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NONCONFORMING DOMAIN DECOMPOSITION TECHNIQUES
FOR LINEAR ELASTICITY

ROLF H. KRAUSE* AND BARBARA I. WOHLMUTH'

Abstract. Mortar finite element methods provide a powerful tool for the numerical approxima-
tion of partial differential equations. Many domain decomposition techniques based on the coupling
of different discretization schemes or of nonmatching triangulations along interior interfaces can be
analyzed within this framework. Here, we present a mortar formulation based on dual basis functions
and a special multigrid method. The starting point for our multigrid method is a symmetric positive
definite system on the unconstrained product space. In addition, we introduce a new algorithm
for the numerical solution of a nonlinear contact problem between two linear elastic bodies. Tt will
be shown that our method can be interpreted as an inexact Dirichlet—Neumann algorithm for the
nonlinear problem. The boundary data transfer at the contact zone is essential for the algorithm.
It is realized by a scaled mass matrix which results from a mortar discretization on non-matching
triangulations with dual basis Lagrange multipliers. Numerical results illustrate the performance of
our approach in 2D and 3D.

Key words. mortar finite elements, Lagrange multiplier, dual space, non—matching triangula-
tions, multigrid methods, contact problems, linear elasticity
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1. Introduction. We present domain decomposition methods within the frame-
work of mortar techniques [BMP93, BMP94]. Originally introduced as a nonconform-
ing method for the coupling of spectral elements, these techniques can be used in
a large class of situations. The coupling of different physical models, discretization
schemes or non—-matching triangulations along interior interfaces of the domain can
be analyzed by mortar methods. These domain decomposition techniques provide
a more flexible approach than standard conforming formulations, and are of special
interest for time dependent problems, rotating geometries, inhomogeneous materi-
als, problems with local anisotropies, corner singularities, contact problems and when
different terms dominate in different regions of the simulation domain. One major re-
quirement to obtain optimal discretization schemes is that the interfaces between the
different regions are handled appropriately, see, e.g., [BD98, Ben99, BMP93, BMP94].
Very often, suitable matching conditions at the interfaces can be formulated as weak
continuity conditions. Here, we consider mortar finite element formulations based on
a dual basis for the Lagrange multiplier space, see [Woh00], with special emphasis
on nonlinear contact problems. As a consequence of the biorthogonality relation and
in contrast to the standard mortar methods, the locality of the support of the nodal
basis functions of the corresponding constrained space is preserved. Based on this
observation, we analyze a modified multigrid method and present numerical results in
2D and 3D illustrating the performance of the iterative solver, see [WKO01]. As appli-
cation, we choose the deformation of linear elastic bodies, and we consider composite
materials, see [KWO00b, KWO00a] for the linear case. In this case, the actual zone of
contact between the bodies is known in advance. The resulting discrete problem is
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linear and can be solved efficiently by a modified variant of our multigrid method.
Here, we introduce suitable locally defined rotations.

Moreover, we focus on a nonlinear problem modeling the contact of two linear elas-
tic bodies. Here, the actual zone of contact is not known in advance and has to be iden-
tified during the iteration process. A lot of work has been done on contact problems,
see, e.g., [DNS99, WG97, HH80, HH81, ESW99] and [Wri95, THL88, KO8&8] for survey
papers. Two main difficulties occur in the numerical simulation of contact problems.
The first is the handling of the boundary data transfer at the interface between the
two bodies. In our setting, this information transfer is realized in terms of the scaled
mass matrix from the mortar formulation. The second difficulty is the intrinsic non-
linearity of the problem at the contact boundary. To overcome this difficulty, we use a
monotone multigrid method as a subdomain solver, see [Kor97a, KK99, KK00]. This
method provides an efficient iterative scheme for elliptic obstacle problems but can-
not be applied efficiently to multi body problems with non—matching triangulations.
Using mortar techniques for the discretization and a monotone multigrid method as
subdomain solver, we introduce a new algorithm for the numerical solution of contact
problems. It can be interpreted as a nonlinear Dirichlet—-Neumann type precondi-
tioner.

The rest of the paper is organized as follows: In Section 2, we apply mortar
techniques to linear elasticity problems. We briefly discuss the idea of a dual basis
for the Lagrange multiplier space, and we recall the mortar formulation. Piecewise
constant and piecewise linear dual basis functions are given in 2D and for hexahedral
triangulations in 3D. We focus on a new mortar formulation on the unconstrained
product space in Section 3. It is defined in terms of a local projection operator
based on a dual Lagrange multiplier space. In Section 4, we present our multigrid
method. Level independent convergence rates are obtained for the YW—cycle provided
that the number of smoothing steps is large enough. The grid transfer operators have
to be modified by a local projection. Numerical results illustrate, in Section 5, the
performance of our multigrid method in 2D and 3D. Section 6 shows the flexibility
of the mortar approach combined with the concept of dual basis functions. The
coupling condition at the interface is weakened, and free displacement in tangential
direction is permitted. The main result of our paper can be found in Section 7.
We consider a nonlinear contact problem for two linear elastic bodies and present
a nonlinear Dirichlet—-Neumann algorithm. In each iteration step, we have to solve
a linear Neumann problem and a nonlinear one-sided contact problem with given
obstacle. Numerical examples show the deformation of the bodies and the stresses at
the contact zone.

2. Dual Lagrange multiplier spaces and mortar formulation. We con-
sider the deformation of a body of hyperelastic Hookean material as model problem.
The body in its reference configuration is identified with the domain Q in R?. The
displacement field u of the body is given as the solution of the following boundary
value problem

—oij(n); = fi, in Q,
u = 0, onITp,
Uij(ll) -nj = Di, on FF,

where we assume  to be a bounded, polyhedral domain in R?, d = 2,3, and n
is the unit outer normal on the boundary of €. The volume forces are denoted by
f e (L2(Q)%, and p € (L?(T'r))? are the surface stresses. We denote vector quantities
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by bold symbols, e.g., v, and its i—th component by v;. The partial derivative with
respect to z; is abbreviated with the index ;. Furthermore, we enforce the summation
convention on all repeated indices ranging from 1 to d. The stress tensor o is given
by Hooke’s law

oij(0) := Ejjim Ut,m ,

where Hooke’s tensor E := (Eijlm)zj,hm:l’ Eijim € L™(Q), is assumed to be suf-
ficiently smooth, symmetric, i.e., Eijim = Fjum = Emij, 1 < 4,5,[,m < d, and
uniformly positive definite, i.e., Eijim&ij&m > c&ij &; for each symmetric tensor &,
&j = &i. For homogeneous isotropic materials, Hooke’s tensor depends only on the

Poisson ratio v and Young’s modulus E. Then, the stress tensor can be written as

Ev
oij(n) = m%ekk(lﬂ + i (),
where e(u) := $(Vu” + Vu) is the linearized strain tensor. The boundary 00 =

TpUTF is decomposed into two non-overlapping parts, a Dirichlet part I'p with non
zero measure and a Neumann part I'p. Let u € HL(Q) be the solution of the following
variational problem

a’(ua V) = f(V), v E Hi(ﬂ)a (21)
where HL(Q) is a subspace of H'(Q) := (H'(Q))? given by
H{(Q) = {veH' (Q)]| v|r, =0},

and f(v) := (v,f)o.0 + (vV,p)o.r. The bilinear form a(-,-) is defined as

a(w,v) = /Eijlmwi,jvl’m dr, w,vE Hl(Q)
Q

Associated with a(-,-) is the energy norm || - ||, [[v|]|* := a(v,v). Korn’s inequality
yields the unique solvability of the variational problem (2.1).

