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Abstrat. Mortar �nite element methods provide a powerful tool for the numerial approxima-

tion of partial di�erential equations. Many domain deomposition tehniques based on the oupling

of di�erent disretization shemes or of nonmathing triangulations along interior interfaes an be

analyzed within this framework. Here, we present a mortar formulation based on dual basis funtions

and a speial multigrid method. The starting point for our multigrid method is a symmetri positive

de�nite system on the unonstrained produt spae. In addition, we introdue a new algorithm

for the numerial solution of a nonlinear ontat problem between two linear elasti bodies. It will

be shown that our method an be interpreted as an inexat Dirihlet{Neumann algorithm for the

nonlinear problem. The boundary data transfer at the ontat zone is essential for the algorithm.

It is realized by a saled mass matrix whih results from a mortar disretization on non{mathing

triangulations with dual basis Lagrange multipliers. Numerial results illustrate the performane of

our approah in 2D and 3D.

Key words. mortar �nite elements, Lagrange multiplier, dual spae, non{mathing triangula-

tions, multigrid methods, ontat problems, linear elastiity

AMS subjet lassi�ations. 65N30, 65N55, 74B10

1. Introdution. We present domain deomposition methods within the frame-

work of mortar tehniques [BMP93, BMP94℄. Originally introdued as a nononform-

ing method for the oupling of spetral elements, these tehniques an be used in

a large lass of situations. The oupling of di�erent physial models, disretization

shemes or non{mathing triangulations along interior interfaes of the domain an

be analyzed by mortar methods. These domain deomposition tehniques provide

a more exible approah than standard onforming formulations, and are of speial

interest for time dependent problems, rotating geometries, inhomogeneous materi-

als, problems with loal anisotropies, orner singularities, ontat problems and when

di�erent terms dominate in di�erent regions of the simulation domain. One major re-

quirement to obtain optimal disretization shemes is that the interfaes between the

di�erent regions are handled appropriately, see, e.g., [BD98, Ben99, BMP93, BMP94℄.

Very often, suitable mathing onditions at the interfaes an be formulated as weak

ontinuity onditions. Here, we onsider mortar �nite element formulations based on

a dual basis for the Lagrange multiplier spae, see [Woh00℄, with speial emphasis

on nonlinear ontat problems. As a onsequene of the biorthogonality relation and

in ontrast to the standard mortar methods, the loality of the support of the nodal

basis funtions of the orresponding onstrained spae is preserved. Based on this

observation, we analyze a modi�ed multigrid method and present numerial results in

2D and 3D illustrating the performane of the iterative solver, see [WK01℄. As appli-

ation, we hoose the deformation of linear elasti bodies, and we onsider omposite

materials, see [KW00b, KW00a℄ for the linear ase. In this ase, the atual zone of

ontat between the bodies is known in advane. The resulting disrete problem is

�
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linear and an be solved eÆiently by a modi�ed variant of our multigrid method.

Here, we introdue suitable loally de�ned rotations.

Moreover, we fous on a nonlinear problem modeling the ontat of two linear elas-

ti bodies. Here, the atual zone of ontat is not known in advane and has to be iden-

ti�ed during the iteration proess. A lot of work has been done on ontat problems,

see, e.g., [DNS99, WG97, HH80, HH81, ESW99℄ and [Wri95, IHL88, KO88℄ for survey

papers. Two main diÆulties our in the numerial simulation of ontat problems.

The �rst is the handling of the boundary data transfer at the interfae between the

two bodies. In our setting, this information transfer is realized in terms of the saled

mass matrix from the mortar formulation. The seond diÆulty is the intrinsi non-

linearity of the problem at the ontat boundary. To overome this diÆulty, we use a

monotone multigrid method as a subdomain solver, see [Kor97a, KK99, KK00℄. This

method provides an eÆient iterative sheme for ellipti obstale problems but an-

not be applied eÆiently to multi body problems with non{mathing triangulations.

Using mortar tehniques for the disretization and a monotone multigrid method as

subdomain solver, we introdue a new algorithm for the numerial solution of ontat

problems. It an be interpreted as a nonlinear Dirihlet{Neumann type preondi-

tioner.

The rest of the paper is organized as follows: In Setion 2, we apply mortar

tehniques to linear elastiity problems. We briey disuss the idea of a dual basis

for the Lagrange multiplier spae, and we reall the mortar formulation. Pieewise

onstant and pieewise linear dual basis funtions are given in 2D and for hexahedral

triangulations in 3D. We fous on a new mortar formulation on the unonstrained

produt spae in Setion 3. It is de�ned in terms of a loal projetion operator

based on a dual Lagrange multiplier spae. In Setion 4, we present our multigrid

method. Level independent onvergene rates are obtained for the W{yle provided

that the number of smoothing steps is large enough. The grid transfer operators have

to be modi�ed by a loal projetion. Numerial results illustrate, in Setion 5, the

performane of our multigrid method in 2D and 3D. Setion 6 shows the exibility

of the mortar approah ombined with the onept of dual basis funtions. The

oupling ondition at the interfae is weakened, and free displaement in tangential

diretion is permitted. The main result of our paper an be found in Setion 7.

We onsider a nonlinear ontat problem for two linear elasti bodies and present

a nonlinear Dirihlet{Neumann algorithm. In eah iteration step, we have to solve

a linear Neumann problem and a nonlinear one{sided ontat problem with given

obstale. Numerial examples show the deformation of the bodies and the stresses at

the ontat zone.

2. Dual Lagrange multiplier spaes and mortar formulation. We on-

sider the deformation of a body of hyperelasti Hookean material as model problem.

The body in its referene on�guration is identi�ed with the domain 
 in IR

d

. The

displaement �eld u of the body is given as the solution of the following boundary

value problem

��

ij

(u)

;j

= f

i

; in 
 ;

u = 0; on �

D

;

�

ij

(u) � n

j

= p

i

; on �

F

;

where we assume 
 to be a bounded, polyhedral domain in IR

d

, d = 2; 3, and n

is the unit outer normal on the boundary of 
. The volume fores are denoted by

f 2 (L

2

(
))

d

, and p 2 (L

2

(�

F

))

d

are the surfae stresses. We denote vetor quantities
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by bold symbols, e.g., v, and its i{th omponent by v

i

. The partial derivative with

respet to x

j

is abbreviated with the index

;j

. Furthermore, we enfore the summation

onvention on all repeated indies ranging from 1 to d. The stress tensor � is given

by Hooke's law

�

ij

(u) := E

ijlm

u

l;m

;

where Hooke's tensor E := (E

ijlm

)

d

i;j;l;m=1

, E

ijlm

2 L

1

(
), is assumed to be suf-

�iently smooth, symmetri, i.e., E

ijlm

= E

jilm

= E

lmij

, 1 � i; j; l;m � d, and

uniformly positive de�nite, i.e., E

ijlm

�

ij

�

lm

�  �

ij

�

ij

for eah symmetri tensor �,

�

ij

= �

ji

. For homogeneous isotropi materials, Hooke's tensor depends only on the

Poisson ratio � and Young's modulus E. Then, the stress tensor an be written as

�

ij

(u) =

E �

(1 + �)(1� 2�)

Æ

ij

�

kk

(u) +

E

1 + �

�

ij

(u) ;

where �(u) :=

1

2

(ru

T

+ ru) is the linearized strain tensor. The boundary �
 =

�

D

[�

F

is deomposed into two non{overlapping parts, a Dirihlet part �

D

with non

zero measure and a Neumann part �

F

. Let u 2 H

1

�

(
) be the solution of the following

variational problem

a(u;v) = f(v); v 2 H

1

�

(
) ; (2.1)

where H

1

�

(
) is a subspae of H

1

(
) := (H

1

(
))

d

given by

H

1

�

(
) :=

�

v 2 H

1

(
) j vj

�

D

= 0

	

;

and f(v) := (v; f)

0;


+ (v;p)

0;�

F

. The bilinear form a(�; �) is de�ned as

a(w;v) :=

Z




E

ijlm

w

i;j

v

l;m

dx; w;v 2 H

1

(
) :

Assoiated with a(�; �) is the energy norm jjj � jjj, jjjvjjj

2

:= a(v;v). Korn's inequality

yields the unique solvability of the variational problem (2.1).

We assume that the domain 
 has been deomposed into K non{overlapping

polyhedral subdomains 


k

, 
 =

S

K

k=1




k

, and 


l

\


k

= ;, k 6= l. Eah subdomain 


k

is assoiated with a family of shape regular triangulations T

h

k

, h

k

� h

k;0

, where h

k

is

the maximum of the diameters of the elements in T

h

k

. We use Lagrangian onforming

�nite elements S(


k

; T

h

k

) � H

1

(


k

) of order one on the individual subdomains and

enfore homogeneous Dirihlet boundary onditions on �

D

\ �


k

. For the moment,

we restrit ourselves to the geometrial onforming situation where the intersetion

between the boundary of any two di�erent subdomains �


l

\ �


k

, k 6= l, is either

empty, a vertex, a ommon edge in 2D or fae in 3D. Furthermore, we assume that

the interfaes in 3D are axiparallel retangulars.

