrid method.

The un
onstrained produ
t spa
e asso
iated with the domain de
omposition is

given by

X

h

:=

K

Y

k=1

(S(


k

; T

h

k

))

d

:

In the 
ase of the 
oupling in tangential and normal dire
tion, the Lagrange multiplier
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spa
e M

h

is also ve
tor valued

M

h

:=

M

Y

m=1

(M

h

(


m

))

d

;

whereM

h

(


m

) is spanned by the dual basis fun
tions �

p

, p 2 P

m

, given in the previous

subse
tion. Now, the mortar formulation is de�ned in terms of the bilinear form b(�; �)

b(v;�) =

M

X

m=1

h[v

i

℄; �

i

i




m

; v 2 X

h

;� 2M

h

:

Here, [�℄ denotes the jump, i.e., [v

i

℄j




m

:= v

i

j




n(m)

� v

i

j




n
(m)

, where n(m) is the

subdomain index of the non{mortar side and n(m) the index of the adja
ent mortar

side, and h�; �i




m

stands for the duality pairing between H

1=2

(


m

) and its dual spa
e.

Introdu
ing the Lagrangemultiplier as an additional unknown, we obtain the following

saddle point problem: Find (u

h

;�

h

) 2 X

h

�M

h

su
h that

a(u

h

;v) + b(v;�

h

) = f(v); v 2 X

h

;

b(u

h

;�) = 0; � 2M

h

;

(2.3)

see [Ben99℄ for the s
alar ellipti
 
ase. Here, the bilinear form a(�; �) is extended

to the non
onforming spa
e X

h

by repla
ing the integral over 
 by its broken form

P

K

k=1

R




k

. The se
ond equation of the saddle point problem guarantees the weak


ontinuity of the solution u

h

. We de�ne the non
onforming spa
e V

h

as the kernel

of the operator B

T

: X

h

�!M

h

asso
iated with the bilinear form b(�; �),

V

h

:= fv 2 X

h

j b(v;�) = 0; � 2M

h

g :

Under the assumption that a(�; �) is uniformly ellipti
 on V

h

�V

h

, i.e.,

a(v;v) � 
 kvk

2

1

:=

K

X

k=1

kvk

2

1;


k

; v 2 V

h

;

the following variational problem has a unique solution: Find u

h

2 V

h

su
h that

a(u

h

;v) = f(v); v 2 V

h

: (2.4)

In the next subse
tion, we address the question of ellipti
ity. A uniform dis
rete

inf{sup 
ondition yields in 
ombination with the ellipti
ity of a(�; �) on the kernel of

the operator B

T

the unique solvability of (2.3), see [BF91℄. We refer to [Woh99a℄ for

the proof of the inf{sup 
ondition in the s
alar 
ase. Sin
e M

h

and X

h

are produ
t

spa
es, the inf{sup 
ondition follows from the s
alar 
ase. Moreover, the positive

de�nite system (2.4) is equivalent to the saddle point problem (2.3).

2.3. Uniform ellipti
ity. In this se
tion, we 
onsider the uniform ellipti
ity

of the bilinear form a(�; �) on the 
onstrained spa
e V

h

�V

h

. Let us start with the

spe
ial 
ase that �


k

\�

D

has a non zero measure for all 1 � k � K. In this situation,

Korn's inequality 
an be applied to ea
h subdomain, and we �nd

a(v;v) =

K

X

k=1

a

k

(v;v) � C

K

X

k=1

kvk

2

1;


k

= Ckvk

2

1

; v 2 X

h

;
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where a

k

(�; �) stands for the restri
tion of a(�; �) to the subdomain 


k

. We remark that

C does not depend on the number of subdomains. Here, we use standard Sobolev

notations for the norms and seminorms and the 
onstants 0 < 
;C < 1 are generi


ones not depending on the meshsize. Unfortunately, many interesting 
ases do not

satisfy this assumption. However for the unique solvability of (2.4), it is suÆ
ient to

have the uniform ellipti
ity of a(�; �) on V

h

�V

h

. In the s
alar ellipti
 
ase, the kernel

of the 
orresponding bilinear form is the subspa
e of pie
ewise 
onstant fun
tions. The

dimension is given by the number of subdomains 


k

su
h that �


k

\�

D

is empty. In

our setting, the kernel is of higher dimension. The rigid body motions per subdomain

de�ne a three dimensional spa
e in 2D and a six dimensional spa
e in 3D. Thus, the

dimension of the Lagrange multiplier spa
e has to be larger than d. In the following,

we assume that #P

m

� 2 in 2D, and that in 3D the triangulation at the interfa
e is

a tensor produ
t mesh with #P

m

� 4.

To prove the uniform ellipti
ity in the s
alar ellipti
 
ase, it is suÆ
ient to show

that the 
onstants are 
ontained in the Lagrange multiplier spa
e. Due to the rigid

body motions this is not suÆ
ient in our 
ase. To get a better feeling for the kernel of

a(�; �), we 
onsider the 
ase of two unit squares 


1

and 


2

with homogeneous Diri
hlet

boundary 
ondition on one side of �


1

\ �
 and homogeneous Neumann boundary


ondition elsewhere. Then, a(�; �) is not ellipti
 on V �V, where the non
onforming

spa
e V is de�ned by V := fv 2 H

1

�

(
) j

R




[v℄ ds = 0g, 
 := �


1

\ �


2

. To see

this, we set vj




1

:= 0 and vj




2

:= �(x

2

� x

2;


; x

1;


� x

1

)

T

, � 6= 0, where (x

1;


; x

2;


)

T

denotes the 
enter of gravity of 
. Then, v 2 V but a(v;v) = 0.

Based on this observation, we de�ne the non
onforming spa
e

V

M

H

:=

�

v 2 H

1

�

(
) j

Z




m

[v℄ � � ds = 0; � 2M

H

(


m

); 1 � m �M

	

;

where M

H

(


m

) := (M

H

(


m

))

d

is a suitable test spa
e. If M

H

(


m

) �M

h

(


m

) then

V

h

� V

M

H

, and for the uniform ellipti
ity on V

h

�V

h

it is suÆ
ient to show the

ellipti
ity on V

M

H

�V

M

H

. A natural 
hoi
e for M

H

(


m

) is P

1

(


m

). Unfortunately

none of the 
onsidered Lagrange multiplier spa
es satisfy P

1

(


m

) �M

h

(


m

).

We introdu
e a new ma
ro Lagrange multiplier spa
e M

H

(


m

) whi
h has dimen-

sion two in 2D and dimension four in 3D. Let us start with the 2D 
ase, and let

t 2 [0; 1℄ be a parametrization of the 1D interfa
e 


m

, i.e., x 2 


m

if and only if

x = p

1

+ t

x

(p

2

� p

1

), t

x

2 [0; 1℄, where p

1

and p

2

are the two endpoints of 


m

. The

ordering is arbitrary but �xed. Then, we de
ompose P

m

into two disjoint subsets

P

l

m

:= fp 2 P

m

j t

p

� 0:5g and P

r

m

:= P

m

n P

l

m

, and de�ne

�

H

:=

�

2

t

l

+ t

r

� 1

�

X

p2P

l

m

�

p

�

X

p2P

r

m

�

p

;

where t

l

:= maxft

p

j p 2 P

l

m

g � 0:5 and t

r

:= minft

p

j p 2 P

r

m

g > 0:5, see Figure 2.5.

In the left, �

H

is given for the standard Lagrange multiplier spa
e and in the right

for the dual Lagrange multiplier spa
e. It is easy to see that the mean value of �

H

is equal zero for the standard Lagrange multiplier spa
e and the dual one based on

pie
ewise linear fun
tions. Now, we de�ne

M

H

(


m

) := spanf'

H

2 �

H

g; �

H

:= f1; �

H

g ;

in the 2D 
ase, and in 3D, �

H

is given as the 
orresponding produ
t set. Thus for

the 2D and 3D 
ase, we have M

H

(


m

) �M

h

(


m

).
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0.5 10

t  =1/3l

5/4 H

Hν

µ

-1

t  =5/9r t  =1/3

0

H

Hν

µ

0.5 1

l

5/4

-1

t  =5/9r

Fig. 2.5. Test fun
tion �

H

and �

H

for standard (left) and dual (right) Lagrange multiplier spa
e

Lemma 2.1. Let v 2 V

M

H

, and v restri
ted on 


k

, 1 � k � K, be a rigid body

motion, then v = 0.