We assume that the domain 2 has been decomposed into K non—overlapping
polyhedral subdomains Qj, Q = UkK:1 Qp, and QNQy, = 0, k # 1. Bach subdomain Q,
is associated with a family of shape regular triangulations 7, , hy < hy,o, where hy, is
the maximum of the diameters of the elements in 73, . We use Lagrangian conforming
finite elements S(Qy, Tp,) C H(Qy) of order one on the individual subdomains and
enforce homogeneous Dirichlet boundary conditions on I'p N 9Q. For the moment,
we restrict ourselves to the geometrical conforming situation where the intersection
between the boundary of any two different subdomains 9 N 0Qy,, k # [, is either
empty, a vertex, a common edge in 2D or face in 3D. Furthermore, we assume that
the interfaces in 3D are axiparallel rectangulars.

To obtain an optimal discretization scheme, one has to impose suitable matching
conditions at the interfaces. In [BMP93, BMP94], it has been shown that weak con-
straints across the interfaces are sufficient to guarantee approximation and consistency
errors of optimal order. The mortar method is characterized by introducing Lagrange
multiplier spaces given on the interfaces, which are used to ”glue” the different parts
of the weak solution together. A suitable triangulation on the interfaces is necessary
for the definition of a discrete Lagrange multiplier space. Each interface 9<% N 9y
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is associated with a (d — 1)—dimensional mesh, inherited either from 7, or from 7y, .
In general, these triangulations do not coincide, see Figure 2.1. The interfaces are
denoted by v,,,, 1 < m < M. For each interface, there exists a couple 1 <l <k < K
such that 7, = 0Q; N 0N. The elements of the (d — 1)-dimensional mesh on +,, are
boundary edges in 2D or boundary faces in 3D of 7p, or T, . The choice is arbitrary
but fixed. Then, the non—mortar side is the one from which the Lagrange multiplier
space inherits its mesh, see Figure 2.1. The adjacent side is called mortar side. We
denote the set of vertices on the non—mortar side in the interior of v, by Pp,.

* Lagrange multiplier

non-mortar side

[ |
] mortar side
\

Interface

Fi1G. 2.1. Non—matching triangulations at the interface

In the rest of this section, we consider the saddle point formulation of the mortar
method using dual spaces. It is defined on the unconstrained product space and a
suitable Lagrange multiplier space. A standard choice for the Lagrange multiplier
space on each interface is a modified trace space on the non—mortar side, [BMP93,
BMP94]. Here, we work with dual basis functions. In both cases, the dimension is
equal to the number of vertices in P,,, and optimal a priori estimates can be obtained
for the discretization error in the energy norm.

2.1. Dual basis functions. In this subsection, we briefly review the definition
of dual basis functions for the scalar Lagrange multiplier space Mp(v,,) associated
with the interface v,,, see [Woh00]. The nodal basis functions p,, p € Pp,, are locally
defined, piecewise constant or linear and satisfy the following biorthogonality relation

/upgﬁpr ds = 6p /qﬁpr ds, p,p' € Pp, (2.2)
Ym TYm
where ¢, is the standard conforming nodal basis function of S(€y,(m), Th,(,,,) associ-
ated with the vertex p, i.e., ¢,(p') = 0. Here, n(m) is the subdomain index of the

non—mortar side of 7,,. Figure 2.2 shows piecewise linear and piecewise constant dual
basis functions in 2D at the interface.

A SN

‘ ‘ ‘ U

F1G. 2.2. Piecewise linear and piecewise constant dual basis functions in 2D

We observe that the basis functions associated with the vertices adjacent to the
endpoints of v, have to be modified. Figure 2.3 illustrates the isolines of the dual ba-
sis function 1, in 3D restricted to its support in the case of a hexahedral triangulation.
We remark that the support of a nodal dual basis function is the union of four bound-
ary faces of Tj, ,,, sharing one vertex. As in the 2D case, the definition of y, has to
be modified if the vertex p is close to the boundary of 7,,, see [BD98, WK01, Woh99a]



for more details. In the case of a simplicial triangulation, the construction follows the
same lines, and we refer to [BD98, KLPV00, Woh99a] for details.
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Fic. 2.3. Isolines of piecewise bilinear and piecewise constant dual basis functions in 3D

Figure 2.4 shows the modifications in the neighborhood of the boundary of ,, for
piecewise bilinear dual basis functions. We distinguish between three different types
of vertices p € P,,. The inner ones, i.e., dsupp(¢ply,,) N Ovm = 0, are marked with
empty squares, the ones close to the corners, i.e., 9 supp(¢p|,.) contains one corner of
Ym, by empty circles, and all other vertices are marked by filled circles. In the left of
Figure 2.4, the different groups of vertices are shown. For each vertex type, one dual
basis function is given in the right part of Figure 2.4. The other ones can be obtained
by rotations of m/2. We observe that the dual basis functions in 3D reflect the tensor
product structure of the triangulation, i.e., they can be written as the product of two
piecewise linear dual basis functions in 1D.

1 22 1 1 1 22 1
Y

2 44 2 2 2 44 2

2 a7 2 1 1 272 1

1 2|2 1 1 1 2[2 1

F1a. 2.4. Modifications near the boundary of ~vm for piecewise bilinear dual basis functions

Optimal a priori estimates for the discretization error in both the L?— and H'-

norm as well as for the Lagrange multiplier in the Hé[{ ?_dual norm and a weighted
L?-norm are obtained for scalar elliptic equations [Woh99a].

2.2. Mortar formulation. We consider two different types of coupling at the
interfaces. The first one is the weak coupling of the solution in both, normal and
tangential, directions. In this situation, the different bodies or materials are glued
together, i.e., there is no relative displacement in tangential and normal direction. The
second interesting case can be used for the modeling of a contact problem and will be
discussed in Section 6. In that case, we do not have a weak continuity condition in
tangential direction. The constraints at the interfaces are given for the displacements
in normal direction. Both situations will be considered within the mortar framework,
and the resulting systems will be solved by a modified multigrid method.

The unconstrained product space associated with the domain decomposition is
given by

K

Xy o= [, )"

k=1

In the case of the coupling in tangential and normal direction, the Lagrange multiplier



space My, is also vector valued

M
My = [T (Ma(ym))?,

where My, (7y,) is spanned by the dual basis functions pip, p € Py, given in the previous
subsection. Now, the mortar formulation is defined in terms of the bilinear form b(:, -)

M
b(v, 1) = Y ([vil idym, V€ Xyt € M.

m=1

Here, [] denotes the jump, i.e., [vi]|,,, = vila,.., — Vil Where n(m) is the
subdomain index of the non—mortar side and 7(m) the index of the adjacent mortar
side, and (-,-).,. stands for the duality pairing between H'/?(v,,) and its dual space.
Introducing the Lagrange multiplier as an additional unknown, we obtain the following
saddle point problem: Find (up, A) € X; x My, such that

a(up,v) +b(v,\p) = f(v), veXy,

(2.3)
b(up, p) = 0, p € My,

see [Ben99] for the scalar elliptic case. Here, the bilinear form af(-,-) is extended
to the nonconforming space X by replacing the integral over Q by its broken form
Zle ka The second equation of the saddle point problem guarantees the weak
continuity of the solution uy,. We define the nonconforming space Vj, as the kernel
of the operator BT : X;, — M), associated with the bilinear form b(-,-),

V= {V € Xy, | b(V,u) =0, ue€ Mh}
Under the assumption that a(-,-) is uniformly elliptic on Vj, x V, i.e.,

K

a(v,v) > clvll} = Y IVIlfa,, VEVa,
k=1

the following variational problem has a unique solution: Find u; € V}, such that
a(uy,v) = f(v), vEVy. (2.4)

In the next subsection, we address the question of ellipticity. A uniform discrete
inf-sup condition yields in combination with the ellipticity of a(-,-) on the kernel of
the operator BT the unique solvability of (2.3), see [BF91]. We refer to [Woh99a] for
the proof of the inf-sup condition in the scalar case. Since M}, and X} are product
spaces, the inf-sup condition follows from the scalar case. Moreover, the positive
definite system (2.4) is equivalent to the saddle point problem (2.3).