To obtain an optimal disretization sheme, one has to impose suitable mathing

onditions at the interfaes. In [BMP93, BMP94℄, it has been shown that weak on-

straints aross the interfaes are suÆient to guarantee approximation and onsisteny

errors of optimal order. The mortar method is haraterized by introduing Lagrange

multiplier spaes given on the interfaes, whih are used to "glue" the di�erent parts

of the weak solution together. A suitable triangulation on the interfaes is neessary

for the de�nition of a disrete Lagrange multiplier spae. Eah interfae �


l

\ �


k
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is assoiated with a (d� 1){dimensional mesh, inherited either from T

h

k

or from T

h

l

.

In general, these triangulations do not oinide, see Figure 2.1. The interfaes are

denoted by 

m

; 1 � m �M . For eah interfae, there exists a ouple 1 � l < k � K

suh that 

m

= �


l

\ �


k

. The elements of the (d� 1){dimensional mesh on 

m

are

boundary edges in 2D or boundary faes in 3D of T

h

l

or T

h

k

. The hoie is arbitrary

but �xed. Then, the non{mortar side is the one from whih the Lagrange multiplier

spae inherits its mesh, see Figure 2.1. The adjaent side is alled mortar side. We

denote the set of verties on the non{mortar side in the interior of 

m

by P

m

.
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non-mortar side

mortar side

Lagrange multiplier

Fig. 2.1. Non{mathing triangulations at the interfae

In the rest of this setion, we onsider the saddle point formulation of the mortar

method using dual spaes. It is de�ned on the unonstrained produt spae and a

suitable Lagrange multiplier spae. A standard hoie for the Lagrange multiplier

spae on eah interfae is a modi�ed trae spae on the non{mortar side, [BMP93,

BMP94℄. Here, we work with dual basis funtions. In both ases, the dimension is

equal to the number of verties in P

m

, and optimal a priori estimates an be obtained

for the disretization error in the energy norm.

2.1. Dual basis funtions. In this subsetion, we briey review the de�nition

of dual basis funtions for the salar Lagrange multiplier spae M

h

(

m

) assoiated

with the interfae 

m

, see [Woh00℄. The nodal basis funtions �

p

, p 2 P

m

, are loally

de�ned, pieewise onstant or linear and satisfy the following biorthogonality relation

Z



m

�

p

�

p

0

ds = Æ

p;p

0

Z



m

�

p

0

ds; p; p

0

2 P

m

; (2.2)

where �

p

is the standard onforming nodal basis funtion of S(


n(m)

; T

h

n(m)

) assoi-

ated with the vertex p, i.e., �

p

(p

0

) = Æ

p;p

0

. Here, n(m) is the subdomain index of the

non{mortar side of 

m

. Figure 2.2 shows pieewise linear and pieewise onstant dual

basis funtions in 2D at the interfae.

-1

1

-1

1

Fig. 2.2. Pieewise linear and pieewise onstant dual basis funtions in 2D

We observe that the basis funtions assoiated with the verties adjaent to the

endpoints of 

m

have to be modi�ed. Figure 2.3 illustrates the isolines of the dual ba-

sis funtion �

p

in 3D restrited to its support in the ase of a hexahedral triangulation.

We remark that the support of a nodal dual basis funtion is the union of four bound-

ary faes of T

h

n(m)

sharing one vertex. As in the 2D ase, the de�nition of �

p

has to

be modi�ed if the vertex p is lose to the boundary of 

m

, see [BD98, WK01, Woh99a℄
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for more details. In the ase of a simpliial triangulation, the onstrution follows the

same lines, and we refer to [BD98, KLPV00, Woh99a℄ for details.

 1

 1

 1

 1

−2 −2

−2

−2

 4

1/4

1/4

1/4

1/4

−3/4 −3/4

−3/4

−3/4

 9/4

Fig. 2.3. Isolines of pieewise bilinear and pieewise onstant dual basis funtions in 3D

Figure 2.4 shows the modi�ations in the neighborhood of the boundary of 

m

for

pieewise bilinear dual basis funtions. We distinguish between three di�erent types

of verties p 2 P

m

. The inner ones, i.e., � supp(�

p

j



m

) \ �

m

= ;, are marked with

empty squares, the ones lose to the orners, i.e., � supp(�

p

j



m

) ontains one orner of



m

, by empty irles, and all other verties are marked by �lled irles. In the left of

Figure 2.4, the di�erent groups of verties are shown. For eah vertex type, one dual

basis funtion is given in the right part of Figure 2.4. The other ones an be obtained

by rotations of �=2. We observe that the dual basis funtions in 3D reet the tensor

produt struture of the triangulation, i.e., they an be written as the produt of two

pieewise linear dual basis funtions in 1D.

γ
m

4 4

4 4

-2

-2 -2

-2

-2 -2

-2-2

1 1

11

1 1

1 1

4-2

-21

2

22

2

-1        -1 

-1-1

4 4-2 -2

1 -2 -2 1

2 2 -1-1

-1 2 2 -1

Fig. 2.4. Modi�ations near the boundary of 

m

for pieewise bilinear dual basis funtions

Optimal a priori estimates for the disretization error in both the L

2

{ and H

1

{

norm as well as for the Lagrange multiplier in the H

1=2

00

{dual norm and a weighted

L

2

{norm are obtained for salar ellipti equations [Woh99a℄.

2.2. Mortar formulation. We onsider two di�erent types of oupling at the

interfaes. The �rst one is the weak oupling of the solution in both, normal and

tangential, diretions. In this situation, the di�erent bodies or materials are glued

together, i.e., there is no relative displaement in tangential and normal diretion. The

seond interesting ase an be used for the modeling of a ontat problem and will be

disussed in Setion 6. In that ase, we do not have a weak ontinuity ondition in

tangential diretion. The onstraints at the interfaes are given for the displaements

in normal diretion. Both situations will be onsidered within the mortar framework,

and the resulting systems will be solved by a modi�ed multigrid method.

The unonstrained produt spae assoiated with the domain deomposition is

given by

X

h

:=

K

Y

k=1

(S(


k

; T

h

k

))

d

:

In the ase of the oupling in tangential and normal diretion, the Lagrange multiplier
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spae M

h

is also vetor valued

M

h

:=

M

Y

m=1

(M

h

(

m

))

d

;

whereM

h

(

m

) is spanned by the dual basis funtions �

p

, p 2 P

m

, given in the previous

subsetion. Now, the mortar formulation is de�ned in terms of the bilinear form b(�; �)

b(v;�) =

M

X

m=1

h[v

i

℄; �

i

i



m

; v 2 X

h

;� 2M

h

:

Here, [�℄ denotes the jump, i.e., [v

i

℄j



m

:= v

i

j




n(m)

� v

i

j




n
(m)

, where n(m) is the

subdomain index of the non{mortar side and n(m) the index of the adjaent mortar

side, and h�; �i



m

stands for the duality pairing between H

1=2

(

m

) and its dual spae.

Introduing the Lagrangemultiplier as an additional unknown, we obtain the following

saddle point problem: Find (u

h

;�

h

) 2 X

h

�M

h

suh that

a(u

h

;v) + b(v;�

h

) = f(v); v 2 X

h

;

b(u

h

;�) = 0; � 2M

h

;

(2.3)

see [Ben99℄ for the salar ellipti ase. Here, the bilinear form a(�; �) is extended

to the nononforming spae X

h

by replaing the integral over 
 by its broken form

P

K

k=1

R




k

. The seond equation of the saddle point problem guarantees the weak

ontinuity of the solution u

h

. We de�ne the nononforming spae V

h

as the kernel

of the operator B

T

: X

h

�!M

h

assoiated with the bilinear form b(�; �),

V

h

:= fv 2 X

h

j b(v;�) = 0; � 2M

h

g :

Under the assumption that a(�; �) is uniformly ellipti on V

h

�V

h

, i.e.,

a(v;v) �  kvk

2

1

:=

K

X

k=1

kvk

2

1;


k

; v 2 V

h

;

the following variational problem has a unique solution: Find u

h

2 V

h

suh that

a(u

h

;v) = f(v); v 2 V

h

: (2.4)

In the next subsetion, we address the question of elliptiity. A uniform disrete

inf{sup ondition yields in ombination with the elliptiity of a(�; �) on the kernel of

the operator B

T

the unique solvability of (2.3), see [BF91℄. We refer to [Woh99a℄ for

the proof of the inf{sup ondition in the salar ase. Sine M

h

and X

h

are produt

spaes, the inf{sup ondition follows from the salar ase. Moreover, the positive

de�nite system (2.4) is equivalent to the saddle point problem (2.3).