Proof. We start with a subdomain 


k

0

su
h that �


k

0

\ �

D

has a non zero

measure. Due to the Diri
hlet boundary 
ondition, v restri
ted to this subdomain is

zero. Then, the interfa
e 
ondition yields that for all adja
ent subdomains, we �nd

in 2D

Z




m

�

a+ �

�

x

2

� x

2;


x

1;


� x

1

�

�

� e

i

ds = 0; 1 � i � 2 ;

where e

i

denotes the i{th unit ve
tor, and thus a = 0. Introdu
ing �

H

2 P

1

(


m

),

�

H

(p

1

) = ��

H

(p

2

) = 1, see Figure 2.5, a straightforward 
omputation shows that

Z




m

�

H

�

H

ds = �

H

j


m

j ;

where �

H

� 1=3 if M

h

(


m

) is the pie
ewise linear dual Lagrange multiplier spa
e

as introdu
ed in Subse
tion 2.1, and �

H

� 2=9 if M

h

(


m

) is the standard Lagrange

multiplier spa
e and thus � = 0. We note that the lower bound for �

H

does not depend

on the mesh on 


m

. In 3D, the rigid body motions are given by a+b� (x�x




), and

similar arguments as in 2D yield a = b = 0. Starting from 


k

0

, we 
an move to ea
h

other subdomain by 
rossing interfa
es.

Lemma 2.2. The bilinear form a(�; �) is uniformly ellipti
 on V

H

�V

H

.

The lemma follows from the upper estimate for the broken H

1

{norm

kvk

2

1

� C

1

a(v;v) + C

2

M

X

m=1

X

'

H

2�

H

k

Z




m

'

H

[v℄ dsk

2

; v 2 H

1

�

(
) ; (2.5)

where k � k stands for the Eu
lidean norm in IR

d

. Inequality (2.5) is obtained by a

Bramble{Hilbert argument and shown by 
ontradi
tion. Here we do not work out the

details but sket
h the idea, for details we refer to [Woh99a℄. We assume that (2.5)

is not true. Then, the se
ond Korn inequality and Lemma 2.1 give a 
ontradi
tion.

Although the spa
e V

H

depends on the triangulation, the ellipti
ity 
onstant 
an be

bounded from below independently of the triangulation.
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Remark 2.3. Unfortunately, the proof by 
ontradi
tion gives only the existen
e

of su
h a 
onstant C

1

, but no information if C

1


an be 
hosen independently of the

number of subdomains.

It is likely that more elaborate te
hniques yield an ellipti
ity 
onstant whi
h is

independent of the number of subdomains. For the s
alar ellipti
 
ase in 2D, we refer

to [Gop99℄ and for the three �eld approa
h to [BM00℄. Both te
hniques are based on

duality arguments and 
annot be applied dire
tly to our situation.

3. An equivalent formulation on the produ
t spa
e. In the previous se
-

tion, we have given the saddle point formulation (2.3) on X

h

�M

h

and the positive

de�nite non
onforming mortar formulation (2.4) onV

h

. Here, we reformulate the sad-

dle point problem as a non{symmetri
 problem on the un
onstrained produ
t spa
e

X

h

and eliminate the Lagrange multiplier �

h

. Due to the biorthogonality (2.2), this


an be done lo
ally.

We start with the algebrai
 formulation of the saddle point problem. Let A

h

and

B

h

be the matri
es asso
iated with the bilinear forms a(�; �) on X

h

�X

h

and b(�; �)

on X

h

�M

h

, respe
tively, and f

h

the ve
tor asso
iated with the right hand side. The

�nite element solution u

h

is de
omposed into two 
omponents u

T

h

= (u

T

I

;u

T

N

). We

use the same symbol for an element in X

h

and the 
orresponding ve
tor in IR

n

h

with

respe
t to the standard nodal basis, where n

h

is the dimension of X

h

. All degrees of

freedom asso
iated with the interior verti
es on the non{mortar sides are 
ontained

in the se
ond 
omponent u

N

. The �rst 
omponent u

I

in
ludes all other degrees of

freedom. We note that ea
h degree of freedom is 
ontained in exa
tly one of the two

groups. By means of this de
omposition, we 
an rewrite the saddle point problem

(2.3) and �nd

�

A

h

B

h

B

T

h

0

��

u

h

�

h

�

=

0

�

A

II

A

IN

M

A

NI

A

NN

D

M

T

D 0

1

A

0

�

u

I

u

N

�

h

1

A

=

0

�

f

I

f

N

0

1

A

; (3.1)

where D is a diagonal matrix, and M is a sparse matrix with many zero blo
ks, and

for ea
h interfa
e there is one re
tangular mass matrix blo
k, the band width of whi
h

depends on the lo
al ratio of the meshsizes on mortar and adja
ent non{mortar sides.

The size of the diagonal matrix D is d �

P

M

m=1

#P

m

, and its entries are

R




m

�

p

ds.

The se
ond row of the saddle point problem (3.1) yields

�

h

= D

�1

(f

N

�A

NI

u

I

� A

NN

u

N

) : (3.2)

We observe that for the standard Lagrange multiplier spa
eD is not a diagonal matrix

but a blo
k mass matrix. Thus in that 
ase, �

h


annot be eliminated lo
ally, and

the inverse of a mass matrix enters. Introdu
ing now W

T

h

:= (0 D

�1

) and observing

B

T

h

u

h

= 0, we 
an rewrite �

h

in terms of W

T

h

and the residual on the produ
t spa
e,

�

h

=W

T

h

(f

h

�A

h

(Id�W

h

B

T

h

)u

h

). Using this elimination in (3.1), we �nd

�

A

h

B

h

B

T

h

0

��

Id

W

T

h

A

h

(W

h

B

T

h

� Id)

�

u

h

=

�

(Id�B

h

W

T

h

)f

h

0

�

: (3.3)

In a last step, we redu
e the number of equations by the dimension of M

h

. This


an be done in di�erent ways. We multiply (3.3) from the left by (v

T

;�

T

) and set

� as a fun
tion of v. One possible 
hoi
e is � := W

T

h

A

h

(W

h

B

T

h

� Id)v yielding the

symmetri
 system A

sym

u

h

= f

sym

, where f

sym

:= (Id�B

h

W

T

h

)f

h

and

A

sym

:= (Id; (B

h

W

T

h

� Id)A

h

W

h

)

�

A

h

B

h

B

T

h

0

��

Id

W

T

h

A

h

(W

h

B

T

h

� Id)

�

: (3.4)
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A straightforward 
omputation shows that A

sym

= (B

h

W

T

h

� Id)A

h

(W

h

B

T

h

� Id) +

B

h

W

T

h

A

h

W

h

B

T

h

. Considering the se
ond blo
k row of A

sym

in more detail, we �nd

A

NN

D

�1

M

T

u

I

+ A

NN

u

N

= 0 or equivalently W

h

B

T

h

u

h

= 0. The 
hoi
e � :=

W

T

h

(Id�A

h

)v gives rise to the non{symmetri
 system

A

num

u

h

:= ((B

h

W

T

h

� Id)A

h

(W

h

B

T

h

� Id) +W

h

B

T

h

)u

h

= f

sym

: (3.5)

In the rest of this se
tion, we derive a variational problem for (3.5). We introdu
e

a lo
ally de�ned operator P

h

: X

h

�! X

h

by

(P

h

v)

i

:=

M

X

m=1

X

p2P

m

h[v

i

℄; �

p

i




m

R




m

�

p

ds

�

p

; 1 � i � d :

It is easy to see that the kernel of P

h

is exa
tly the 
onstrained spa
e V

h

. The

biorthogonality relation (2.2) yields that P

h

is a proje
tion. Furthermore, the alge-

brai
 representation of P

h

is given by W

h

B

T

h

, and we �nd a new variational problem

on the un
onstrained produ
t spa
e. The algebrai
 system (3.5) 
an be written in

terms of P

h

as a variational problem: Find u

h

2 X

h

su
h that

a((Id� P

h

)u

h

; (Id� P

h

)v) + (P

h

u

h

;v)

0

= f((Id� P

h

)v); v 2 X

h

: (3.6)

Lemma 3.1. The variational problems (3.6) and (2.4) are equivalent.