2.3. Uniform ellipticity. In this section, we consider the uniform ellipticity
of the bilinear form a(-,-) on the constrained space Vj, x V. Let us start with the
special case that 0Q;NT p has a non zero measure for all 1 < k& < K. In this situation,
Korn’s inequality can be applied to each subdomain, and we find

K K
a(v,v) = Y ap(v,v) > C) |IVlig, = ClIVIE, v e€Xa,
k=1 k=1
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where ay (-, -) stands for the restriction of a(-, ) to the subdomain ;. We remark that
C does not depend on the number of subdomains. Here, we use standard Sobolev
notations for the norms and seminorms and the constants 0 < ¢,C' < 0o are generic
ones not depending on the meshsize. Unfortunately, many interesting cases do not
satisfy this assumption. However for the unique solvability of (2.4), it is sufficient to
have the uniform ellipticity of a(:,) on V;, x V. In the scalar elliptic case, the kernel
of the corresponding bilinear form is the subspace of piecewise constant functions. The
dimension is given by the number of subdomains €, such that 9Q; NTp is empty. In
our setting, the kernel is of higher dimension. The rigid body motions per subdomain
define a three dimensional space in 2D and a six dimensional space in 3D. Thus, the
dimension of the Lagrange multiplier space has to be larger than d. In the following,
we assume that #7P,, > 2 in 2D, and that in 3D the triangulation at the interface is
a tensor product mesh with #P,, > 4.

To prove the uniform ellipticity in the scalar elliptic case, it is sufficient to show
that the constants are contained in the Lagrange multiplier space. Due to the rigid
body motions this is not sufficient in our case. To get a better feeling for the kernel of
a(-,-), we consider the case of two unit squares ; and Q> with homogeneous Dirichlet
boundary condition on one side of 9Q; N 92 and homogeneous Neumann boundary
condition elsewhere. Then, a(-,-) is not elliptic on V x V, where the nonconforming
space V is defined by V := {v € H(Q)| [ [v]ds = 0}, v := 9 N 9. To see
this, we set v|o, := 0 and v|q, 1= B(z2 — T2.c, 71, — 1), B # 0, where (71 ¢, z2,.)T
denotes the center of gravity of v. Then, v € V but a(v,v) = 0.

Based on this observation, we define the nonconforming space

Vaty = {veH®)| [[v]pds =0, € Mia(yn), 1S < 1}
TYm

where Mg (V) := (M (vm))? is a suitable test space. If Mz (7m) C Mp(vm) then
V};, C VM, and for the uniform ellipticity on Vj, x V}, it is sufficient to show the
ellipticity on Vi, X Vv, . A natural choice for Mg (ym) is P (vm)- Unfortunately
none of the considered Lagrange multiplier spaces satisfy Pi(ym) C Mp(Ym)-

We introduce a new macro Lagrange multiplier space Mg (7,,) which has dimen-
sion two in 2D and dimension four in 3D. Let us start with the 2D case, and let
t € [0,1] be a parametrization of the 1D interface v, i.e., z € %,, if and only if
x =p1 +te(p2 —p1), tz € [0,1], where p; and p, are the two endpoints of 7,,. The
ordering is arbitrary but fixed. Then, we decompose P, into two disjoint subsets
Pl :={p € Pnlt, <0.5} and P}, := Py, \ P.,, and define

2
furr = (tl+t7«_1) S p— >

pePL, PEP],

where t; :== max{t, |p € P.,} < 0.5 and ¢, := min{t, |p € P~} > 0.5, see Figure 2.5.
In the left, pug is given for the standard Lagrange multiplier space and in the right
for the dual Lagrange multiplier space. It is easy to see that the mean value of pg
is equal zero for the standard Lagrange multiplier space and the dual one based on
piecewise linear functions. Now, we define

Mg (Ym) :=span{pg € ®g}, @x:={l,un},

in the 2D case, and in 3D, & is given as the corresponding product set. Thus for
the 2D and 3D case, we have Mg (vVm) C Mp(Ym)-



F1G. 2.5. Test function pg and vy for standard (left) and dual (right) Lagrange multiplier space

LEMMA 2.1. Let v € Vmy,, and v restricted on Qp, 1 < k < K, be a rigid body
motion, then v = 0.

Proof. We start with a subdomain Qp, such that 0Q, N I'p has a non zero
measure. Due to the Dirichlet boundary condition, v restricted to this subdomain is
zero. Then, the interface condition yields that for all adjacent subdomains, we find

in 2D
/(a+6< T2 T B2e >)-eids:0, 1<i<2,
Ti1,c —T1

Ym

where e; denotes the i—th unit vector, and thus a = 0. Introducing vy € Pi(ym),
v (p1) = —vu(p2) = 1, see Figure 2.5, a straightforward computation shows that

/MHVH ds = am|ym|,

Tm

where ap > 1/3 if Mp(vy) is the piecewise linear dual Lagrange multiplier space
as introduced in Subsection 2.1, and apg > 2/9 if My (y,,) is the standard Lagrange
multiplier space and thus = 0. We note that the lower bound for a does not depend
on the mesh on 7,,. In 3D, the rigid body motions are given by a+ b x (x —x.), and
similar arguments as in 2D yield a = b = 0. Starting from Qy,, we can move to each
other subdomain by crossing interfaces. O

LEMMA 2.2. The bilinear form a(-,-) is uniformly elliptic on Vg x V.

The lemma follows from the upper estimate for the broken H'-norm

M
IVt < Cra(v,v) +C2 Y > || /@H[V] ds||?, veH(Q), (2.5)

m=1 pg€Edy o

where || - || stands for the Euclidean norm in R?. Inequality (2.5) is obtained by a
Bramble-Hilbert argument and shown by contradiction. Here we do not work out the
details but sketch the idea, for details we refer to [Woh99a]. We assume that (2.5)
is not true. Then, the second Korn inequality and Lemma 2.1 give a contradiction.
Although the space Vg depends on the triangulation, the ellipticity constant can be
bounded from below independently of the triangulation.
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REMARK 2.3. Unfortunately, the proof by contradiction gives only the existence
of such a constant Cy, but no information if C1 can be chosen independently of the
number of subdomains.

It is likely that more elaborate techniques yield an ellipticity constant which is
independent of the number of subdomains. For the scalar elliptic case in 2D, we refer
to [Gop99] and for the three field approach to [BMO00]. Both techniques are based on
duality arguments and cannot be applied directly to our situation.

3. An equivalent formulation on the product space. In the previous sec-
tion, we have given the saddle point formulation (2.3) on X, x M}, and the positive
definite nonconforming mortar formulation (2.4) on V. Here, we reformulate the sad-
dle point problem as a non—-symmetric problem on the unconstrained product space
X}, and eliminate the Lagrange multiplier Aj. Due to the biorthogonality (2.2), this
can be done locally.

We start with the algebraic formulation of the saddle point problem. Let Aj and
By, be the matrices associated with the bilinear forms a(-,-) on X, x X}, and b(-,-)
on X x My, respectively, and f;, the vector associated with the right hand side. The
finite element solution uy, is decomposed into two components u! = (uf,ul). We
use the same symbol for an element in X; and the corresponding vector in R"™* with
respect to the standard nodal basis, where nj, is the dimension of Xj. All degrees of
freedom associated with the interior vertices on the non—mortar sides are contained
in the second component uy. The first component uy includes all other degrees of
freedom. We note that each degree of freedom is contained in exactly one of the two
groups. By means of this decomposition, we can rewrite the saddle point problem
(2.3) and find

4. B u Arr Ain M uy fr
( gv h > ( h > = AN[ ANN D un = fN 5 (31)
B, 0 A MT D 0 An 0

where D is a diagonal matrix, and M is a sparse matrix with many zero blocks, and

for each interface there is one rectangular mass matrix block, the band width of which

depends on the local ratio of the meshsizes on mortar and adjacent non—-mortar sides.