2.3. Uniform elliptiity. In this setion, we onsider the uniform elliptiity

of the bilinear form a(�; �) on the onstrained spae V

h

�V

h

. Let us start with the

speial ase that �


k

\�

D

has a non zero measure for all 1 � k � K. In this situation,

Korn's inequality an be applied to eah subdomain, and we �nd

a(v;v) =

K

X

k=1

a

k

(v;v) � C

K

X

k=1

kvk

2

1;


k

= Ckvk

2

1

; v 2 X

h

;
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where a

k

(�; �) stands for the restrition of a(�; �) to the subdomain 


k

. We remark that

C does not depend on the number of subdomains. Here, we use standard Sobolev

notations for the norms and seminorms and the onstants 0 < ;C < 1 are generi

ones not depending on the meshsize. Unfortunately, many interesting ases do not

satisfy this assumption. However for the unique solvability of (2.4), it is suÆient to

have the uniform elliptiity of a(�; �) on V

h

�V

h

. In the salar ellipti ase, the kernel

of the orresponding bilinear form is the subspae of pieewise onstant funtions. The

dimension is given by the number of subdomains 


k

suh that �


k

\�

D

is empty. In

our setting, the kernel is of higher dimension. The rigid body motions per subdomain

de�ne a three dimensional spae in 2D and a six dimensional spae in 3D. Thus, the

dimension of the Lagrange multiplier spae has to be larger than d. In the following,

we assume that #P

m

� 2 in 2D, and that in 3D the triangulation at the interfae is

a tensor produt mesh with #P

m

� 4.

To prove the uniform elliptiity in the salar ellipti ase, it is suÆient to show

that the onstants are ontained in the Lagrange multiplier spae. Due to the rigid

body motions this is not suÆient in our ase. To get a better feeling for the kernel of

a(�; �), we onsider the ase of two unit squares 


1

and 


2

with homogeneous Dirihlet

boundary ondition on one side of �


1

\ �
 and homogeneous Neumann boundary

ondition elsewhere. Then, a(�; �) is not ellipti on V �V, where the nononforming

spae V is de�ned by V := fv 2 H

1

�

(
) j

R



[v℄ ds = 0g,  := �


1

\ �


2

. To see

this, we set vj




1

:= 0 and vj




2

:= �(x

2

� x

2;

; x

1;

� x

1

)

T

, � 6= 0, where (x

1;

; x

2;

)

T

denotes the enter of gravity of . Then, v 2 V but a(v;v) = 0.

Based on this observation, we de�ne the nononforming spae

V

M

H

:=

�

v 2 H

1

�

(
) j

Z



m

[v℄ � � ds = 0; � 2M

H

(

m

); 1 � m �M

	

;

where M

H

(

m

) := (M

H

(

m

))

d

is a suitable test spae. If M

H

(

m

) �M

h

(

m

) then

V

h

� V

M

H

, and for the uniform elliptiity on V

h

�V

h

it is suÆient to show the

elliptiity on V

M

H

�V

M

H

. A natural hoie for M

H

(

m

) is P

1

(

m

). Unfortunately

none of the onsidered Lagrange multiplier spaes satisfy P

1

(

m

) �M

h

(

m

).

We introdue a new maro Lagrange multiplier spae M

H

(

m

) whih has dimen-

sion two in 2D and dimension four in 3D. Let us start with the 2D ase, and let

t 2 [0; 1℄ be a parametrization of the 1D interfae 

m

, i.e., x 2 

m

if and only if

x = p

1

+ t

x

(p

2

� p

1

), t

x

2 [0; 1℄, where p

1

and p

2

are the two endpoints of 

m

. The

ordering is arbitrary but �xed. Then, we deompose P

m

into two disjoint subsets

P

l

m

:= fp 2 P

m

j t

p

� 0:5g and P

r

m

:= P

m

n P

l

m

, and de�ne

�

H

:=

�

2

t

l

+ t

r

� 1

�

X

p2P

l

m

�

p

�

X

p2P

r

m

�

p

;

where t

l

:= maxft

p

j p 2 P

l

m

g � 0:5 and t

r

:= minft

p

j p 2 P

r

m

g > 0:5, see Figure 2.5.

In the left, �

H

is given for the standard Lagrange multiplier spae and in the right

for the dual Lagrange multiplier spae. It is easy to see that the mean value of �

H

is equal zero for the standard Lagrange multiplier spae and the dual one based on

pieewise linear funtions. Now, we de�ne

M

H

(

m

) := spanf'

H

2 �

H

g; �

H

:= f1; �

H

g ;

in the 2D ase, and in 3D, �

H

is given as the orresponding produt set. Thus for

the 2D and 3D ase, we have M

H

(

m

) �M

h

(

m

).
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0.5 10

t  =1/3l

5/4 H

Hν

µ

-1

t  =5/9r t  =1/3

0

H

Hν

µ

0.5 1

l

5/4

-1

t  =5/9r

Fig. 2.5. Test funtion �

H

and �

H

for standard (left) and dual (right) Lagrange multiplier spae

Lemma 2.1. Let v 2 V

M

H

, and v restrited on 


k

, 1 � k � K, be a rigid body

motion, then v = 0.

Proof. We start with a subdomain 


k

0

suh that �


k

0

\ �

D

has a non zero

measure. Due to the Dirihlet boundary ondition, v restrited to this subdomain is

zero. Then, the interfae ondition yields that for all adjaent subdomains, we �nd

in 2D

Z



m

�

a+ �

�

x

2

� x

2;

x

1;

� x

1

�

�

� e

i

ds = 0; 1 � i � 2 ;

where e

i

denotes the i{th unit vetor, and thus a = 0. Introduing �

H

2 P

1

(

m

),

�

H

(p

1

) = ��

H

(p

2

) = 1, see Figure 2.5, a straightforward omputation shows that

Z



m

�

H

�

H

ds = �

H

j

m

j ;

where �

H

� 1=3 if M

h

(

m

) is the pieewise linear dual Lagrange multiplier spae

as introdued in Subsetion 2.1, and �

H

� 2=9 if M

h

(

m

) is the standard Lagrange

multiplier spae and thus � = 0. We note that the lower bound for �

H

does not depend

on the mesh on 

m

. In 3D, the rigid body motions are given by a+b� (x�x



), and

similar arguments as in 2D yield a = b = 0. Starting from 


k

0

, we an move to eah

other subdomain by rossing interfaes.

Lemma 2.2. The bilinear form a(�; �) is uniformly ellipti on V

H

�V

H

.

The lemma follows from the upper estimate for the broken H

1

{norm

kvk

2

1

� C

1

a(v;v) + C

2

M

X

m=1

X

'

H

2�

H

k

Z



m

'

H

[v℄ dsk

2

; v 2 H

1

�

(
) ; (2.5)

where k � k stands for the Eulidean norm in IR

d

. Inequality (2.5) is obtained by a

Bramble{Hilbert argument and shown by ontradition. Here we do not work out the

details but sketh the idea, for details we refer to [Woh99a℄. We assume that (2.5)

is not true. Then, the seond Korn inequality and Lemma 2.1 give a ontradition.

Although the spae V

H

depends on the triangulation, the elliptiity onstant an be

bounded from below independently of the triangulation.
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Remark 2.3. Unfortunately, the proof by ontradition gives only the existene

of suh a onstant C

1

, but no information if C

1

an be hosen independently of the

number of subdomains.

It is likely that more elaborate tehniques yield an elliptiity onstant whih is

independent of the number of subdomains. For the salar ellipti ase in 2D, we refer

to [Gop99℄ and for the three �eld approah to [BM00℄. Both tehniques are based on

duality arguments and annot be applied diretly to our situation.

3. An equivalent formulation on the produt spae. In the previous se-

tion, we have given the saddle point formulation (2.3) on X

h

�M

h

and the positive

de�nite nononforming mortar formulation (2.4) onV

h

. Here, we reformulate the sad-

dle point problem as a non{symmetri problem on the unonstrained produt spae

X

h

and eliminate the Lagrange multiplier �

h

. Due to the biorthogonality (2.2), this

an be done loally.