Proof. By de�nition, the solution of (2.4) is in the kernel of P

h

, and thus is a

solution of (3.6) by 
onstru
tion. Let u

h

2 X

h

be a solution of (3.6). Then, it is

suÆ
ient to show that P

h

u

h

= 0. We set v := P

h

u

h

and �nd (P

h

u

h

; P

h

u

h

)

0

= 0.

The unique solution u

h

of (3.6) 
an be obtained by u

h

= (Id � P

h

)w

h

from any

solution w

h

2 X

h

of

a((Id� P

h

)w

h

; (Id� P

h

)v) = f((Id� P

h

)v); v 2 X

h

:

Remark 3.2. The new approa
h is based on the de
omposition of v 2 X

h

in

v � P

h

v and P

h

v. Having the biorthogonality relation (2.2), the de�nition of P

h

yields that v � P

h

v 2 V

h

. This is in general not true if we work with standard

Lagrange multiplier spa
es. In that 
ase, P

h

has to be repla
ed by a globally de�ned

proje
tion operator. Its appli
ation involves the inverse of a tridiagonal mass matrix

in 2D and a band mass matrix in 3D.

4. A modi�ed multigrid method. In this se
tion, we present our modi�ed

multigrid method. The implementation is based on the non{symmetri
 linear system

(3.5) whereas the analysis of the 
onvergen
e rates is done for the symmetri
 form

(3.4). Let us assume that we have a nested sequen
e of global triangulations, and

let us denote the asso
iated un
onstrained produ
t spa
es by X

l

, 0 � l � L. The

meshsize is given by h

l

= 2h

l+1

, and the dimension of the spa
e X

l

is n

l

. Working

with standard nodal basis fun
tions in X

l

gives


h

d

l

kv

l

k

2

� kv

l

k

2

0

� Ch

d

l

kv

l

k

2

; (4.1)

where k � k stands for the Eu
lidean ve
tor norm of an element in IR

n

l

. The Eu
lidean

s
alar produ
t in IR

n

l

is denoted by (�; �). In 
ontrast to the 
onstrained spa
es V

l

,

the produ
t spa
es X

l

are nested. We denote the standard prolongation operator by

I

l

l�1

: X

l�1

�! X

l

and the restri
tion by I

l�1

l

: X

l

�! X

l�1

. For the rest of this

se
tion, we assume full H

2

{regularity of the problem.
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To obtain level independent 
onvergen
e rates for our multigrid method, suitable

approximation and smoothing properties have to be established. In a �rst step, we


onsider level dependent grid transfer operators (I

mod

)

l�1

l

and (I

mod

)

l

l�1

de�ned by

(I

mod

)

l�1

l

:= (Id� C

T

l�1

)I

l�1

l

; (I

mod

)

l

l�1

:= (Id� C

l

)I

l

l�1

;

where C

l

:= W

l

B

T

l

. We observe that these transfer operators are obtained from the

standard ones by a lo
al post{pro
essing step involving only the degrees of freedom

on the interfa
es but not the ones in the interior of the subdomains. It is easy to

see that these transfer operators guarantee C

T

l�1

(I

mod

)

l�1

l

w

l

= 0, w

l

2 X

l

, and

C

l

(I

mod

)

l

l�1

w

l�1

= 0, w

l�1

2 X

l�1

.

One basi
 tool to establish level independent 
onvergen
e rates is a suitable ap-

proximation property. Here, we have to take into a

ount the modi�ed prolongation

operator. Let w

l

2 X

l

and w

l�1

2 X

l�1

be the solutions of A

sym;l

w

l

= d

l

and

A

sym;l�1

w

l�1

= d

l�1

, respe
tively, where d

l�1

is de�ned as the restri
tion of d

l

, i.e.,

d

l�1

:= (I

mod

)

l�1

l

d

l

. The following lemma 
an be found for the s
alar ellipti
 
ase in

[WK01℄.

Lemma 4.1. Under the assumption that C

T

l

d

l

= 0, we have the following ap-

proximation property

kw

l

� (I

mod

)

l

l�1

w

l�1

k � Ch

2�d

l

kd

l

k :

Proof. Using the results from the previous se
tion, observing that A

l

is positive

de�nite on C

l

X

l

and using the assumption on d

l

, we �nd w

l

2 V

l

and w

l�1

2 V

l�1

.

We de�ne f

d

2 X

l

� (L

2

(
))

d

by (f

d

;v

l

)

0

= (v

l

;d

l

), v

l

2 X

l

, and due to the norm

equivalen
e (4.1), we obtain h

d

l

kf

d

k

2

0

� Ckd

l

k

2

. Then, w

l

and w

l�1

are the mortar

�nite element approximations of a(w;v) = (f

d

;v)

0

, v 2 H

1

�

(
), on level l and level

l � 1, respe
tively. By means of the H

2

{regularity and the a priori estimate for the

dis
retization error in the L

2

{norm, we get

kw

l

�w

l�1

k

0

� Ch

2

l

kf

d

k

0

� Ch

(2�d=2)

l

kd

l

k :

Then, the triangle inequality and the de�nition of the modi�ed prolongation yield

kw

l

� (I

mod

)

l

l�1

w

l�1

k � kw

l

� I

l

l�1

w

l�1

k+ kC

l

I

l

l�1

w

l�1

k : (4.2)

The �rst term is bounded by Ch

�d=2

l

kw

l

� w

l�1

k

0

� Ch

2�d

l

kd

l

k. To get an upper

bound for the se
ond term in (4.2), we have to 
onsider the proje
tion P

l

:= P

h

l

in

more detail. Starting with the norm equivalen
e (4.1), we �nd

kC

l

I

l

l�1

w

l�1

k

2

�

C

h

d

l

kP

l

w

l�1

k

2

0

�

C

h

d�1

l

M

X

m=1

k[w

l�1

℄k

2

0;


m

:

In our last step, we use that the weighted L

2

{norm of the jump at the interfa
e

of ea
h element in V

l�1

, and thus for w

l�1

, 
an be bounded by a measure for its

non
onformity, see [Woh99a℄

1

h

l

M

X

m=1

k[w

l�1

℄k

2

0;


m

� C inf

v2H

1

�

(
)

kv �w

l�1

k

2

1

� C h

2

l

kf

d

k

2

0

� Ch

2�d

l

kd

l

k

2

0

:
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We note that for the proof of the approximation property, it is essential to have

w

l�1

2 V

l�1

andw

l

2 V

l

. In 
ontrast to the standard Lagrange multiplier spa
es, the

dual basis Lagrange multiplier spa
es are non{nested, i.e.,M

l�1

6�M

l

. The de�nition

of the restri
tion (I

mod

)

l�1

l

guarantees that C

T

l�1

d

l�1

= 0 and thus w

l�1

2 V

l�1

.

Within the multigrid algorithm, d

l

is the defe
t after the presmoothing steps. To

satisfy the assumption of Lemma 4.1, we have to guarantee that the iterate after the

smoothing steps is in the 
onstrained spa
e V

l

. Starting with an arbitrary smoother

for

~

A

l

:= (Id�C

T

l

)A

l

(Id�C

l

), we 
onstru
t a modi�ed one satisfying this 
ondition.