The size of the diagonal matrix D is d - an[ﬂ #Pp,, and its entries are f,ym ¢p ds.
The second row of the saddle point problem (3.1) yields

Ap = D_l(fN — Axruy — ANNUN) . (32)

We observe that for the standard Lagrange multiplier space D is not a diagonal matrix
but a block mass matrix. Thus in that case, Aj cannot be eliminated locally, and
the inverse of a mass matrix enters. Introducing now Wl := (0 D~!) and observing
Bguh = 0, we can rewrite Ay, in terms of WE and the residual on the product space,
A =W (f, — Ap(Id — W, B )uy,). Using this elimination in (3.1), we find

Ay By Id _ [ (d = ByW])fy
( By 0 ) < Wil Ap(WyB) —1d) )“h = ( 0 : (3.3)

In a last step, we reduce the number of equations by the dimension of Mj. This
can be done in different ways. We multiply (3.3) from the left by (v7,uT) and set
p as a function of v. One possible choice is p := W;T Ay (W}, Bf —Id)v yielding the
symmetric system Agymup = foym, where foym = (Id — B,W,)f, and

A B Id
Ay = (1d, (By W — 1d) Ap W) ( o B ) ( W B - ) ) (3.4
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A straightforward computation shows that Agym = (BpW,| — Id)A,(W,B] —1d) +
BaW,I AW, BF. Considering the second block row of Agym in more detail, we find
AnvnyD 'MTu; + Axynyuy = 0 or equivalently WhB,?uh = 0. The choice p :=
WL (Id — Ap)v gives rise to the non-symmetric system

Apumy, == (BaW)I —1d)Ap (W, B — 1d) + Wi B Juy, = foym - (3.5)

In the rest of this section, we derive a variational problem for (3.5). We introduce
a locally defined operator Py, : X, — Xy by

Vils Bp)vym .
th’:_z Z f](ﬁpdv op, 1<i<d.
m=1 pEPm

It is easy to see that the kernel of P, is exactly the constrained space Vj. The
biorthogonality relation (2.2) yields that P}, is a projection. Furthermore, the alge-
braic representation of P, is given by WhB,?, and we find a new variational problem
on the unconstrained product space. The algebraic system (3.5) can be written in
terms of Py, as a variational problem: Find u, € X}, such that

a((Id — Py)up, (Id — Pp)v) + (Prup, v)o = f((Id — Pp)v), veXy. (3.6)

LEMMA 3.1. The variational problems (3.6) and (2.4) are equivalent.

Proof. By definition, the solution of (2.4) is in the kernel of P}, and thus is a
solution of (3.6) by construction. Let up € X, be a solution of (3.6). Then, it is
sufficient to show that Pyup = 0. We set v := Ppuy, and find (Pypuy, Pyug)o =0. 0

The unique solution uy of (3.6) can be obtained by up, = (Id — P,)wy, from any
solution wy, € X, of

a((Id—Ph)Wh,(Id—Ph)V) = f((Id—Ph)V), veXy,.

REMARK 3.2. The new approach is based on the decomposition of v € X in
v — Ppv and Ppv. Having the biorthogonality relation (2.2), the definition of Py
yields that v — Pp,v € V. This is in general not true if we work with standard
Lagrange multiplier spaces. In that case, P, has to be replaced by a globally defined
projection operator. Its application involves the inverse of a tridiagonal mass matriz
in 2D and a band mass matriz in 3D.

4. A modified multigrid method. In this section, we present our modified
multigrid method. The implementation is based on the non—symmetric linear system
(3.5) whereas the analysis of the convergence rates is done for the symmetric form
(3.4). Let us assume that we have a nested sequence of global triangulations, and
let us denote the associated unconstrained product spaces by X;, 0 < [ < L. The
meshsize is given by h; = 2h;1, and the dimension of the space X; is n;. Working
with standard nodal basis functions in X; gives

chi|lvil* < lvalls < Chiflvall?, (4.1)

where || - || stands for the Euclidean vector norm of an element in R™. The Euclidean
scalar product in R™ is denoted by (+,-). In contrast to the constrained spaces Vi,
the product spaces X; are nested. We denote the standard prolongation operator by
ILl : X;-1 — X; and the restriction by Ill_1 : X; — X;_;. For the rest of this
section, we assume full H2-regularity of the problem.
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To obtain level independent convergence rates for our multigrid method, suitable
approximation and smoothing properties have to be established. In a first step, we
consider level dependent grid transfer operators (Imod)i_1 and (Imod)L1 defined by

(Imod)i_1 = (Id - C£1)I;_1a (Imod)§—1 = (Id - Cl)Ill—1 )

where C := T/VlBlT. We observe that these transfer operators are obtained from the
standard ones by a local post—processing step involving only the degrees of freedom
on the interfaces but not the ones in the interior of the subdomains. It is easy to
see that these transfer operators guarantee Cgl(fmod)i_lwl =0, w; € X;, and
Ci(Imoa)l_ywi—1 =0, wi—y € X;_q.

One basic tool to establish level independent convergence rates is a suitable ap-
proximation property. Here, we have to take into account the modified prolongation
operator. Let w; € X; and w;—; € X;_; be the solutions of Asymyw; = d; and
Agymji—1wi—1 = d;_1, respectively, where d;_; is defined as the restriction of d;, i.e.,
d;_, := (Imod);fldl. The following lemma can be found for the scalar elliptic case in
[WKO1].

LEMMA 4.1. Under the assumption that C’lel = 0, we have the following ap-
prozimation property

Wi — (Imoda)j_y Wi—1]| < Ch;~%||dy]|.

Proof. Using the results from the previous section, observing that A; is positive
definite on C;X; and using the assumption on d;, we find w; € V; and w;_; € V;_;.
We define f; € X; C (L2())? by (f4,vi)o = (vi,d;), vi € X;, and due to the norm
equivalence (4.1), we obtain h{||fs||2 < C||d;||*>. Then, w; and w;_; are the mortar
finite element approximations of a(w,v) = (f;,v)o, v € HL(Q), on level [ and level
[ — 1, respectively. By means of the H?-regularity and the a priori estimate for the
discretization error in the L?-norm, we get

lwi = wi—illo < CH?llfallo < Ch{® /||yl
Then, the triangle inequality and the definition of the modified prolongation yield
Wi = (Imoa)i—1Wi—1]l < [[Wi = Ti_y Wi || + [|CiI{_y Wi - (4.2)

The first term is bounded by C’h;d/2||wl —wi—illo < Ch?™||d;||. To get an upper
bound for the second term in (4.2), we have to consider the projection P, := Py, in
more detail. Starting with the norm equivalence (4.1), we find

C M

c
G}y wia]” < i > Iwealllgs,, -
1 m=1

2
< llPwialg <

hi
In our last step, we use that the weighted L>-norm of the jump at the interface
of each element in V;_1, and thus for w;_;, can be bounded by a measure for its
nonconformity, see [Woh99a]