We start with the algebrai formulation of the saddle point problem. Let A

h

and

B

h

be the matries assoiated with the bilinear forms a(�; �) on X

h

�X

h

and b(�; �)

on X

h

�M

h

, respetively, and f

h

the vetor assoiated with the right hand side. The

�nite element solution u

h

is deomposed into two omponents u

T

h

= (u

T

I

;u

T

N

). We

use the same symbol for an element in X

h

and the orresponding vetor in IR

n

h

with

respet to the standard nodal basis, where n

h

is the dimension of X

h

. All degrees of

freedom assoiated with the interior verties on the non{mortar sides are ontained

in the seond omponent u

N

. The �rst omponent u

I

inludes all other degrees of

freedom. We note that eah degree of freedom is ontained in exatly one of the two

groups. By means of this deomposition, we an rewrite the saddle point problem

(2.3) and �nd

�

A

h

B

h

B

T

h

0

��

u

h

�

h

�

=

0

�

A

II

A

IN

M

A

NI

A

NN

D

M

T

D 0

1

A

0

�

u

I

u

N

�

h

1

A

=

0

�

f

I

f

N

0

1

A

; (3.1)

where D is a diagonal matrix, and M is a sparse matrix with many zero bloks, and

for eah interfae there is one retangular mass matrix blok, the band width of whih

depends on the loal ratio of the meshsizes on mortar and adjaent non{mortar sides.

The size of the diagonal matrix D is d �

P

M

m=1

#P

m

, and its entries are

R



m

�

p

ds.

The seond row of the saddle point problem (3.1) yields

�

h

= D

�1

(f

N

�A

NI

u

I

� A

NN

u

N

) : (3.2)

We observe that for the standard Lagrange multiplier spaeD is not a diagonal matrix

but a blok mass matrix. Thus in that ase, �

h

annot be eliminated loally, and

the inverse of a mass matrix enters. Introduing now W

T

h

:= (0 D

�1

) and observing

B

T

h

u

h

= 0, we an rewrite �

h

in terms of W

T

h

and the residual on the produt spae,

�

h

=W

T

h

(f

h

�A

h

(Id�W

h

B

T

h

)u

h

). Using this elimination in (3.1), we �nd

�

A

h

B

h

B

T

h

0

��

Id

W

T

h

A

h

(W

h

B

T

h

� Id)

�

u

h

=

�

(Id�B

h

W

T

h

)f

h

0

�

: (3.3)

In a last step, we redue the number of equations by the dimension of M

h

. This

an be done in di�erent ways. We multiply (3.3) from the left by (v

T

;�

T

) and set

� as a funtion of v. One possible hoie is � := W

T

h

A

h

(W

h

B

T

h

� Id)v yielding the

symmetri system A

sym

u

h

= f

sym

, where f

sym

:= (Id�B

h

W

T

h

)f

h

and

A

sym

:= (Id; (B

h

W

T

h

� Id)A

h

W

h

)

�

A

h

B

h

B

T

h

0

��

Id

W

T

h

A

h

(W

h

B

T

h

� Id)

�

: (3.4)
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A straightforward omputation shows that A

sym

= (B

h

W

T

h

� Id)A

h

(W

h

B

T

h

� Id) +

B

h

W

T

h

A

h

W

h

B

T

h

. Considering the seond blok row of A

sym

in more detail, we �nd

A

NN

D

�1

M

T

u

I

+ A

NN

u

N

= 0 or equivalently W

h

B

T

h

u

h

= 0. The hoie � :=

W

T

h

(Id�A

h

)v gives rise to the non{symmetri system

A

num

u

h

:= ((B

h

W

T

h

� Id)A

h

(W

h

B

T

h

� Id) +W

h

B

T

h

)u

h

= f

sym

: (3.5)

In the rest of this setion, we derive a variational problem for (3.5). We introdue

a loally de�ned operator P

h

: X

h

�! X

h

by

(P

h

v)

i

:=

M

X

m=1

X

p2P

m

h[v

i

℄; �

p

i



m

R



m

�

p

ds

�

p

; 1 � i � d :

It is easy to see that the kernel of P

h

is exatly the onstrained spae V

h

. The

biorthogonality relation (2.2) yields that P

h

is a projetion. Furthermore, the alge-

brai representation of P

h

is given by W

h

B

T

h

, and we �nd a new variational problem

on the unonstrained produt spae. The algebrai system (3.5) an be written in

terms of P

h

as a variational problem: Find u

h

2 X

h

suh that

a((Id� P

h

)u

h

; (Id� P

h

)v) + (P

h

u

h

;v)

0

= f((Id� P

h

)v); v 2 X

h

: (3.6)

Lemma 3.1. The variational problems (3.6) and (2.4) are equivalent.

Proof. By de�nition, the solution of (2.4) is in the kernel of P

h

, and thus is a

solution of (3.6) by onstrution. Let u

h

2 X

h

be a solution of (3.6). Then, it is

suÆient to show that P

h

u

h

= 0. We set v := P

h

u

h

and �nd (P

h

u

h

; P

h

u

h

)

0

= 0.

The unique solution u

h

of (3.6) an be obtained by u

h

= (Id � P

h

)w

h

from any

solution w

h

2 X

h

of

a((Id� P

h

)w

h

; (Id� P

h

)v) = f((Id� P

h

)v); v 2 X

h

:

Remark 3.2. The new approah is based on the deomposition of v 2 X

h

in

v � P

h

v and P

h

v. Having the biorthogonality relation (2.2), the de�nition of P

h

yields that v � P

h

v 2 V

h

. This is in general not true if we work with standard

Lagrange multiplier spaes. In that ase, P

h

has to be replaed by a globally de�ned

projetion operator. Its appliation involves the inverse of a tridiagonal mass matrix

in 2D and a band mass matrix in 3D.

4. A modi�ed multigrid method. In this setion, we present our modi�ed

multigrid method. The implementation is based on the non{symmetri linear system

(3.5) whereas the analysis of the onvergene rates is done for the symmetri form

(3.4). Let us assume that we have a nested sequene of global triangulations, and

let us denote the assoiated unonstrained produt spaes by X

l

, 0 � l � L. The

meshsize is given by h

l

= 2h

l+1

, and the dimension of the spae X

l

is n

l

. Working

with standard nodal basis funtions in X

l

gives

h

d

l

kv

l

k

2

� kv

l

k

2

0

� Ch

d

l

kv

l

k

2

; (4.1)

where k � k stands for the Eulidean vetor norm of an element in IR

n

l

. The Eulidean

salar produt in IR

n

l

is denoted by (�; �). In ontrast to the onstrained spaes V

l

,

the produt spaes X

l

are nested. We denote the standard prolongation operator by

I

l

l�1

: X

l�1

�! X

l

and the restrition by I

l�1

l

: X

l

�! X

l�1

. For the rest of this

setion, we assume full H

2

{regularity of the problem.
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To obtain level independent onvergene rates for our multigrid method, suitable

approximation and smoothing properties have to be established. In a �rst step, we

onsider level dependent grid transfer operators (I

mod

)

l�1

l

and (I

mod

)

l

l�1

de�ned by

(I

mod

)

l�1

l

:= (Id� C

T

l�1

)I

l�1

l

; (I

mod

)

l

l�1

:= (Id� C

l

)I

l

l�1

;

where C

l

:= W

l

B

T

l

. We observe that these transfer operators are obtained from the

standard ones by a loal post{proessing step involving only the degrees of freedom

on the interfaes but not the ones in the interior of the subdomains. It is easy to

see that these transfer operators guarantee C

T

l�1

(I

mod

)

l�1

l

w

l

= 0, w

l

2 X

l

, and

C

l

(I

mod

)

l

l�1

w

l�1

= 0, w

l�1

2 X

l�1

.

One basi tool to establish level independent onvergene rates is a suitable ap-

proximation property. Here, we have to take into aount the modi�ed prolongation

operator. Let w

l

2 X

l

and w

l�1

2 X

l�1

be the solutions of A

sym;l

w

l

= d

l

and

A

sym;l�1

w

l�1

= d

l�1

, respetively, where d

l�1

is de�ned as the restrition of d

l

, i.e.,

d

l�1

:= (I

mod

)

l�1

l

d

l

. The following lemma an be found for the salar ellipti ase in

[WK01℄.

Lemma 4.1. Under the assumption that C

T

l

d

l

= 0, we have the following ap-

proximation property

kw

l

� (I

mod

)

l

l�1

w

l�1

k � Ch

2�d

l

kd

l

k :

Proof. Using the results from the previous setion, observing that A

l

is positive

de�nite on C

l

X

l

and using the assumption on d

l

, we �nd w

l

2 V

l

and w

l�1

2 V

l�1

.