We note that the matrix (

~

A

l

)

II

is symmetri
 and positive de�nite, the eigenvalues

of whi
h are bounded from below by 
h

d

l

and from above by Ch

d�2

l

. Let

~

G

l

be a

smoother for (

~

A

l

)

II

, e.g., a damped Ja
obi method, extended trivially to the full

spa
e X

l

. We note that

~

G

l

is singular on the full spa
e X

l

, but the iterates
~
y

i

l

:=

~
y

i�1

l

+

~

G

l

(d

l

�

~

A

l

~
y

i�1

l

), i � 1, are well de�ned. Then, we de�ne our modi�ed smoother

by G

l

:= (Id� C

l

)

~

G

l

(Id� C

T

l

), and denote the 
orresponding iterates by

y

i

l

:= y

i�1

l

+G

l

(d

l

�A

sym;l

y

i�1

l

); i � 1 : (4.3)

If d

l

satis�es C

T

l

d

l

= 0, then d

l

is in the range of

~

A

l

. Let w

l

be the solution of

A

sym;l

w

l

= d

l

, then
~
w

T

l

:= ((w

l

)

T

I

; (
~
y

0

l

)

T

N

) is a solution of

~

A

l

~
w

l

= d

l

, where
~
y

0

l

is

the start iterate. The following lemma shows the relation between the two di�erent

iterates, y

i

l

and
~
y

i

l

, and we refer to [KW00a℄ for the s
alar ellipti
 
ase.

Lemma 4.2. Under the assumptions C

T

l

d

l

= 0 and y

0

l

= (Id�C

l

)
~
y

0

l

, the iterates

y

i

l


an be obtained from
~
y

i

l

by the lo
al post{pro
essing step

y

i

l

= (Id� C

l

)
~
y

i

l

; i � 1 :

Moreover, the smoothing and stability properties of G

l

are inherited from

~

G

l

, i.e.,

kA

sym;l

e

i

l

k = k

~

A

l

~
e

i

l

k; ke

i

l

k � Ck
~
e

i

l

k ;

where e

i

l

:= w

l

� y

i

l

and
~
e

i

l

:=
~
w

l

�
~
y

i

l

are the 
orresponding iteration errors.

Proof. Observing the spe
ial stru
ture of the right hand side d

l

and

~

A

l

, we obtain

by indu
tion

y

i+1

l

= y

i

l

+ (Id� C

l

)

~

G

l

(Id� C

T

l

)(d

l

�A

sym;l

y

i

l

)

= (Id� C

l

)(
~
y

i

l

+

~

G

l

(d

l

�

~

A

l

~
y

i

l

)) = (Id� C

l

)
~
y

i+1

l

;

and thus A

sym;l

e

i

l

=

~

A

l

~
e

i

l

. By means of w

l

= (Id � C

l

)w

l

= (Id � C

l

)
~
w

l

, we �nd

e

i

l

= (Id� C

l

)
~
e

i

l

. Moreover, the norm of the s
aled mass matrix D

�1

l

M

T

l

is bounded

independently of l.

Now, our multigrid method for the solution of (3.4) will be de�ned in terms of

the given modi�ed transfer operators and the smoother G

l

. The modi�ed restri
tion

operator and the zero start value for the defe
t 
orre
tion guarantee that on ea
h level

l < L the assumptions of Lemma 4.2 are satis�ed. For l = L the assumptions are

satis�ed by 
onstru
tion if we take zero or the prolongated solution on level L � 1,

i.e., (I

mod

)

L

L�1

u

L�1

, as start iterate. Then, we are in the setting of Lemma 4.2 for

the presmoothing steps on all levels l � L. The same holds for the postsmoothing

steps sin
e we work with the modi�ed prolongation. Furthermore, the smoother G

l

yields that all iterates are in the kernel of C

l

and thus the assumption of Lemma 4.1

is satis�ed. Then, standard arguments give the main result of this se
tion.
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Theorem 4.3. The 
onvergen
e rates for the W{
y
le are level independent

provided that the number of smoothing steps is large enough.

Proof. Approximation and smoothing properties yield level independent 
onver-

gen
e rates, see, e.g., [Ha
85, Th. 7.1.2℄.

We do not assemble the matrix A

sym;l

. Working with A

num;l

, we �nd that the

iteration (4.3) 
an be repla
ed by

y

i

l

= y

i�1

l

+G

num;l

(d

l

�A

num;l

y

i�1

l

) ; (4.4)

where G

num;l

is de�ned as an inexa
t blo
k Gau�{Seidel smoother of A

num;l

A

num;l

=

�

(

~

A

l

)

II

0

D

�1

l

M

T

l

Id

�

and G

num;l

:=

�

(

~

G

l

)

II

0

�D

�1

l

M

T

l

(

~

G

l

)

II

Id

�

:

A straightforward 
omputation shows that (4.3) and (4.4) yield the same iterates.

Furthermore, it is suÆ
ient to work on the 
omponents of the index group I for the

�rst (m � 1) smoothing steps. Here, m stands for the number of smoothing steps.

Only in the last smoothing step, we have to apply (4.4) to both index groups N and

I . This 
an be interpreted as one lo
al post{pro
essing step on the non{mortar side.

Thus, the appli
ation of our multigrid method requires only a few additional multi-

pli
ations with D

�1

l

M

T

l

, the 
omplexity of whi
h is of smaller order. It is equivalent

to the multipli
ation of a s
aled mass matrix asso
iated with the (d� 1){dimensional

interfa
es.

Remark 4.4. The eÆ
ien
y of the method is strongly 
onne
ted to the use of

dual basis fun
tions. Working with standard Lagrange multiplier involves the inverse

of a mass matrix instead of D

�1

l

.

5. Numeri
al results. In this se
tion, we present numeri
al results illustrating

the performan
e of our modi�ed multigrid method. All our algorithms have been

implemented within the framework of the �nite element toolbox UG, see [BBJ

+

97℄.

In the �rst part of this se
tion, we 
onsider linear elasti
ity problems in 2D. A weak


ontinuity 
ondition at the interfa
es is used in normal and tangential dire
tion. In

the se
ond part, we present numeri
al results in 3D for s
alar ellipti
 problems in
lud-

ing an example with a geometri
al non
onforming de
omposition. In all examples,

asymptoti
 
onstant 
onvergen
e rates 
an be observed.

Figure 5.1 shows the deformation of a linear elasti
 body with inhomogeneous

materials. Adaptive re�nement te
hniques have been used in 2D. The re�nement is


ontrolled by a residual type error estimator for mortar �nite elements, see [Woh99b,

Woh99a℄. The left pi
ture in Figure 5.1 illustrates the problem setting. We apply

two di�erent surfa
e pressures at the inhomogeneous Neumann boundary parts. The

inhomogeneous Neumann boundary parts are marked by arrows in the left pi
ture of

Figure 5.1. Homogeneous Diri
hlet boundary 
onditions are taken on the lower left


orner of the domain, marked by �

D

in the left pi
ture of Figure 5.1. On the re-

maining boundary part, we apply homogeneous Neumann boundary 
onditions. The

middle and right pi
ture of Figure 5.1 shows the displa
ements of the solutions s
aled

by the fa
tor ten and the �nal adaptive triangulations. In the middle pi
ture, the

applied Neumann boundary 
ondition results in a 
onstant displa
ement in normal

dire
tion at the 
orresponding boundary part. In the right pi
ture, the applied Neu-

mann boundary 
ondition yields a linear displa
ement in normal dire
tion at the


orresponding boundary part. The deformation of the body in the neighborhood of

the interfa
es is in the right pi
ture smaller than in the middle pi
ture.
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Material 1

Material 2
Material 1

DΓ

. 101E   =  7.9

10
10 N

10

.

N_
m

2

_
m

2
2

     

E   =  5.8

 

  

ν1 = 0.37, ν = 0.232

[u]=0

Fig. 5.1. Coupling in normal and tangential dire
tion in 2D, (Example 1)

In our se
ond example, we 
onsider a nut{like geometry as depi
ted in Figure

5.2. The domain 
onsists of 13 subdomains, and there are 6 inner 
rosspoints ea
h of

whi
h has four adja
ent subdomains. We 
hoose silver as material with � = 108280

and � = 8517. Inhomogeneous Diri
hlet boundary 
onditions 
orresponding to a

rotation by an angle of �=500 have been applied on the inner boundary �

I

, i.e., the

outer normal on �

I

dire
ts toward the 
enter of gravity. We work with homogeneous

boundary 
onditions on �

O

:= �
n�

I

. On �

O

\�


k

we take Neumann type boundary


onditions if 


k

is a triangle, and Diri
hlet type boundary 
onditions if 


k

is a square.