M
1 . 2—d
i 2 Mwicallf, <O inf v = wiallt < € 4 6l < O~
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We note that for the proof of the approximation property, it is essential to have
wi_1 € V;_; and w; € V. In contrast to the standard Lagrange multiplier spaces, the
dual basis Lagrange multiplier spaces are non—nested, i.e., M;_; ¢ M;. The definition
of the restriction (Imod);*1 guarantees that C’IT_ldl,l = 0 and thus w;_; € V;_;.
Within the multigrid algorithm, d; is the defect after the presmoothing steps. To
satisfy the assumption of Lemma 4.1, we have to guarantee that the iterate after the
smoothing steps is in the constrained space V;. Starting with an arbitrary smoother
for A; := (Id — CJ') A;(1d — C}), we construct a modified one satisfying this condition.
We note that the matrix (A4;)7r is symmetric and positive definite, the eigenvalues
of which are bounded from below by ch{ and from above by C’h;i_Q. Let G; be a
smoother for (fL)H, e.g., a damped Jacobi method, extended trivially to the full
space X;. We note that G is singular on the full space X;, but the iterates Srf =
}eri*l +Gi(d, —A,y;'*l), i > 1, are well defined. Then, we define our modified smoother
by Gy := (Id — C;)G;(1d — Cf'), and denote the corresponding iterates by

vi =y +Gi(d — Agmyy;T), i1 (4.3)
If d; satisfies Clel = 0, then d; is in the range of A;. Let w; be the solution of
Asymaw; = dy, then W] := ((w)T,(7)%) is a solution of A4;Ww; = d;, where ¥ is

the start iterate. The following lemma shows the relation between the two different
iterates, yf and y;’ , and we refer to [KWO00a] for the scalar elliptic case.

LEMMA 4.2. Under the assumptions C{f'd; = 0 and y? = (Id— C))y?, the iterates
yli can be obtained from Srf by the local post—processing step

yi=0d-Cy;, ix1.
Moreover, the smoothing and stability properties of Gy are inherited from Gy, i.e.,
| Asymaefll = [I4&ll,  llefll < Cllgll,

where ef =wy — yli and éf =W — Srf are the corresponding iteration errors.
Proof. Observing the special structure of the right hand side d; and A4;, we obtain
by induction

yitt =yi 4+ (1d - C)Gi(1d - CF)(d; — Asyma y})
=(Id - C)(¥i + Gi(di — Aiy})) = (d— )y,

and thus Asym;lef = fLéf. By means of w; = (Id — Cy)w; = (Id — C})w,, we find
el = (Id — C;)&]. Moreover, the norm of the scaled mass matrix D[lMlT is bounded
independently of [. O

Now, our multigrid method for the solution of (3.4) will be defined in terms of
the given modified transfer operators and the smoother GG;. The modified restriction
operator and the zero start value for the defect correction guarantee that on each level
I < L the assumptions of Lemma 4.2 are satisfied. For [ = L the assumptions are
satisfied by construction if we take zero or the prolongated solution on level L — 1,
ie., (Imod)ﬁ,llqu, as start iterate. Then, we are in the setting of Lemma 4.2 for
the presmoothing steps on all levels [ < L. The same holds for the postsmoothing
steps since we work with the modified prolongation. Furthermore, the smoother G
yields that all iterates are in the kernel of C; and thus the assumption of Lemma 4.1
is satisfied. Then, standard arguments give the main result of this section.
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THEOREM 4.3. The convergence rates for the W—cycle are level independent
provided that the number of smoothing steps is large enough.

Proof. Approximation and smoothing properties yield level independent conver-
gence rates, see, e.g., [Hac85, Th. 7.1.2]. O

We do not assemble the matrix Agym;;. Working with Apumy, we find that the
iteration (4.3) can be replaced by

yf = Y;;l + Gnumit(dr — Anumg ygil) ) (4.4)

where Ghymy is defined as an inexact block Gauf3—Seidel smoother of Anymy

Ap) 0 (G 0
Anum' = (_l - > and G!num' = < ~ .
it ( pi'mMf o1d ) M it —D7'MT (G 1d

A straightforward computation shows that (4.3) and (4.4) yield the same iterates.
Furthermore, it is sufficient to work on the components of the index group I for the
first (m — 1) smoothing steps. Here, m stands for the number of smoothing steps.
Only in the last smoothing step, we have to apply (4.4) to both index groups N and
I. This can be interpreted as one local post—processing step on the non-mortar side.
Thus, the application of our multigrid method requires only a few additional multi-
plications with D, 1MIT, the complexity of which is of smaller order. It is equivalent
to the multiplication of a scaled mass matrix associated with the (d — 1)—dimensional
interfaces.

REMARK 4.4. The efficiency of the method is strongly connected to the use of
dual basis functions. Working with standard Lagrange multiplier involves the inverse
of a mass matriz instead of Dl_l.

5. Numerical results. In this section, we present numerical results illustrating
the performance of our modified multigrid method. All our algorithms have been
implemented within the framework of the finite element toolbox UG, see [BBJ197].
In the first part of this section, we consider linear elasticity problems in 2D. A weak
continuity condition at the interfaces is used in normal and tangential direction. In
the second part, we present numerical results in 3D for scalar elliptic problems includ-
ing an example with a geometrical nonconforming decomposition. In all examples,
asymptotic constant convergence rates can be observed.

Figure 5.1 shows the deformation of a linear elastic body with inhomogeneous
materials. Adaptive refinement techniques have been used in 2D. The refinement is
controlled by a residual type error estimator for mortar finite elements, see [Woh99b,
Woh99a]. The left picture in Figure 5.1 illustrates the problem setting. We apply
two different surface pressures at the inhomogeneous Neumann boundary parts. The
inhomogeneous Neumann boundary parts are marked by arrows in the left picture of
Figure 5.1. Homogeneous Dirichlet boundary conditions are taken on the lower left
corner of the domain, marked by I'p in the left picture of Figure 5.1. On the re-
maining boundary part, we apply homogeneous Neumann boundary conditions. The
middle and right picture of Figure 5.1 shows the displacements of the solutions scaled
by the factor ten and the final adaptive triangulations. In the middle picture, the
applied Neumann boundary condition results in a constant displacement in normal
direction at the corresponding boundary part. In the right picture, the applied Neu-
mann boundary condition yields a linear displacement in normal direction at the
corresponding boundary part. The deformation of the body in the neighborhood of
the interfaces is in the right picture smaller than in the middle picture.
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F1G. 5.1. Coupling in normal and tangential direction in 2D, (Ezample 1)

In our second example, we consider a nut-like geometry as depicted in Figure
5.2. The domain consists of 13 subdomains, and there are 6 inner crosspoints each of
which has four adjacent subdomains. We choose silver as material with ¢ = 108280
and A = 8517. Inhomogeneous Dirichlet boundary conditions corresponding to a
rotation by an angle of 7/500 have been applied on the inner boundary Ty, i.e., the
outer normal on I'; directs toward the center of gravity. We work with homogeneous
boundary conditions on I'p := 9Q\T';. On TpNINy, we take Neumann type boundary
conditions if ), is a triangle, and Dirichlet type boundary conditions if €, is a square.
Figure 5.2 shows the initial nonconforming triangulation, the displacements scaled by
the factor 100 on the final triangulation, and the multigrid convergence rates of the
V—cycle and W-cycle with three pre— and postsmoothing steps.

0.9 —— V(3,3) cycle
--+-- W(3,3) cycle

convergence rate
o
[9)]

10°

Number of elements

F1G. 5.2. Initial triangulation (left), distorted grid (middle) and conv. rates (right), (Ezample 2)

Examples 3 and 4 illustrate the convergence rate of our multigrid method in 3D,
see [WKO1]. Here, we use trilinear finite elements on hexahedrons and the piece-
wise linear dual Lagrange multiplier space introduced in Subsection 2.1. We com-
pare the asymptotic convergence rates of the V— and W-cycles in case of one and
three smoothing steps. The smoothing iteration is based on (4.4), and two differ-
ent smoothers are compared. We define (G’l)ff as a damped Jacobi method, i.e.,
(G 11 := w(diag((4;)rr))~", where w = 0.7, or as symmetric Gau—Seidel smoother
of (fL) 17- Thus, one Gaufi—Seidel step is roughly twice as expensive as one Jacobi
step.