We de�ne f

d

2 X

l

� (L

2

(
))

d

by (f

d

;v

l

)

0

= (v

l

;d

l

), v

l

2 X

l

, and due to the norm

equivalene (4.1), we obtain h

d

l

kf

d

k

2

0

� Ckd

l

k

2

. Then, w

l

and w

l�1

are the mortar

�nite element approximations of a(w;v) = (f

d

;v)

0

, v 2 H

1

�

(
), on level l and level

l � 1, respetively. By means of the H

2

{regularity and the a priori estimate for the

disretization error in the L

2

{norm, we get

kw

l

�w

l�1

k

0

� Ch

2

l

kf

d

k

0

� Ch

(2�d=2)

l

kd

l

k :

Then, the triangle inequality and the de�nition of the modi�ed prolongation yield

kw

l

� (I

mod

)

l

l�1

w

l�1

k � kw

l

� I

l

l�1

w

l�1

k+ kC

l

I

l

l�1

w

l�1

k : (4.2)

The �rst term is bounded by Ch

�d=2

l

kw

l

� w

l�1

k

0

� Ch

2�d

l

kd

l

k. To get an upper

bound for the seond term in (4.2), we have to onsider the projetion P

l

:= P

h

l

in

more detail. Starting with the norm equivalene (4.1), we �nd

kC

l

I

l

l�1

w

l�1

k

2

�

C

h

d

l

kP

l

w

l�1

k

2

0

�

C

h

d�1

l

M

X

m=1

k[w

l�1

℄k

2

0;

m

:

In our last step, we use that the weighted L

2

{norm of the jump at the interfae

of eah element in V

l�1

, and thus for w

l�1

, an be bounded by a measure for its

nononformity, see [Woh99a℄

1

h

l

M

X

m=1

k[w

l�1

℄k

2

0;

m

� C inf

v2H

1

�

(
)

kv �w

l�1

k

2

1

� C h

2

l

kf

d

k

2

0

� Ch

2�d

l

kd

l

k

2

0

:
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We note that for the proof of the approximation property, it is essential to have

w

l�1

2 V

l�1

andw

l

2 V

l

. In ontrast to the standard Lagrange multiplier spaes, the

dual basis Lagrange multiplier spaes are non{nested, i.e.,M

l�1

6�M

l

. The de�nition

of the restrition (I

mod

)

l�1

l

guarantees that C

T

l�1

d

l�1

= 0 and thus w

l�1

2 V

l�1

.

Within the multigrid algorithm, d

l

is the defet after the presmoothing steps. To

satisfy the assumption of Lemma 4.1, we have to guarantee that the iterate after the

smoothing steps is in the onstrained spae V

l

. Starting with an arbitrary smoother

for

~

A

l

:= (Id�C

T

l

)A

l

(Id�C

l

), we onstrut a modi�ed one satisfying this ondition.

We note that the matrix (

~

A

l

)

II

is symmetri and positive de�nite, the eigenvalues

of whih are bounded from below by h

d

l

and from above by Ch

d�2

l

. Let

~

G

l

be a

smoother for (

~

A

l

)

II

, e.g., a damped Jaobi method, extended trivially to the full

spae X

l

. We note that

~

G

l

is singular on the full spae X

l

, but the iterates
~
y

i

l

:=

~
y

i�1

l

+

~

G

l

(d

l

�

~

A

l

~
y

i�1

l

), i � 1, are well de�ned. Then, we de�ne our modi�ed smoother

by G

l

:= (Id� C

l

)

~

G

l

(Id� C

T

l

), and denote the orresponding iterates by

y

i

l

:= y

i�1

l

+G

l

(d

l

�A

sym;l

y

i�1

l

); i � 1 : (4.3)

If d

l

satis�es C

T

l

d

l

= 0, then d

l

is in the range of

~

A

l

. Let w

l

be the solution of

A

sym;l

w

l

= d

l

, then
~
w

T

l

:= ((w

l

)

T

I

; (
~
y

0

l

)

T

N

) is a solution of

~

A

l

~
w

l

= d

l

, where
~
y

0

l

is

the start iterate. The following lemma shows the relation between the two di�erent

iterates, y

i

l

and
~
y

i

l

, and we refer to [KW00a℄ for the salar ellipti ase.

Lemma 4.2. Under the assumptions C

T

l

d

l

= 0 and y

0

l

= (Id�C

l

)
~
y

0

l

, the iterates

y

i

l

an be obtained from
~
y

i

l

by the loal post{proessing step

y

i

l

= (Id� C

l

)
~
y

i

l

; i � 1 :

Moreover, the smoothing and stability properties of G

l

are inherited from

~

G

l

, i.e.,

kA

sym;l

e

i

l

k = k

~

A

l

~
e

i

l

k; ke

i

l

k � Ck
~
e

i

l

k ;

where e

i

l

:= w

l

� y

i

l

and
~
e

i

l

:=
~
w

l

�
~
y

i

l

are the orresponding iteration errors.

Proof. Observing the speial struture of the right hand side d

l

and

~

A

l

, we obtain

by indution

y

i+1

l

= y

i

l

+ (Id� C

l

)

~

G

l

(Id� C

T

l

)(d

l

�A

sym;l

y

i

l

)

= (Id� C

l

)(
~
y

i

l

+

~

G

l

(d

l

�

~

A

l

~
y

i

l

)) = (Id� C

l

)
~
y

i+1

l

;

and thus A

sym;l

e

i

l

=

~

A

l

~
e

i

l

. By means of w

l

= (Id � C

l

)w

l

= (Id � C

l

)
~
w

l

, we �nd

e

i

l

= (Id� C

l

)
~
e

i

l

. Moreover, the norm of the saled mass matrix D

�1

l

M

T

l

is bounded

independently of l.

Now, our multigrid method for the solution of (3.4) will be de�ned in terms of

the given modi�ed transfer operators and the smoother G

l

. The modi�ed restrition

operator and the zero start value for the defet orretion guarantee that on eah level

l < L the assumptions of Lemma 4.2 are satis�ed. For l = L the assumptions are

satis�ed by onstrution if we take zero or the prolongated solution on level L � 1,

i.e., (I

mod

)

L

L�1

u

L�1

, as start iterate. Then, we are in the setting of Lemma 4.2 for

the presmoothing steps on all levels l � L. The same holds for the postsmoothing

steps sine we work with the modi�ed prolongation. Furthermore, the smoother G

l

yields that all iterates are in the kernel of C

l

and thus the assumption of Lemma 4.1

is satis�ed. Then, standard arguments give the main result of this setion.
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Theorem 4.3. The onvergene rates for the W{yle are level independent

provided that the number of smoothing steps is large enough.

Proof. Approximation and smoothing properties yield level independent onver-

gene rates, see, e.g., [Ha85, Th. 7.1.2℄.

We do not assemble the matrix A

sym;l

. Working with A

num;l

, we �nd that the

iteration (4.3) an be replaed by

y

i

l

= y

i�1

l

+G

num;l

(d

l

�A

num;l

y

i�1

l

) ; (4.4)

where G

num;l

is de�ned as an inexat blok Gau�{Seidel smoother of A

num;l

A

num;l

=

�

(

~

A

l

)

II

0

D

�1

l

M

T

l

Id

�

and G

num;l

:=

�

(

~

G

l

)

II

0

�D

�1

l

M

T

l

(

~

G

l

)

II

Id

�

:

A straightforward omputation shows that (4.3) and (4.4) yield the same iterates.

Furthermore, it is suÆient to work on the omponents of the index group I for the

�rst (m � 1) smoothing steps. Here, m stands for the number of smoothing steps.

Only in the last smoothing step, we have to apply (4.4) to both index groups N and

I . This an be interpreted as one loal post{proessing step on the non{mortar side.

Thus, the appliation of our multigrid method requires only a few additional multi-

pliations with D

�1

l

M

T

l

, the omplexity of whih is of smaller order. It is equivalent

to the multipliation of a saled mass matrix assoiated with the (d� 1){dimensional

interfaes.

Remark 4.4. The eÆieny of the method is strongly onneted to the use of

dual basis funtions. Working with standard Lagrange multiplier involves the inverse

of a mass matrix instead of D

�1

l

.

5. Numerial results. In this setion, we present numerial results illustrating

the performane of our modi�ed multigrid method. All our algorithms have been

implemented within the framework of the �nite element toolbox UG, see [BBJ

+

97℄.

In the �rst part of this setion, we onsider linear elastiity problems in 2D. A weak

ontinuity ondition at the interfaes is used in normal and tangential diretion. In

the seond part, we present numerial results in 3D for salar ellipti problems inlud-

ing an example with a geometrial nononforming deomposition. In all examples,

asymptoti onstant onvergene rates an be observed.