Figure 5.2 shows the initial non
onforming triangulation, the displa
ements s
aled by

the fa
tor 100 on the �nal triangulation, and the multigrid 
onvergen
e rates of the

V{
y
le and W{
y
le with three pre{ and postsmoothing steps.
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4

10
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Fig. 5.2. Initial triangulation (left), distorted grid (middle) and 
onv. rates (right), (Example 2)

Examples 3 and 4 illustrate the 
onvergen
e rate of our multigrid method in 3D,

see [WK01℄. Here, we use trilinear �nite elements on hexahedrons and the pie
e-

wise linear dual Lagrange multiplier spa
e introdu
ed in Subse
tion 2.1. We 
om-

pare the asymptoti
 
onvergen
e rates of the V{ and W{
y
les in 
ase of one and

three smoothing steps. The smoothing iteration is based on (4.4), and two di�er-

ent smoothers are 
ompared. We de�ne (

~

G

l

)

II

as a damped Ja
obi method, i.e.,

(

~

G

l

)

II

:= !(diag((

~

A

l

)

II

))

�1

, where ! = 0:7, or as symmetri
 Gau�{Seidel smoother

of (

~

A

l

)

II

. Thus, one Gau�{Seidel step is roughly twi
e as expensive as one Ja
obi

step.

We 
onsider a "Sandwi
h"{like domain build up of two di�erent materials. The

domain 
 is de
omposed into three hexahedrons 


i

:= (0; 1)

2

� (z

i

; z

i+1

), where

z

1

:= 0; z

2

:= 1; z

3

:= 1:2; z

4

:= 2:2. The s
alar ellipti
 model problem �div aru = 1,

on 
 := (0; 1)

2

� (z

1

; z

4

) is taken. Here, the 
oeÆ
ient a is pie
ewise 
onstant,
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Fig. 5.3. Initial triangulations and isolines for Example 3 (left) and Example 4 (right)

aj




i

:= 100, i = 1; 3 and aj




2

:= 1. Diri
hlet boundary 
onditions are applied on the

upper and lower part of the domain, u(x; y; z) = 1000

p

(x� 1=2)

2

+ (y � 1=2)

2

�(1:0�

y=3) exp(�10(x

2

+y

2

)) if z = z

1

or z = z

4

, and homogeneous Neumann boundary 
on-

ditions elsewhere. In the left part of Figure 5.3, the nonmat
hing initial triangulation

and the isolines at the interfa
e are shown. The non{mortar sides are de�ned on the

middle hexahedron. Figure 5.4 shows the 
onvergen
e rates of Example 3 in 3D. In

all 
ases, we observe level independent 
onvergen
es rates. Even for the V(1; 1){
y
le,

a 
onstant asymptoti
 
onvergen
e rate is obtained.
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Fig. 5.4. Asymptoti
 
onv. rates for Ja
obi and symmetri
 Gau�{Seidel smoother (Example 3)

In Example 4, we 
onsider the domain depi
ted in the right part of Figure 5.3. It is

de
omposed into three subdomains 


1

:= (0; 1)

2

�(z

1

; z

2

), 


2

:= (1=3; 2=3)

2

�(z

2

; z

3

),




3

:= (0; 1)

2

� (z

3

; z

4

) where z

1

:= 0, z

2

:= 1, z

3

= 2, z

4

= 3. We remark that we are

in the geometri
al non
onforming situation. In parti
ular, the non{mortar sides on




2


over only a part of the adja
ent mortar sides on 


1

and 


3

. We impose Diri
hlet

boundary values on parts of �


1

and �


3

, and set u(x; y; z) = 10 for f(x; y; z) 2

�


1

j z = z

1

g and f(x; y; z) 2 �


3

j z = z

4

g, elsewhere we impose homogeneous

Neumann boundary 
onditions, see [WK01℄.

10
1

10
2

10
3

10
4

0.1

0.3

0.5

0.7

0.9

Jacobi
Gauss−Seidel

Number of elements

c
o

n
v
e

rg
e

n
c
e

 r
a

te

10
1

10
2

10
3

10
4

0.1

0.3

0.5

0.7

0.9

Jacobi
Gauss−Seidel

Number of elements

c
o

n
v
e

rg
e

n
c
e

 r
a

te

10
1

10
2

10
3

10
4

0.1

0.3

0.5

0.7

0.9

Jacobi
Gauss−Seidel

Number of elements

c
o

n
v
e

rg
e

n
c
e

 r
a

te

10
1

10
2

10
3

10
4

0.1

0.3

0.5

0.7

0.9

Jacobi
Gauss−Seidel

Number of elements

c
o

n
v
e

rg
e

n
c
e

 r
a

te

V(1; 1){
y
le V(3; 3){
y
le W(1; 1){
y
le W(3; 3){
y
le

Fig. 5.5. Asymptoti
 
onv. rates for Ja
obi and symmetri
 Gau�{Seidel smoother (Example 4)

The numeri
al results are shown in Figure 5.5. The performan
e is not as good
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as in Example 3, but the asymptoti
 
onvergen
e rates seem to be independent of the

re�nement level. In
reasing the number of smoothing steps yields 
onsiderably better

results. In both examples, the Gau�{Seidel smoother has better 
onvergen
e rates

than the Ja
obi type smoother. The performan
e of the Gau�{Seidel smoother is in

Example 4 better than for the Ja
obi smoother. Three Ja
obi steps are required to

obtain approximately the same 
onvergen
e rates as for one symmetri
 Gau�{Seidel

step.

6. Free displa
ement in tangential dire
tion. In this se
tion, we introdu
e

the ne
essary modi�
ations of our method if the 
oupling 
ondition is enfor
ed only

in normal dire
tion. Sin
e the dire
tion of the outer normal 
annot be assumed to

be 
onstant along the interfa
es, we have to introdu
e some suitable lo
al 
oordinate

transformations, see [Woh99a℄. These transformations have the 
hara
ter of a rotation

of the lo
al 
oordinate system.

We de�ne the bilinear form b

n

(�; �) 
orresponding to the 
oupling in normal di-

re
tion at the interfa
e by

b

n

(v; �) :=

M

X

m=1

h[v � n℄; �i




m

; � 2 M

h

:=

M

Y

m=1

M

h

(


m

) ;

where n is the outer normal of the subdomain on the non{mortar side. Now, we

repla
e the bilinear form b(�; �) in (2.3) by the modi�ed one and obtain the following

saddle point problem: Find (u

n

h

; �

h

) 2 X

h

�M

h

su
h that

a(u

n

h

;v) + b

n

(v; �

h

) = f(v); v 2 X

h

;

b

n

(u

n

h

; �) = 0; � 2 M

h

:

(6.1)

At �rst glan
e, it has the same stru
ture as (2.3). However, there is an essential

di�eren
e. The new bilinear form b

n

(�; �) is de�ned on X

h

� M

h

, where M

h

is, in


ontrast toM

h

, a s
alar spa
e. Using the same de
omposition as before, i.e., (u

n

h

)

T

=

((u

n

I

)

T

; (u

n

N

)

T

), we �nd for the algebrai
 representation of (6.1)

0

�

A

II

A

IN

M

n

A

NI

A

NN

D

n

M

T

n

D

T

n

0

1

A

0

�

u

n

I

u

n

N

�

h

1

A

=

0

�

f

I

f

N

0

1

A

: (6.2)

In 
ontrast to D in (3.1), D

n

is not a diagonal matrix but a d n

h

� n

h

blo
k diagonal

matrix, where n

h

is the dimension of M

h

. Ea
h blo
k is asso
iated with an interior

vertex on the non{mortar side, and the blo
k size is given by d� 1. Thus, we 
annot

eliminate the Lagrange multiplier as easy as in (3.2). Let P := [

M

m=1

P

m

be the

set of interior verti
es on the non{mortar sides. Then, we 
an write D

n

as D

n

:=

diag(d

p

)

p2P

, where d

p

2 IR

d

is de�ned by

d

p

:=

1

2

d�1

X

e2�

p

jej n

e

:

Here, �

p

is the set of elements, i.e., edges in 2D or fa
es in 3D, on the non{mortar

side sharing the vertex p, and n

e

is the 
onstant outer unit normal ve
tor on the

element e. We assume that d

p

6= 0. Starting with b

1

:= d

p

=kd

p

k, we introdu
e for

ea
h vertex p 2 P an orthonormal basis B := fb

1

; : : : ;b

d

g in IR

d

. The orthogonal

transformation whi
h maps B to the 
anoni
al basis of IR

d

is denoted by O

p

2 IR

d�d

.
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An expli
it representation of O

p


an be obtained, e.g., as Householder transformation.