We consider a ”Sandwich”—-like domain build up of two different materials. The
domain ) is decomposed into three hexahedrons Q; := (0,1)% x (2;,2;41), where
z1 := 0,29 := 1,23 := 1.2, z4 := 2.2. The scalar elliptic model problem —divaVu =1,
on Q := (0,1)2 x (z1,24) is taken. Here, the coefficient a is piecewise constant,
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F1G. 5.3. Initial triangulations and isolines for Example 3 (left) and Exzample 4 (right)

alg; := 100, ¢ = 1,3 and alq, := 1. Dirichlet boundary conditions are applied on the
upper and lower part of the domain, u(z,y, z) = 1000 \/(z — 1/2)% + (y — 1/2)2-(1.0—
y/3) exp(—10(2?+y?)) if z = 21 or 2 = z4, and homogeneous Neumann boundary con-
ditions elsewhere. In the left part of Figure 5.3, the nonmatching initial triangulation
and the isolines at the interface are shown. The non—mortar sides are defined on the
middle hexahedron. Figure 5.4 shows the convergence rates of Example 3 in 3D. In
all cases, we observe level independent convergences rates. Even for the V(1,1)—cycle,
a constant asymptotic convergence rate is obtained.
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V(1,1)—cycle V(3,3)-cycle W(1,1)-cycle W(3,3)—cycle

F1G. 5.4. Asymptotic conv. rates for Jacobi and symmetric Gaufi—Seidel smoother (Ezample 3)

In Example 4, we consider the domain depicted in the right part of Figure 5.3. It is
decomposed into three subdomains Q; := (0,1)? x (21, 22), Qa2 := (1/3,2/3)? x (22, 23),
Q3 :=(0,1)% x (23, 24) where z; := 0, 29 := 1, 23 = 2, 24 = 3. We remark that we are
in the geometrical nonconforming situation. In particular, the non—mortar sides on
Q5 cover only a part of the adjacent mortar sides on Q; and Q3. We impose Dirichlet
boundary values on parts of 9Q; and 0Qj3, and set u(z,y,z) = 10 for {(z,y,z) €
O |z = 2z} and {(z,y,2) € 003|2z = 24}, elsewhere we impose homogeneous
Neumann boundary conditions, see [WKO01].
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Fi1G. 5.5. Asymptotic conv. rates for Jacobi and symmetric Gauf—Seidel smoother (Example 4)

The numerical results are shown in Figure 5.5. The performance is not as good
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as in Example 3, but the asymptotic convergence rates seem to be independent of the
refinement level. Increasing the number of smoothing steps yields considerably better
results. In both examples, the Gaufi—Seidel smoother has better convergence rates
than the Jacobi type smoother. The performance of the Gaufi-Seidel smoother is in
Example 4 better than for the Jacobi smoother. Three Jacobi steps are required to
obtain approximately the same convergence rates as for one symmetric Gau3—Seidel
step.

6. Free displacement in tangential direction. In this section, we introduce
the necessary modifications of our method if the coupling condition is enforced only
in normal direction. Since the direction of the outer normal cannot be assumed to
be constant along the interfaces, we have to introduce some suitable local coordinate
transformations, see [Woh99a]. These transformations have the character of a rotation
of the local coordinate system.

We define the bilinear form b, (,-) corresponding to the coupling in normal di-
rection at the interface by

M M
bn(vv/‘) = Z([V : n]’M)'Ym ) p € My := H Mh(’Ym)a

m=1

where n is the outer normal of the subdomain on the non-mortar side. Now, we
replace the bilinear form b(-,-) in (2.3) by the modified one and obtain the following
saddle point problem: Find (u}, Ap) € X x M}, such that

a(uz,v) + bn(va)‘h) = f(v)a veXy y (6 1)
bn (!, 1) = 0, e My. '

At first glance, it has the same structure as (2.3). However, there is an essential
difference. The new bilinear form b,(-,-) is defined on X x M}, where M}, is, in

contrast to My, a scalar space. Using the same decomposition as before, i.e., (uZ)T =
(uM)T, (u%)T), we find for the algebraic representation of (6.1)
Arr Ay M, u} fr
AN[ ANN Dn ll% = fN . (62)
MT DT 0 A 0

In contrast to D in (3.1), D, is not a diagonal matrix but a d n;, X n; block diagonal
matrix, where nj, is the dimension of Mj. Each block is associated with an interior
vertex on the non—mortar side, and the block size is given by d x 1. Thus, we cannot
eliminate the Lagrange multiplier as easy as in (3.2). Let P := UM_,P,, be the
set of interior vertices on the non-mortar sides. Then, we can write D,, as D,, :=
diag(d,)pep, where d, € R? is defined by

1
d, = o > el n..
e€X,

Here, ¥, is the set of elements, i.e., edges in 2D or faces in 3D, on the non—mortar
side sharing the vertex p, and n. is the constant outer unit normal vector on the
element e. We assume that d, # 0. Starting with by := d,,/||d,]||, we introduce for
each vertex p € P an orthonormal basis B := {by,... ,bs} in R?. The orthogonal
transformation which maps B to the canonical basis of R? is denoted by 0O, € R4,
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An explicit representation of O, can be obtained, e.g., as Householder transformation.
For v € X, we denote by v, € R? the degrees of freedom associated with the vertex
p. We define O,v, =: (w,,wr)T and call w, and wr the normal and tangential
component of v at the vertex p, respectively. Then, we define the global orthonormal
transformation Oy by

On := diag(Op)pep -

We apply the coordinate transformation represented by diag(Id, On,Id) to (6.2) and
find the symmetric system

A[I AINOJJ\-’T Mn ur[z f]
ONANI ONANNOI’I\} ONDn ONU% = ONfN . (63)
Mr DToT 0 b 0

Due to the construction of Oy, we have OXOn = Id and O,d,, = (||d,|,0)T. Ob-
serving that DI D,, is a diagonal matrix, the entries of which are given by ||d,||?, the
Lagrange multiplier Aj, can be locally eliminated by

A = (DL Dy) D (fx — Anrur — Aynun).

In our last step, we can rearrange the indices. The new index group I includes now
the former index group I plus the tangential components of the vectors in the former
index group N. The new index group N is a subset of the former index group N
and contains the normal components. We observe, that the submatrix of OnD,,
corresponding to the new index group N is diagonal. Thus, we can proceed as in
Section 3. Using this new index grouping, we get exactly the same structure of the
saddle point problem as in (3.1), and the proposed multigrid algorithm can be applied
on (6.3).

Finally, we show some numerical results, illustrating the difference between the
two coupling conditions at the interfaces. We start with the 2D example of Section 5
and consider two different boundary conditions. In the first situation, see the middle
picture of Figure 6.1, we use a constant displacement in normal direction at the
upper and right boundary part of the domain. The second situation is defined by
a linear displacement in normal direction at the upper and right boundary part of
the domain. As in Section 5, the lower left corner of the domain is fixed, i.e., we
apply homogeneous Dirichlet boundary conditions on I'p. Compared to Section 5,
we use a weaker coupling condition at the interfaces. Here, the bodies are not glued
together, and free tangential displacement is permitted. The coupling condition in
normal direction can be viewed as a kind of non penetration condition of the bodies
with respect to the reference configuration.