Figure 5.1 shows the deformation of a linear elasti body with inhomogeneous

materials. Adaptive re�nement tehniques have been used in 2D. The re�nement is

ontrolled by a residual type error estimator for mortar �nite elements, see [Woh99b,

Woh99a℄. The left piture in Figure 5.1 illustrates the problem setting. We apply

two di�erent surfae pressures at the inhomogeneous Neumann boundary parts. The

inhomogeneous Neumann boundary parts are marked by arrows in the left piture of

Figure 5.1. Homogeneous Dirihlet boundary onditions are taken on the lower left

orner of the domain, marked by �

D

in the left piture of Figure 5.1. On the re-

maining boundary part, we apply homogeneous Neumann boundary onditions. The

middle and right piture of Figure 5.1 shows the displaements of the solutions saled

by the fator ten and the �nal adaptive triangulations. In the middle piture, the

applied Neumann boundary ondition results in a onstant displaement in normal

diretion at the orresponding boundary part. In the right piture, the applied Neu-

mann boundary ondition yields a linear displaement in normal diretion at the

orresponding boundary part. The deformation of the body in the neighborhood of

the interfaes is in the right piture smaller than in the middle piture.
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Fig. 5.1. Coupling in normal and tangential diretion in 2D, (Example 1)

In our seond example, we onsider a nut{like geometry as depited in Figure

5.2. The domain onsists of 13 subdomains, and there are 6 inner rosspoints eah of

whih has four adjaent subdomains. We hoose silver as material with � = 108280

and � = 8517. Inhomogeneous Dirihlet boundary onditions orresponding to a

rotation by an angle of �=500 have been applied on the inner boundary �

I

, i.e., the

outer normal on �

I

direts toward the enter of gravity. We work with homogeneous

boundary onditions on �

O

:= �
n�

I

. On �

O

\�


k

we take Neumann type boundary

onditions if 


k

is a triangle, and Dirihlet type boundary onditions if 


k

is a square.

Figure 5.2 shows the initial nononforming triangulation, the displaements saled by

the fator 100 on the �nal triangulation, and the multigrid onvergene rates of the

V{yle and W{yle with three pre{ and postsmoothing steps.
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Fig. 5.2. Initial triangulation (left), distorted grid (middle) and onv. rates (right), (Example 2)

Examples 3 and 4 illustrate the onvergene rate of our multigrid method in 3D,

see [WK01℄. Here, we use trilinear �nite elements on hexahedrons and the piee-

wise linear dual Lagrange multiplier spae introdued in Subsetion 2.1. We om-

pare the asymptoti onvergene rates of the V{ and W{yles in ase of one and

three smoothing steps. The smoothing iteration is based on (4.4), and two di�er-

ent smoothers are ompared. We de�ne (

~

G

l

)

II

as a damped Jaobi method, i.e.,

(

~

G

l

)

II

:= !(diag((

~

A

l

)

II

))

�1

, where ! = 0:7, or as symmetri Gau�{Seidel smoother

of (

~

A

l

)

II

. Thus, one Gau�{Seidel step is roughly twie as expensive as one Jaobi

step.

We onsider a "Sandwih"{like domain build up of two di�erent materials. The

domain 
 is deomposed into three hexahedrons 


i

:= (0; 1)

2

� (z

i

; z

i+1

), where

z

1

:= 0; z

2

:= 1; z

3

:= 1:2; z

4

:= 2:2. The salar ellipti model problem �div aru = 1,

on 
 := (0; 1)

2

� (z

1

; z

4

) is taken. Here, the oeÆient a is pieewise onstant,
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Fig. 5.3. Initial triangulations and isolines for Example 3 (left) and Example 4 (right)

aj




i

:= 100, i = 1; 3 and aj




2

:= 1. Dirihlet boundary onditions are applied on the

upper and lower part of the domain, u(x; y; z) = 1000

p

(x� 1=2)

2

+ (y � 1=2)

2

�(1:0�

y=3) exp(�10(x

2

+y

2

)) if z = z

1

or z = z

4

, and homogeneous Neumann boundary on-

ditions elsewhere. In the left part of Figure 5.3, the nonmathing initial triangulation

and the isolines at the interfae are shown. The non{mortar sides are de�ned on the

middle hexahedron. Figure 5.4 shows the onvergene rates of Example 3 in 3D. In

all ases, we observe level independent onvergenes rates. Even for the V(1; 1){yle,

a onstant asymptoti onvergene rate is obtained.
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Fig. 5.4. Asymptoti onv. rates for Jaobi and symmetri Gau�{Seidel smoother (Example 3)

In Example 4, we onsider the domain depited in the right part of Figure 5.3. It is

deomposed into three subdomains 


1

:= (0; 1)

2

�(z

1

; z

2

), 


2

:= (1=3; 2=3)

2

�(z

2

; z

3

),




3

:= (0; 1)

2

� (z

3

; z

4

) where z

1

:= 0, z

2

:= 1, z

3

= 2, z

4

= 3. We remark that we are

in the geometrial nononforming situation. In partiular, the non{mortar sides on




2

over only a part of the adjaent mortar sides on 


1

and 


3

. We impose Dirihlet

boundary values on parts of �


1

and �


3

, and set u(x; y; z) = 10 for f(x; y; z) 2

�


1

j z = z

1

g and f(x; y; z) 2 �


3

j z = z

4

g, elsewhere we impose homogeneous

Neumann boundary onditions, see [WK01℄.
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Fig. 5.5. Asymptoti onv. rates for Jaobi and symmetri Gau�{Seidel smoother (Example 4)

The numerial results are shown in Figure 5.5. The performane is not as good
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as in Example 3, but the asymptoti onvergene rates seem to be independent of the

re�nement level. Inreasing the number of smoothing steps yields onsiderably better

results. In both examples, the Gau�{Seidel smoother has better onvergene rates

than the Jaobi type smoother. The performane of the Gau�{Seidel smoother is in

Example 4 better than for the Jaobi smoother. Three Jaobi steps are required to

obtain approximately the same onvergene rates as for one symmetri Gau�{Seidel

step.

6. Free displaement in tangential diretion. In this setion, we introdue

the neessary modi�ations of our method if the oupling ondition is enfored only

in normal diretion. Sine the diretion of the outer normal annot be assumed to

be onstant along the interfaes, we have to introdue some suitable loal oordinate

transformations, see [Woh99a℄. These transformations have the harater of a rotation

of the loal oordinate system.

We de�ne the bilinear form b

n

(�; �) orresponding to the oupling in normal di-

retion at the interfae by

b

n

(v; �) :=

M

X

m=1

h[v � n℄; �i



m

; � 2 M

h

:=

M

Y

m=1

M

h

(

m

) ;

where n is the outer normal of the subdomain on the non{mortar side. Now, we

replae the bilinear form b(�; �) in (2.3) by the modi�ed one and obtain the following

saddle point problem: Find (u

n

h

; �

h

) 2 X

h

�M

h

suh that

a(u

n

h

;v) + b

n

(v; �

h

) = f(v); v 2 X

h

;

b

n

(u

n

h

; �) = 0; � 2 M

h

:

(6.1)

At �rst glane, it has the same struture as (2.3). However, there is an essential

di�erene. The new bilinear form b

n

(�; �) is de�ned on X

h

� M

h

, where M

h

is, in

ontrast toM

h

, a salar spae. Using the same deomposition as before, i.e., (u

n

h

)

T

=

((u

n

I

)

T

; (u

n

N

)

T

), we �nd for the algebrai representation of (6.1)

0

�

A

II

A

IN

M

n

A

NI

A

NN

D

n

M

T

n

D

T

n

0

1

A

0

�

u

n

I

u

n

N

�

h

1

A

=

0

�

f

I

f

N

0

1

A

: (6.2)

In ontrast to D in (3.1), D

n

is not a diagonal matrix but a d n

h

� n

h

blok diagonal

matrix, where n

h

is the dimension of M

h

. Eah blok is assoiated with an interior

vertex on the non{mortar side, and the blok size is given by d� 1. Thus, we annot

eliminate the Lagrange multiplier as easy as in (3.2). Let P := [

M

m=1

P

m

be the

set of interior verties on the non{mortar sides. Then, we an write D

n

as D

n

:=

diag(d

p

)

p2P

, where d

p

2 IR

d

is de�ned by

d

p

:=

1

2

d�1

X

e2�

p

jej n

e

:

Here, �

p

is the set of elements, i.e., edges in 2D or faes in 3D, on the non{mortar

side sharing the vertex p, and n

e

is the onstant outer unit normal vetor on the

element e. We assume that d

p

6= 0. Starting with b

1

:= d

p

=kd

p

k, we introdue for

eah vertex p 2 P an orthonormal basis B := fb

1

; : : : ;b

d

g in IR

d

. The orthogonal

transformation whih maps B to the anonial basis of IR

d

is denoted by O

p

2 IR

d�d

.
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An expliit representation of O

p

an be obtained, e.g., as Householder transformation.