For v 2 X

h

, we denote by v

p

2 IR

d

the degrees of freedom asso
iated with the vertex

p. We de�ne O

p

v

p

=: (w

n

;w

T

T

)

T

and 
all w

n

and w

T

the normal and tangential


omponent of v at the vertex p, respe
tively. Then, we de�ne the global orthonormal

transformation O

N

by

O

N

:= diag(O

p

)

p2P

:

We apply the 
oordinate transformation represented by diag(Id;O

N

; Id) to (6.2) and

�nd the symmetri
 system

0

�

A

II

A

IN

O

T

N

M

n

O

N

A

NI

O

N

A

NN

O

T

N

O

N

D

n

M

T

n

D

T

n

O

T

N

0

1

A

0

�

u

n

I

O

N

u

n

N

�

h

1

A

=

0

�

f

I

O

N

f

N

0

1

A

: (6.3)

Due to the 
onstru
tion of O

N

, we have O

T

N

O

N

= Id and O

p

d

p

= (kd

p

k;0)

T

. Ob-

serving that D

T

n

D

n

is a diagonal matrix, the entries of whi
h are given by kd

p

k

2

, the

Lagrange multiplier �

h


an be lo
ally eliminated by

�

h

= (D

T

n

D

n

)

�1

D

T

n

(f

N

�A

NI

u

I

�A

NN

u

N

) :

In our last step, we 
an rearrange the indi
es. The new index group I in
ludes now

the former index group I plus the tangential 
omponents of the ve
tors in the former

index group N . The new index group N is a subset of the former index group N

and 
ontains the normal 
omponents. We observe, that the submatrix of O

N

D

n


orresponding to the new index group N is diagonal. Thus, we 
an pro
eed as in

Se
tion 3. Using this new index grouping, we get exa
tly the same stru
ture of the

saddle point problem as in (3.1), and the proposed multigrid algorithm 
an be applied

on (6.3).

Finally, we show some numeri
al results, illustrating the di�eren
e between the

two 
oupling 
onditions at the interfa
es. We start with the 2D example of Se
tion 5

and 
onsider two di�erent boundary 
onditions. In the �rst situation, see the middle

pi
ture of Figure 6.1, we use a 
onstant displa
ement in normal dire
tion at the

upper and right boundary part of the domain. The se
ond situation is de�ned by

a linear displa
ement in normal dire
tion at the upper and right boundary part of

the domain. As in Se
tion 5, the lower left 
orner of the domain is �xed, i.e., we

apply homogeneous Diri
hlet boundary 
onditions on �

D

. Compared to Se
tion 5,

we use a weaker 
oupling 
ondition at the interfa
es. Here, the bodies are not glued

together, and free tangential displa
ement is permitted. The 
oupling 
ondition in

normal dire
tion 
an be viewed as a kind of non penetration 
ondition of the bodies

with respe
t to the referen
e 
on�guration.

Figure 6.1 displays the displa
ement of the solution s
aled by the fa
tor 10. Due

to the tangential displa
ement, penetration might be observed at the interfa
e, see

the right pi
ture in Figure 6.1. Although, the proposed algorithm does not solve a

nonlinear 
onta
t problem, we 
an use the method as an inner iteration s
heme within

an outer s
heme used to dete
t the a
tual zone of 
onta
t. On
e the a
tual 
onta
t

boundary is known, our algorithm solves the 
onta
t problem, and no penetration

o

urs. The drawba
k of this method is that in ea
h outer iteration step a mass

matrix has to be assembled.

Figure 6.2 shows a model problem in 3D. The displa
ement of the solution and

the 
oarse triangulation are given for the saddle point problems (2.3) and (6.1). On
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Material 1

Material 2
Material 1

DΓ

. 101E   =  7.9

10
10 N

10

.

N_
m

2

_
m

2
2

     

E   =  5.8

 

  

ν1 = 0.37, ν = 0.232

[u n]=0

Fig. 6.1. Coupling in normal dire
tion and free tangential displa
ement in 2D

the left, the Lagrange multiplier spa
e has three degrees of freedom per node, one

degree in ea
h dire
tion. The mortar �nite element solution satis�es a weak 
ontinuity


ondition in tangential and normal dire
tion. In the se
ond situation on the right of

Figure 6.2, there is no 
ontinuity 
ondition for the tangential displa
ement. Thus, we

repla
e the bilinear form b(�; �) in the saddle point formulation by b

n

(�; �), and work

with the modi�
ations proposed in this se
tion.

Fig. 6.2. Coupling in both dire
tions (left) and in normal dire
tion (right) in 3D

Figure 6.2 shows the stru
tural di�eren
e between the two weak 
oupling 
ondi-

tions at the interfa
e. On the left, there is no relative displa
ement of the two bodies

in tangential dire
tion, whereas in the situation on the right, a sliding between the

two bodies is permitted. A relative displa
ement of the left body with respe
t to

the right body 
an be observed. We remark that the non
onforming spa
e V

h

is a

subspa
e of the kernel V

n

h

of (B

n

h

)

T

asso
iated with the bilinear form b

n

(�; �). In the

general situation that �


k

\ �

D

is empty for some subdomain indi
es, the ellipti
ity

of a(�; �) on V

n

h

�V

n

h

is lost, and rigid body motions are 
ontained in V

n

h

. We obtain

unique solvability in our example by imposing Diri
hlet boundary 
onditions on one

fa
e of ea
h subdomain.

7. Elasti
 
onta
t of two bodies. In this se
tion, we 
onsider a new algorithm

for the elasti
 
onta
t between deformable bodies. The numeri
al simulation of elasti



onta
t has been extensively studied in various papers, see, e.g., [DNS99, WG97,

HH80, HH81, ESW99℄. For a survey, we refer to [Wri95, IHL88, KO88℄ and the

referen
es therein. One of the major diÆ
ulties in the numeri
al simulation of 
onta
t

problems is the non{di�erentiability of the asso
iated energy fun
tional at the 
onta
t
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boundary. Regularization te
hniques (penalty methods) are widely used, see, e.g.,

[CSW99, ESW99℄, as well as augmented Lagrangian methods [Tal94, PC99℄. Here,

we 
ombine monotone multigrid methods [Kor97a, KK99℄ with mortar te
hniques.

The information transfer at the 
onta
t boundary is realized in terms of the s
aled

mass arising from the mortar method with dual Lagrange multipliers.