Figure 6.1 displays the displacement of the solution scaled by the factor 10. Due
to the tangential displacement, penetration might be observed at the interface, see
the right picture in Figure 6.1. Although, the proposed algorithm does not solve a
nonlinear contact problem, we can use the method as an inner iteration scheme within
an outer scheme used to detect the actual zone of contact. Once the actual contact
boundary is known, our algorithm solves the contact problem, and no penetration
occurs. The drawback of this method is that in each outer iteration step a mass
matrix has to be assembled.

Figure 6.2 shows a model problem in 3D. The displacement of the solution and
the coarse triangulation are given for the saddle point problems (2.3) and (6.1). On
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Fic. 6.1. Coupling in normal direction and free tangential displacement in 2D

the left, the Lagrange multiplier space has three degrees of freedom per node, one
degree in each direction. The mortar finite element solution satisfies a weak continuity
condition in tangential and normal direction. In the second situation on the right of
Figure 6.2, there is no continuity condition for the tangential displacement. Thus, we
replace the bilinear form b(-,-) in the saddle point formulation by b,(:,), and work
with the modifications proposed in this section.

F1G. 6.2. Coupling in both directions (left) and in normal direction (right) in 3D

Figure 6.2 shows the structural difference between the two weak coupling condi-
tions at the interface. On the left, there is no relative displacement of the two bodies
in tangential direction, whereas in the situation on the right, a sliding between the
two bodies is permitted. A relative displacement of the left body with respect to
the right body can be observed. We remark that the nonconforming space Vj, is a
subspace of the kernel VI of (B?)7 associated with the bilinear form by, (,-). In the
general situation that 0Q NT'p is empty for some subdomain indices, the ellipticity
of a(-,-) on V! x V} is lost, and rigid body motions are contained in V}. We obtain
unique solvability in our example by imposing Dirichlet boundary conditions on one
face of each subdomain.

7. Elastic contact of two bodies. In this section, we consider a new algorithm
for the elastic contact between deformable bodies. The numerical simulation of elastic
contact has been extensively studied in various papers, see, e.g., [DNS99, WG97,
HH80, HH81, ESW99]. For a survey, we refer to [Wri95, THL88, KO88] and the
references therein. One of the major difficulties in the numerical simulation of contact
problems is the non—differentiability of the associated energy functional at the contact
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boundary. Regularization techniques (penalty methods) are widely used, see, e.g.,
[CSW99, ESW99], as well as augmented Lagrangian methods [Tal94, PC99]. Here,
we combine monotone multigrid methods [Kor97a, KK99] with mortar techniques.
The information transfer at the contact boundary is realized in terms of the scaled
mass arising from the mortar method with dual Lagrange multipliers.

For simplicity, we restrict ourselves to the case of two deformable bodies in con-
tact, see Figure 7.1. The two bodies in their reference configuration are identified
with the domains Qy, k = 1,2, and we decompose the solution u in u = (uy, us), and
write (ug), := ug-ng, k = 1,2, where ny is the outer unit normal on 9. Let us now
formulate the contact problem between two linear elastic bodies as boundary value
problem. We decompose the boundary of 2 in three disjoint parts, I'p is the Dirichlet
part, ['r denotes the Neumann part and I'c stands for the contact boundary. We
note that the actual contact zone between the two bodies unknown in advance, and
it is assumed to be a subset of I'¢. In addition to the equilibrium conditions in Q and
boundary conditions on 02

—oii(0); = fi in Q,
u = 0, onTp, (7.1)
O'i]'(u) 'TL]' = Di, on FF,

we have the following conditions on the possible contact boundary '

or(w) = or(u) = 0,
on(m) = ou(m) < 0, (7.2)
and the linearized contact condition on I'¢
t Z (ul)n + (u2)n ’ (73)
0 = ((w)n+ (u2)p —t)on(u),

where the function t: T € RY — R is the distance between the two bodies in
normal direction taken with respect to the reference configuration. Here, we consider
a contact problem without friction. Thus, the tangential component of the stress
tensor vanishes at the contact boundary, and is set to zero in the first equation of
(7.2). We have only contact pressure at I'c. If there is no contact between the two
bodies, the boundary stresses at I'c are zero, see Equations (7.2) and (7.3). For
details of the problem formulation, we refer to [HH80, BGKS87]. We write f(v) :=
(v,£)o.a + (v,p)o;r, and denote by fi(-) and ag(-,-) the restriction of f(-) and a(,-)
to Qp, k = 1,2, respectively. In general, the zone of actual contact is unknown,
and thus the contact problem is nonlinear and non—differentiable with respect to the
displacements at the contact boundary. The corresponding weak formulation results
in a variational inequality. Let us define the convex set IC of admissible displacements
by

K = {veH, () xHy(Q)] (vi)n+ (va)n <t}

The weak form of (7.1)—(7.3) is given by a variational inequality: Find u € K such
that

a(u,v—u) > f(v—u), veK,

which is equivalent to minimizing the energy functional J(v) :=
K, see, e.g., [HH80, BGK87].

fa(v,v) — f(v) on
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Fi1G. 7.1. Two elastic bodies in contact (left) and Hertzian contact problem (right)

Our approach is based on a Dirichlet—Neumann algorithm with inexact solvers. In
each step, a nonlinear one-sided contact problem has to be solved. This is done on the
discrete level by a monotone multigrid method, see [Kor97b, KK00]. Furthermore, an
inhomogeneous Neumann problem has to be solved. Here, we apply standard multi-
grid techniques. The information transfer at the contact boundary will be realized in
terms of dual mortar methods. The major advantages of this new approach are the
efficiency of the iterative solver, and the a priori estimates for the boundary stresses
at the actual contact zone. In contrast to penalty methods, the discretization error
of the boundary stresses does not depend on regularization parameters.

To motivate our approach, let us assume for the moment that the contact stress
op is known on I'c. Then, problem (7.1)—(7.3) can be decoupled in the following
way: In a first step, we solve an inhomogeneous Neumann problem on 25: Find
us € HL(Q) such that

az(uz,v) = fo(v) + (0n, Va)ore veHL ().

Having us € HL(03), u; € H.(£) can be obtained in terms of us|r.. as the solution of
a one-sided contact problem. We define the convex set K, of admissible displacements
for the scalar function g by

Ky :=A{vi € Hl(Ql) | (vi)n <t—gonTlc}.

Then, the one-sided contact problem can be written as a variational inequality: Find
u; € K(u,), such that

ar(uy,v—uy) > fi(v—uy), v € K(u,), - (7.4)

The discretization of the set Iy is given by

Ki = {vi € Xy |(vi)n(p) < t(p) —g(p) forall p € To, NTc},  (7.5)

where X, , is the finite element space X, N HL(Qy), k = 1,2. Here, we assume that
g and t are continuous. Then, a priori estimates for the discretization error can be
found in, e.g., [KO88]. In the following, we also denote the discrete approximation by
u= (u,u) € Xy x Xy, and we do not use an additional index h, and A € M,
stands for the discrete boundary stress.