For v 2 X

h

, we denote by v

p

2 IR

d

the degrees of freedom assoiated with the vertex

p. We de�ne O

p

v

p

=: (w

n

;w

T

T

)

T

and all w

n

and w

T

the normal and tangential

omponent of v at the vertex p, respetively. Then, we de�ne the global orthonormal

transformation O

N

by

O

N

:= diag(O

p

)

p2P

:

We apply the oordinate transformation represented by diag(Id;O

N

; Id) to (6.2) and

�nd the symmetri system

0

�

A

II

A

IN

O

T

N

M

n

O

N

A

NI

O

N

A

NN

O

T

N

O

N

D

n

M

T

n

D

T

n

O

T

N

0

1

A

0

�

u

n

I

O

N

u

n

N

�

h

1

A

=

0

�

f

I

O

N

f

N

0

1

A

: (6.3)

Due to the onstrution of O

N

, we have O

T

N

O

N

= Id and O

p

d

p

= (kd

p

k;0)

T

. Ob-

serving that D

T

n

D

n

is a diagonal matrix, the entries of whih are given by kd

p

k

2

, the

Lagrange multiplier �

h

an be loally eliminated by

�

h

= (D

T

n

D

n

)

�1

D

T

n

(f

N

�A

NI

u

I

�A

NN

u

N

) :

In our last step, we an rearrange the indies. The new index group I inludes now

the former index group I plus the tangential omponents of the vetors in the former

index group N . The new index group N is a subset of the former index group N

and ontains the normal omponents. We observe, that the submatrix of O

N

D

n

orresponding to the new index group N is diagonal. Thus, we an proeed as in

Setion 3. Using this new index grouping, we get exatly the same struture of the

saddle point problem as in (3.1), and the proposed multigrid algorithm an be applied

on (6.3).

Finally, we show some numerial results, illustrating the di�erene between the

two oupling onditions at the interfaes. We start with the 2D example of Setion 5

and onsider two di�erent boundary onditions. In the �rst situation, see the middle

piture of Figure 6.1, we use a onstant displaement in normal diretion at the

upper and right boundary part of the domain. The seond situation is de�ned by

a linear displaement in normal diretion at the upper and right boundary part of

the domain. As in Setion 5, the lower left orner of the domain is �xed, i.e., we

apply homogeneous Dirihlet boundary onditions on �

D

. Compared to Setion 5,

we use a weaker oupling ondition at the interfaes. Here, the bodies are not glued

together, and free tangential displaement is permitted. The oupling ondition in

normal diretion an be viewed as a kind of non penetration ondition of the bodies

with respet to the referene on�guration.

Figure 6.1 displays the displaement of the solution saled by the fator 10. Due

to the tangential displaement, penetration might be observed at the interfae, see

the right piture in Figure 6.1. Although, the proposed algorithm does not solve a

nonlinear ontat problem, we an use the method as an inner iteration sheme within

an outer sheme used to detet the atual zone of ontat. One the atual ontat

boundary is known, our algorithm solves the ontat problem, and no penetration

ours. The drawbak of this method is that in eah outer iteration step a mass

matrix has to be assembled.

Figure 6.2 shows a model problem in 3D. The displaement of the solution and

the oarse triangulation are given for the saddle point problems (2.3) and (6.1). On
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Fig. 6.1. Coupling in normal diretion and free tangential displaement in 2D

the left, the Lagrange multiplier spae has three degrees of freedom per node, one

degree in eah diretion. The mortar �nite element solution satis�es a weak ontinuity

ondition in tangential and normal diretion. In the seond situation on the right of

Figure 6.2, there is no ontinuity ondition for the tangential displaement. Thus, we

replae the bilinear form b(�; �) in the saddle point formulation by b

n

(�; �), and work

with the modi�ations proposed in this setion.

Fig. 6.2. Coupling in both diretions (left) and in normal diretion (right) in 3D

Figure 6.2 shows the strutural di�erene between the two weak oupling ondi-

tions at the interfae. On the left, there is no relative displaement of the two bodies

in tangential diretion, whereas in the situation on the right, a sliding between the

two bodies is permitted. A relative displaement of the left body with respet to

the right body an be observed. We remark that the nononforming spae V

h

is a

subspae of the kernel V

n

h

of (B

n

h

)

T

assoiated with the bilinear form b

n

(�; �). In the

general situation that �


k

\ �

D

is empty for some subdomain indies, the elliptiity

of a(�; �) on V

n

h

�V

n

h

is lost, and rigid body motions are ontained in V

n

h

. We obtain

unique solvability in our example by imposing Dirihlet boundary onditions on one

fae of eah subdomain.

7. Elasti ontat of two bodies. In this setion, we onsider a new algorithm

for the elasti ontat between deformable bodies. The numerial simulation of elasti

ontat has been extensively studied in various papers, see, e.g., [DNS99, WG97,

HH80, HH81, ESW99℄. For a survey, we refer to [Wri95, IHL88, KO88℄ and the

referenes therein. One of the major diÆulties in the numerial simulation of ontat

problems is the non{di�erentiability of the assoiated energy funtional at the ontat
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boundary. Regularization tehniques (penalty methods) are widely used, see, e.g.,

[CSW99, ESW99℄, as well as augmented Lagrangian methods [Tal94, PC99℄. Here,

we ombine monotone multigrid methods [Kor97a, KK99℄ with mortar tehniques.

The information transfer at the ontat boundary is realized in terms of the saled

mass arising from the mortar method with dual Lagrange multipliers.

For simpliity, we restrit ourselves to the ase of two deformable bodies in on-

tat, see Figure 7.1. The two bodies in their referene on�guration are identi�ed

with the domains 


k

; k = 1; 2, and we deompose the solution u in u = (u

1

;u

2

), and

write (u

k

)

n

:= u

k

�n

k

, k = 1; 2, where n

k

is the outer unit normal on �


k

. Let us now

formulate the ontat problem between two linear elasti bodies as boundary value

problem. We deompose the boundary of 
 in three disjoint parts, �

D

is the Dirihlet

part, �

F

denotes the Neumann part and �

C

stands for the ontat boundary. We

note that the atual ontat zone between the two bodies unknown in advane, and

it is assumed to be a subset of �

C

. In addition to the equilibrium onditions in 
 and

boundary onditions on �


��

ij

(u)

;j

= f

i

; in 
 ;

u = 0; on �

D

;

�

ij

(u) � n

j

= p

i

; on �

F

;

(7.1)

we have the following onditions on the possible ontat boundary �

C

�

T

(u

1

) = �

T

(u

2

) = 0 ;

�

n

(u

1

) = �

n

(u

2

) � 0 ;

(7.2)

and the linearized ontat ondition on �

C

t � (u

1

)

n

+ (u

2

)

n

;

0 = ((u

1

)

n

+ (u

2

)

n

� t)�

n

(u

1

) ;

(7.3)

where the funtion t : �

C

� IR

d

�! IR is the distane between the two bodies in

normal diretion taken with respet to the referene on�guration. Here, we onsider

a ontat problem without frition. Thus, the tangential omponent of the stress

tensor vanishes at the ontat boundary, and is set to zero in the �rst equation of

(7.2). We have only ontat pressure at �

C

. If there is no ontat between the two

bodies, the boundary stresses at �

C

are zero, see Equations (7.2) and (7.3). For

details of the problem formulation, we refer to [HH80, BGK87℄. We write f(v) :=

(v; f)

0;


+ (v;p)

0;�

F

and denote by f

k

(�) and a

k

(�; �) the restrition of f(�) and a(�; �)

to 


k

; k = 1; 2, respetively. In general, the zone of atual ontat is unknown,

and thus the ontat problem is nonlinear and non{di�erentiable with respet to the

displaements at the ontat boundary. The orresponding weak formulation results

in a variational inequality. Let us de�ne the onvex set K of admissible displaements

by

K = fv 2 H

1

�

(


1

)�H

1

�

(


2

) j (v

1

)

n

+ (v

2

)

n

� tg :

The weak form of (7.1){(7.3) is given by a variational inequality: Find u 2 K suh

that

a(u;v � u) � f(v � u); v 2 K ;

whih is equivalent to minimizing the energy funtional J(v) :=

1

2

a(v;v) � f(v) on

K, see, e.g., [HH80, BGK87℄.
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Fig. 7.1. Two elasti bodies in ontat (left) and Hertzian ontat problem (right)

Our approah is based on a Dirihlet{Neumann algorithm with inexat solvers. In

eah step, a nonlinear one{sided ontat problem has to be solved. This is done on the

disrete level by a monotone multigrid method, see [Kor97b, KK00℄. Furthermore, an

inhomogeneous Neumann problem has to be solved. Here, we apply standard multi-

grid tehniques. The information transfer at the ontat boundary will be realized in

terms of dual mortar methods. The major advantages of this new approah are the

eÆieny of the iterative solver, and the a priori estimates for the boundary stresses

at the atual ontat zone. In ontrast to penalty methods, the disretization error

of the boundary stresses does not depend on regularization parameters.