For simpli
ity, we restri
t ourselves to the 
ase of two deformable bodies in 
on-

ta
t, see Figure 7.1. The two bodies in their referen
e 
on�guration are identi�ed

with the domains 


k

; k = 1; 2, and we de
ompose the solution u in u = (u

1

;u

2

), and

write (u

k

)

n

:= u

k

�n

k

, k = 1; 2, where n

k

is the outer unit normal on �


k

. Let us now

formulate the 
onta
t problem between two linear elasti
 bodies as boundary value

problem. We de
ompose the boundary of 
 in three disjoint parts, �

D

is the Diri
hlet

part, �

F

denotes the Neumann part and �

C

stands for the 
onta
t boundary. We

note that the a
tual 
onta
t zone between the two bodies unknown in advan
e, and

it is assumed to be a subset of �

C

. In addition to the equilibrium 
onditions in 
 and

boundary 
onditions on �


��

ij

(u)

;j

= f

i

; in 
 ;

u = 0; on �

D

;

�

ij

(u) � n

j

= p

i

; on �

F

;

(7.1)

we have the following 
onditions on the possible 
onta
t boundary �

C

�

T

(u

1

) = �

T

(u

2

) = 0 ;

�

n

(u

1

) = �

n

(u

2

) � 0 ;

(7.2)

and the linearized 
onta
t 
ondition on �

C

t � (u

1

)

n

+ (u

2

)

n

;

0 = ((u

1

)

n

+ (u

2

)

n

� t)�

n

(u

1

) ;

(7.3)

where the fun
tion t : �

C

� IR

d

�! IR is the distan
e between the two bodies in

normal dire
tion taken with respe
t to the referen
e 
on�guration. Here, we 
onsider

a 
onta
t problem without fri
tion. Thus, the tangential 
omponent of the stress

tensor vanishes at the 
onta
t boundary, and is set to zero in the �rst equation of

(7.2). We have only 
onta
t pressure at �

C

. If there is no 
onta
t between the two

bodies, the boundary stresses at �

C

are zero, see Equations (7.2) and (7.3). For

details of the problem formulation, we refer to [HH80, BGK87℄. We write f(v) :=

(v; f)

0;


+ (v;p)

0;�

F

and denote by f

k

(�) and a

k

(�; �) the restri
tion of f(�) and a(�; �)

to 


k

; k = 1; 2, respe
tively. In general, the zone of a
tual 
onta
t is unknown,

and thus the 
onta
t problem is nonlinear and non{di�erentiable with respe
t to the

displa
ements at the 
onta
t boundary. The 
orresponding weak formulation results

in a variational inequality. Let us de�ne the 
onvex set K of admissible displa
ements

by

K = fv 2 H

1

�

(


1

)�H

1

�

(


2

) j (v

1

)

n

+ (v

2

)

n

� tg :

The weak form of (7.1){(7.3) is given by a variational inequality: Find u 2 K su
h

that

a(u;v � u) � f(v � u); v 2 K ;

whi
h is equivalent to minimizing the energy fun
tional J(v) :=

1

2

a(v;v) � f(v) on

K, see, e.g., [HH80, BGK87℄.



20

PSfrag repla
ements

�

D

\ �


1

�

D

\ �


2




1




2

�

1

n

�

2

n

t

�

C

\ �


1

�

C

\ �


2

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

F= 100

Γ

Γ

C

D

Fig. 7.1. Two elasti
 bodies in 
onta
t (left) and Hertzian 
onta
t problem (right)

Our approa
h is based on a Diri
hlet{Neumann algorithm with inexa
t solvers. In

ea
h step, a nonlinear one{sided 
onta
t problem has to be solved. This is done on the

dis
rete level by a monotone multigrid method, see [Kor97b, KK00℄. Furthermore, an

inhomogeneous Neumann problem has to be solved. Here, we apply standard multi-

grid te
hniques. The information transfer at the 
onta
t boundary will be realized in

terms of dual mortar methods. The major advantages of this new approa
h are the

eÆ
ien
y of the iterative solver, and the a priori estimates for the boundary stresses

at the a
tual 
onta
t zone. In 
ontrast to penalty methods, the dis
retization error

of the boundary stresses does not depend on regularization parameters.

To motivate our approa
h, let us assume for the moment that the 
onta
t stress

�

n

is known on �

C

. Then, problem (7.1){(7.3) 
an be de
oupled in the following

way: In a �rst step, we solve an inhomogeneous Neumann problem on 


2

: Find

u

2

2 H

1

�

(


2

) su
h that

a

2

(u

2

;v) = f

2

(v) + (�

n

;v

n

)

0;�

C

; v 2 H

1

�

(


2

) :

Having u

2

2 H

1

�

(


2

), u

1

2 H

1

�

(


1

) 
an be obtained in terms of u

2

j

�

C

as the solution of

a one{sided 
onta
t problem. We de�ne the 
onvex set K

g

of admissible displa
ements

for the s
alar fun
tion g by

K

g

:= fv

1

2 H

1

�

(


1

) j (v

1

)

n

� t� g on �

C

g :

Then, the one{sided 
onta
t problem 
an be written as a variational inequality: Find

u

1

2 K

(u

2

)

n

su
h that

a

1

(u

1

;v � u

1

) � f

1

(v � u

1

); v 2 K

(u

2

)

n

: (7.4)

The dis
retization of the set K

g

is given by

K

h

g

:= fv

1

2 X

1;h

j (v

1

)

n

(p) � t(p)� g(p) for all p 2 T

h

1

\ �

C

g ; (7.5)

where X

k;h

is the �nite element spa
e X

h

\H

1

�

(


k

), k = 1; 2. Here, we assume that

g and t are 
ontinuous. Then, a priori estimates for the dis
retization error 
an be

found in, e.g., [KO88℄. In the following, we also denote the dis
rete approximation by

u = (u

1

;u

2

) 2 X

1;h

�X

2;h

, and we do not use an additional index h, and � 2 M

h

stands for the dis
rete boundary stress.

The variational inequality (7.4) 
an be solved eÆ
iently by monotone multigrid

methods. Here, the main idea is to minimize the energy fun
tional J

1

(�) on K

h

(u

2

)

n
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su

essively in dire
tion of appropriate test fun
tions. Choosing the multilevel nodal

basis of a multigrid hierar
hy as test fun
tions, this turns out to be a 
ombination

of a proje
ted blo
k Gau�{Seidel on the �nest grid with lo
ally damped 
oarse grid


orre
tions, and 
an be implemented as a modi�ed V{
y
le. Sin
e the 
oarse grid


orre
tions have to satisfy the 
onstraints given by (7.5) with respe
t to the �nest

triangulation, suitable non{trivial 
oarse grid fun
tions have to be 
onstru
ted. It


an be shown, that after a �nite number of iterations the dis
rete 
onta
t boundary

is identi�ed. Then, the method degenerates to a standard multigrid method with

spe
ial treatment of the eventually 
urvilinear 
onta
t boundary. For details, we refer

to [Kor97a, KK99, KK00℄. Moreover in the mortar setting, the Lagrange multiplier

plays the role of Neumann boundary 
onditions. In the dual approa
h, the 
onta
t

stress �

n


an be obtained from the residual by a lo
al post{pro
essing step. The


ombination of mortar �nite elements, monotone multigrid methods and domain de-


omposition te
hniques de�nes in a natural way a new solution algorithm for elasti



onta
t problems. It 
an be interpreted as a Diri
hlet{Neumann type algorithm. We

de�ne the mortar side to be on the 
onta
t boundary of 


2

, and the non{mortar side

is the adja
ent side on the 
onta
t boundary of 


1

. Let us introdu
e the transfer

operator S

h

: X

2;h

�! X

1;h

,

(S

h

v)

i

:=

X

p2P

hv

i

; �

p

i

�

C

R

�

C

�

p

ds

�

p

; v 2 X

2;h

; 1 � i � d ;

where �

p

is the s
alar nodal basis fun
tion in 


1

asso
iated with the vertex p, and

P is the set of verti
es on the non{mortar side of �

C

. In 
ontrast to the previous

se
tions, the verti
es on the boundary of �

C

are in
luded, and no modi�
ation of

the dual basis fun
tion �

p

is ne
essary in the neighborhood of the boundary of �

C

.

Denoting the matrix representation of S

h

by S, we observe that S is a n

1

�n

2

matrix,

n

k

:= dimX

k;h

, k = 1; 2, whi
h 
onsists of large zero blo
ks and one non zero blo
k

asso
iated with the verti
es on the non{mortar and mortar side.

obstacle

residualstress

trace

Ω Ω1 2

linear non linear

Neumann problem one-sided contact pb.