The variational inequality (7.4) can be solved efficiently by monotone multigrid

methods. Here, the main idea is to minimize the energy functional Ji(-) on IC?M)H
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successively in direction of appropriate test functions. Choosing the multilevel nodal
basis of a multigrid hierarchy as test functions, this turns out to be a combination
of a projected block Gaufi—Seidel on the finest grid with locally damped coarse grid
corrections, and can be implemented as a modified V—cycle. Since the coarse grid
corrections have to satisfy the constraints given by (7.5) with respect to the finest
triangulation, suitable non—trivial coarse grid functions have to be constructed. It
can be shown, that after a finite number of iterations the discrete contact boundary
is identified. Then, the method degenerates to a standard multigrid method with
special treatment of the eventually curvilinear contact boundary. For details, we refer
to [Kor97a, KK99, KK00]. Moreover in the mortar setting, the Lagrange multiplier
plays the role of Neumann boundary conditions. In the dual approach, the contact
stress o, can be obtained from the residual by a local post—processing step. The
combination of mortar finite elements, monotone multigrid methods and domain de-
composition techniques defines in a natural way a new solution algorithm for elastic
contact problems. It can be interpreted as a Dirichlet—~Neumann type algorithm. We
define the mortar side to be on the contact boundary of 25, and the non—mortar side
is the adjacent side on the contact boundary of Q. Let us introduce the transfer
operator Sp: Xa p, — Xy p,

where ¢, is the scalar nodal basis function in €); associated with the vertex p, and
P is the set of vertices on the non-mortar side of . In contrast to the previous
sections, the vertices on the boundary of I'c are included, and no modification of
the dual basis function p, is necessary in the neighborhood of the boundary of I'c.
Denoting the matrix representation of Sy by S, we observe that S is a ny X ny matrix,
ny = dim Xy 5, k = 1,2, which consists of large zero blocks and one non zero block
associated with the vertices on the non—mortar and mortar side.

linear non linear
Neumann problem one-sided contact pb.

stress =< residual

trace — obstacle

Fic. 7.2. Nonlinear Dirichlet—Neumann type algorithm

Before we present our nonlinear Dirichlet—Neumann algorithm which is illustrated
in Figure 7.2, we introduce some notation. For k = 1,2, we denote by A, the stiffness
matrix with respect to ag(+,-) and by fj the vector associated with the right hand side,
ie., fr(v) = (fy,v), v € X . Using the same techniques as in Section 6, we define for
each g € X;, by means of the local rotations O, a continuous function g,,: I'c — R.
Here, in an abuse of notation, we do not distinguish between an element v € X} and
its vector representation with respect to the standard nodal basis. In addition, we
identify the spaces Xy, 5, and R™, k = 1,2. Now, our Dirichlet-Neumann algorithm
in its algebraic formulation is defined as follows:
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Choose damping parameters: 0 < ny,ny < 1.
Initialize: X1, 2g7' =0, X5, 2 p° =0.
For py=20,...,N do
Solve linear Neumann problem: Find ub € Xs -

Asuby = f5 + p*.

Transfer of displacements and damping:
gh=(1-m)g" ! +mSuf.
Solve nonlinear one-sided contact problem: Find uf € ICZ#:
(Ajuf,v—ul) > (fi,v—ul), VEICZ;;.

Compute the linear residual rf € Xyn:

ri = A — 1.
Transfer of scaled boundary stresses and damping:

p"tt = (1 —m)p” + STl

The transfer of the Dirichlet values at the contact boundary is realized in terms
of the operator Sj and the transfer of the scaled boundary stresses in terms of the
adjoint operator S}, corresponding to the duality between displacements and stresses.
In the algebraic formulation, the matrix S is used to transfer the displacements on the
mortar side as Dirichlet values, or more precisely as an obstacle, onto the non—mortar
side, and the scaled boundary stresses are transferred from the non—mortar side onto
the mortar side in terms of the transposed matrix ST. The interface conditions of
the mortar formulation guarantee that (7.2) and (7.3) are satisfied in a weak integral
form. For frictionless contact, the first equation in (7.2) can also be satisfied in its
strong form. Then, the Lagrange multiplier space is a scalar function and the mortar
approach has to be modified according to Section 6. Here, we work with the more
general approach that the Lagrange multiplier space is also vector valued.

REMARK 7.1. Using the vector valued approach for the Lagrange multiplier space,
friction terms can be easily included. The first equation in (7.2) has to be replaced by
some friction law, e.g., the Coulomb friction.

Let us now consider the matrix S in more detail. Setting Dg = diag(d,)pep and
d, € R4 = diag(frc ¢p ds)i<i<d, we can write the non zero block of S as a scaled

mass matrix D§1M I'. Here, the mass matrix Mg corresponds to the duality pairing
(-, )r- Then, DglMST is closely related to the scaled mass matrix matrix D' M7
given in Section 3. The entries of Mg are given by ch op bp ds, where ¢, is the
scalar nodal basis function in 5 associated with the vertex p' € T'c. Due to the jump
[-] in the definition of the bilinear form b(-, ), the entries of M have the opposite sign.
Considering implementational aspects, we observe that the same subfunctions can be
used for assembling M and Mg. Moreover for a suitable index ordering, we find

_ (D5'ME 0
S‘( 0 0)°
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and the application of the operator Sy, requires only the multiplication with a scaled
mass matrix on the contact boundary.

Furthermore, the boundary stress A can be obtained by a local post—processing
step from the final residual riV,

A= (Dg' 0)rl.

In a last step, we get the normal stress o, and the tangential stress o7 by a local
rotation from A. We remark, that the numerical results show that or = 0, although
we do not enforce this condition.

REMARK 7.2. If the actual contact zone is known, problem (7.1)-(7.3) will be
linear. In this case, we can expect the same order of convergence as for a standard
Dirichlet—Neumann type preconditioner.

Finally, we present numerical examples for the proposed algorithm. Our first test
problem is the Hertzian contact of a linear elastic circle with a linear elastic plane. In
this example, the contact stresses can be computed analytically [Her82]. To test the
performance of our algorithm, we compare the computed boundary stresses with the
analytical ones. For comparability, we choose the same problem data and geometry as
in [CSW99]. We consider an elastic circle with scaled material parameters £ = 7000,
v = 0.3 and radius r = 1, pressed by a point load F' = 100 onto a quadrilateral with
material parameters E = 10%, v = 0.45.

As is done in [CSW99], we apply the single load as surface load to avoid a sin-
gularity. Homogeneous Dirichlet boundaries have been applied on the right and left
boundary part of the quadrilateral, see the right part of Figure 7.1. We use bilinear
functions on quadrilaterals and uniform refinement. On both subdomains, we apply
a V(3,3)—cycle. In this example, we chose 71 = 1 and 72 = 0.5. The problems on the
two subdomains are solved up to a tolerance of 1071°. On each level, only a few outer
iteration steps are required to reach the stopping criterion for etor, = 1072,

wo_ STI.U
o —STet
1P~

In the left of Figure 7.3, the maximal contact stress on each level is displayed, showing
the performance of our method. The analytical value of o71'®* = 495 is already reached
on level 5. Here, only 5 nodes of the circle are actual in contact with the plane. In the
middle of Figure 7.3, the contact and tangential stresses are shown, in the right, the
component a3 (u) of the stress tensor is depicted. To demonstrate the flexibility of
our approach, we do not enforce o = 0 on the space. The Lagrange multiplier of the
mortar method plays the role of the boundary stresses at I'c. Thus, the boundary
stresses are handled as additional unknowns which can be obtained by a local post—
processing from the residual. This observation predestinates our algorithm for contact
problems with friction.

In our last example, we apply our algorithm to a more complex geometry. The
elastic contact of a wrench and a nut is considered. At the interior boundary of the nut,
i.e., the part of the boundary with outer normal pointing towards the center of gravity
of the nut, we impose Dirichlet boundary conditions corresponding to a rotation by
7/180. Homogeneous Dirichlet boundary conditions are applied at the handle of
the wrench and on all remaining parts of the boundary we impose homogeneous
Neumann conditions. We use linear elements on triangles, and adaptive refinement.
The specified material parameters are F = 7000 and v = 0.28 and the damping
parameters are 11 = 1, 772 = 0.25. As can be seen in the right of Figure 7.4, the actual
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contact zone is only a small part of the contact boundary I'c. We remark, that a
more realistic model would include friction at the interface.
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Fi1G. 7.4. Details of the deformed configuration for the nonlinear contact problem
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