Fig. 7.2. Nonlinear Diri
hlet{Neumann type algorithm

Before we present our nonlinear Diri
hlet{Neumann algorithm whi
h is illustrated

in Figure 7.2, we introdu
e some notation. For k = 1; 2, we denote by A

k

the sti�ness

matrix with respe
t to a

k

(�; �) and by f

k

the ve
tor asso
iated with the right hand side,

i.e., f

k

(v) = (f

k

;v), v 2 X

k;h

. Using the same te
hniques as in Se
tion 6, we de�ne for

ea
h g 2 X

h

by means of the lo
al rotations O

p

a 
ontinuous fun
tion g

n

: �

C

�! IR.

Here, in an abuse of notation, we do not distinguish between an element v 2 X

h

and

its ve
tor representation with respe
t to the standard nodal basis. In addition, we

identify the spa
es X

k;h

and IR

n

k

, k = 1; 2. Now, our Diri
hlet{Neumann algorithm

in its algebrai
 formulation is de�ned as follows:
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Choose damping parameters: 0 < �

1

; �

2

� 1.

Initialize: X

1;h

3 g

�1

= 0; X

2;h

3 p

0

= 0.

For � = 0; : : : ; N do

Solve linear Neumann problem: Find u

�

2

2 X

2;h

:

A

2

u

�

2

= f

2

+ p

�

:

Transfer of displa
ements and damping:

g

�

= (1� �

1

)g

��1

+ �

1

Su

�

2

:

Solve nonlinear one{sided 
onta
t problem: Find u

�

1

2 K

h

g

�

n

:

(A

1

u

�

1

;v � u

�

1

) � (f

1

;v � u

�

1

); v 2 K

h

g

�

n

:

Compute the linear residual r

�

1

2 X

1;h

:

r

�

1

= A

1

u

�

1

� f

1

:

Transfer of s
aled boundary stresses and damping:

p

�+1

= (1� �

2

)p

�

+ �

2

S

T

r

�

1

:

The transfer of the Diri
hlet values at the 
onta
t boundary is realized in terms

of the operator S

h

and the transfer of the s
aled boundary stresses in terms of the

adjoint operator S

�

h

, 
orresponding to the duality between displa
ements and stresses.

In the algebrai
 formulation, the matrix S is used to transfer the displa
ements on the

mortar side as Diri
hlet values, or more pre
isely as an obsta
le, onto the non{mortar

side, and the s
aled boundary stresses are transferred from the non{mortar side onto

the mortar side in terms of the transposed matrix S

T

. The interfa
e 
onditions of

the mortar formulation guarantee that (7.2) and (7.3) are satis�ed in a weak integral

form. For fri
tionless 
onta
t, the �rst equation in (7.2) 
an also be satis�ed in its

strong form. Then, the Lagrange multiplier spa
e is a s
alar fun
tion and the mortar

approa
h has to be modi�ed a

ording to Se
tion 6. Here, we work with the more

general approa
h that the Lagrange multiplier spa
e is also ve
tor valued.

Remark 7.1. Using the ve
tor valued approa
h for the Lagrange multiplier spa
e,

fri
tion terms 
an be easily in
luded. The �rst equation in (7.2) has to be repla
ed by

some fri
tion law, e.g., the Coulomb fri
tion.

Let us now 
onsider the matrix S in more detail. Setting D

S

= diag(d

p

)

p2P

and

d

p

2 IR

d�d

= diag(

R

�

C

�

p

ds)

1�i�d

, we 
an write the non zero blo
k of S as a s
aled

mass matrix D

�1

S

M

T

S

. Here, the mass matrix M

S


orresponds to the duality pairing

h�; �i

�

C

. Then, D

�1

S

M

T

S

is 
losely related to the s
aled mass matrix matrix D

�1

M

T

given in Se
tion 3. The entries of M

S

are given by

R

�

C

�

p

0

�

p

ds ; where �

p

0

is the

s
alar nodal basis fun
tion in 


2

asso
iated with the vertex p

0

2 �

C

. Due to the jump

[�℄ in the de�nition of the bilinear form b(�; �), the entries of M have the opposite sign.

Considering implementational aspe
ts, we observe that the same subfun
tions 
an be

used for assembling M and M

S

. Moreover for a suitable index ordering, we �nd

S =

�

D

�1

S

M

T

S

0

0 0

�

;
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and the appli
ation of the operator S

h

requires only the multipli
ation with a s
aled

mass matrix on the 
onta
t boundary.

Furthermore, the boundary stress � 
an be obtained by a lo
al post{pro
essing

step from the �nal residual r

N

1

,

� = (D

�1

S

0) r

N

1

:

In a last step, we get the normal stress �

n

and the tangential stress �

T

by a lo
al

rotation from �. We remark, that the numeri
al results show that �

T

= 0, although

we do not enfor
e this 
ondition.

Remark 7.2. If the a
tual 
onta
t zone is known, problem (7.1){(7.3) will be

linear. In this 
ase, we 
an expe
t the same order of 
onvergen
e as for a standard

Diri
hlet{Neumann type pre
onditioner.

Finally, we present numeri
al examples for the proposed algorithm. Our �rst test

problem is the Hertzian 
onta
t of a linear elasti
 
ir
le with a linear elasti
 plane. In

this example, the 
onta
t stresses 
an be 
omputed analyti
ally [Her82℄. To test the

performan
e of our algorithm, we 
ompare the 
omputed boundary stresses with the

analyti
al ones. For 
omparability, we 
hoose the same problem data and geometry as

in [CSW99℄. We 
onsider an elasti
 
ir
le with s
aled material parameters E = 7000,

� = 0:3 and radius r = 1, pressed by a point load F = 100 onto a quadrilateral with

material parameters E = 10

6

, � = 0:45.

As is done in [CSW99℄, we apply the single load as surfa
e load to avoid a sin-

gularity. Homogeneous Diri
hlet boundaries have been applied on the right and left

boundary part of the quadrilateral, see the right part of Figure 7.1. We use bilinear

fun
tions on quadrilaterals and uniform re�nement. On both subdomains, we apply

a V(3; 3){
y
le. In this example, we 
hose �

1

= 1 and �

2

= 0:5. The problems on the

two subdomains are solved up to a toleran
e of 10

�10

. On ea
h level, only a few outer

iteration steps are required to rea
h the stopping 
riterion for "

TOL

= 10

�5

,

kp

�

� S

T

r

�

1

k

kp

�

k

� "

TOL

:

In the left of Figure 7.3, the maximal 
onta
t stress on ea
h level is displayed, showing

the performan
e of our method. The analyti
al value of �

max

n

= 495 is already rea
hed

on level 5. Here, only 5 nodes of the 
ir
le are a
tual in 
onta
t with the plane. In the

middle of Figure 7.3, the 
onta
t and tangential stresses are shown, in the right, the
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(u) of the stress tensor is depi
ted. To demonstrate the 
exibility of

our approa
h, we do not enfor
e �

T

= 0 on the spa
e. The Lagrange multiplier of the

mortar method plays the role of the boundary stresses at �

C

. Thus, the boundary

stresses are handled as additional unknowns whi
h 
an be obtained by a lo
al post{

pro
essing from the residual. This observation predestinates our algorithm for 
onta
t

problems with fri
tion.

In our last example, we apply our algorithm to a more 
omplex geometry. The

elasti
 
onta
t of a wren
h and a nut is 
onsidered. At the interior boundary of the nut,

i.e., the part of the boundary with outer normal pointing towards the 
enter of gravity

of the nut, we impose Diri
hlet boundary 
onditions 
orresponding to a rotation by

�=180. Homogeneous Diri
hlet boundary 
onditions are applied at the handle of

the wren
h and on all remaining parts of the boundary we impose homogeneous

Neumann 
onditions. We use linear elements on triangles, and adaptive re�nement.

The spe
i�ed material parameters are E = 7000 and � = 0:28 and the damping

parameters are �

1

= 1, �

2

= 0:25. As 
an be seen in the right of Figure 7.4, the a
tual
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Fig. 7.3. Maximal 
onta
t stresses (left), 
onta
t stresses (middle) and �

22

(right)


onta
t zone is only a small part of the 
onta
t boundary �

C

. We remark, that a

more realisti
 model would in
lude fri
tion at the interfa
e.

Fig. 7.4. Details of the deformed 
on�guration for the nonlinear 
onta
t problem
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