To motivate our approah, let us assume for the moment that the ontat stress

�

n

is known on �

C

. Then, problem (7.1){(7.3) an be deoupled in the following

way: In a �rst step, we solve an inhomogeneous Neumann problem on 


2

: Find

u

2

2 H

1

�

(


2

) suh that

a

2

(u

2

;v) = f

2

(v) + (�

n

;v

n

)

0;�

C

; v 2 H

1

�

(


2

) :

Having u

2

2 H

1

�

(


2

), u

1

2 H

1

�

(


1

) an be obtained in terms of u

2

j

�

C

as the solution of

a one{sided ontat problem. We de�ne the onvex set K

g

of admissible displaements

for the salar funtion g by

K

g

:= fv

1

2 H

1

�

(


1

) j (v

1

)

n

� t� g on �

C

g :

Then, the one{sided ontat problem an be written as a variational inequality: Find

u

1

2 K

(u

2

)

n

suh that

a

1

(u

1

;v � u

1

) � f

1

(v � u

1

); v 2 K

(u

2

)

n

: (7.4)

The disretization of the set K

g

is given by

K

h

g

:= fv

1

2 X

1;h

j (v

1

)

n

(p) � t(p)� g(p) for all p 2 T

h

1

\ �

C

g ; (7.5)

where X

k;h

is the �nite element spae X

h

\H

1

�

(


k

), k = 1; 2. Here, we assume that

g and t are ontinuous. Then, a priori estimates for the disretization error an be

found in, e.g., [KO88℄. In the following, we also denote the disrete approximation by

u = (u

1

;u

2

) 2 X

1;h

�X

2;h

, and we do not use an additional index h, and � 2 M

h

stands for the disrete boundary stress.

The variational inequality (7.4) an be solved eÆiently by monotone multigrid

methods. Here, the main idea is to minimize the energy funtional J

1

(�) on K

h

(u

2

)

n
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suessively in diretion of appropriate test funtions. Choosing the multilevel nodal

basis of a multigrid hierarhy as test funtions, this turns out to be a ombination

of a projeted blok Gau�{Seidel on the �nest grid with loally damped oarse grid

orretions, and an be implemented as a modi�ed V{yle. Sine the oarse grid

orretions have to satisfy the onstraints given by (7.5) with respet to the �nest

triangulation, suitable non{trivial oarse grid funtions have to be onstruted. It

an be shown, that after a �nite number of iterations the disrete ontat boundary

is identi�ed. Then, the method degenerates to a standard multigrid method with

speial treatment of the eventually urvilinear ontat boundary. For details, we refer

to [Kor97a, KK99, KK00℄. Moreover in the mortar setting, the Lagrange multiplier

plays the role of Neumann boundary onditions. In the dual approah, the ontat

stress �

n

an be obtained from the residual by a loal post{proessing step. The

ombination of mortar �nite elements, monotone multigrid methods and domain de-

omposition tehniques de�nes in a natural way a new solution algorithm for elasti

ontat problems. It an be interpreted as a Dirihlet{Neumann type algorithm. We

de�ne the mortar side to be on the ontat boundary of 


2

, and the non{mortar side

is the adjaent side on the ontat boundary of 


1

. Let us introdue the transfer

operator S

h

: X

2;h

�! X

1;h

,

(S

h

v)

i

:=

X

p2P

hv

i

; �

p

i

�

C

R

�

C

�

p

ds

�

p

; v 2 X

2;h

; 1 � i � d ;

where �

p

is the salar nodal basis funtion in 


1

assoiated with the vertex p, and

P is the set of verties on the non{mortar side of �

C

. In ontrast to the previous

setions, the verties on the boundary of �

C

are inluded, and no modi�ation of

the dual basis funtion �

p

is neessary in the neighborhood of the boundary of �

C

.

Denoting the matrix representation of S

h

by S, we observe that S is a n

1

�n

2

matrix,

n

k

:= dimX

k;h

, k = 1; 2, whih onsists of large zero bloks and one non zero blok

assoiated with the verties on the non{mortar and mortar side.

obstacle

residualstress

trace

Ω Ω1 2

linear non linear

Neumann problem one-sided contact pb.

Fig. 7.2. Nonlinear Dirihlet{Neumann type algorithm

Before we present our nonlinear Dirihlet{Neumann algorithm whih is illustrated

in Figure 7.2, we introdue some notation. For k = 1; 2, we denote by A

k

the sti�ness

matrix with respet to a

k

(�; �) and by f

k

the vetor assoiated with the right hand side,

i.e., f

k

(v) = (f

k

;v), v 2 X

k;h

. Using the same tehniques as in Setion 6, we de�ne for

eah g 2 X

h

by means of the loal rotations O

p

a ontinuous funtion g

n

: �

C

�! IR.

Here, in an abuse of notation, we do not distinguish between an element v 2 X

h

and

its vetor representation with respet to the standard nodal basis. In addition, we

identify the spaes X

k;h

and IR

n

k

, k = 1; 2. Now, our Dirihlet{Neumann algorithm

in its algebrai formulation is de�ned as follows:
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Choose damping parameters: 0 < �

1

; �

2

� 1.

Initialize: X

1;h

3 g

�1

= 0; X

2;h

3 p

0

= 0.

For � = 0; : : : ; N do

Solve linear Neumann problem: Find u

�

2

2 X

2;h

:

A

2

u

�

2

= f

2

+ p

�

:

Transfer of displaements and damping:

g

�

= (1� �

1

)g

��1

+ �

1

Su

�

2

:

Solve nonlinear one{sided ontat problem: Find u

�

1

2 K

h

g

�

n

:

(A

1

u

�

1

;v � u

�

1

) � (f

1

;v � u

�

1

); v 2 K

h

g

�

n

:

Compute the linear residual r

�

1

2 X

1;h

:

r

�

1

= A

1

u

�

1

� f

1

:

Transfer of saled boundary stresses and damping:

p

�+1

= (1� �

2

)p

�

+ �

2

S

T

r

�

1

:

The transfer of the Dirihlet values at the ontat boundary is realized in terms

of the operator S

h

and the transfer of the saled boundary stresses in terms of the

adjoint operator S

�

h

, orresponding to the duality between displaements and stresses.

In the algebrai formulation, the matrix S is used to transfer the displaements on the

mortar side as Dirihlet values, or more preisely as an obstale, onto the non{mortar

side, and the saled boundary stresses are transferred from the non{mortar side onto

the mortar side in terms of the transposed matrix S

T

. The interfae onditions of

the mortar formulation guarantee that (7.2) and (7.3) are satis�ed in a weak integral

form. For fritionless ontat, the �rst equation in (7.2) an also be satis�ed in its

strong form. Then, the Lagrange multiplier spae is a salar funtion and the mortar

approah has to be modi�ed aording to Setion 6. Here, we work with the more

general approah that the Lagrange multiplier spae is also vetor valued.

Remark 7.1. Using the vetor valued approah for the Lagrange multiplier spae,

frition terms an be easily inluded. The �rst equation in (7.2) has to be replaed by

some frition law, e.g., the Coulomb frition.

Let us now onsider the matrix S in more detail. Setting D

S

= diag(d

p

)

p2P

and

d

p

2 IR

d�d

= diag(

R

�

C

�

p

ds)

1�i�d

, we an write the non zero blok of S as a saled

mass matrix D

�1

S

M

T

S

. Here, the mass matrix M

S

orresponds to the duality pairing

h�; �i

�

C

. Then, D

�1

S

M

T

S

is losely related to the saled mass matrix matrix D

�1

M

T

given in Setion 3. The entries of M

S

are given by

R

�

C

�

p

0

�

p

ds ; where �

p

0

is the

salar nodal basis funtion in 


2

assoiated with the vertex p

0

2 �

C

. Due to the jump

[�℄ in the de�nition of the bilinear form b(�; �), the entries of M have the opposite sign.

Considering implementational aspets, we observe that the same subfuntions an be

used for assembling M and M

S

. Moreover for a suitable index ordering, we �nd

S =

�

D

�1

S

M

T

S

0

0 0

�

;
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and the appliation of the operator S

h

requires only the multipliation with a saled

mass matrix on the ontat boundary.

Furthermore, the boundary stress � an be obtained by a loal post{proessing

step from the �nal residual r

N

1

,

� = (D

�1

S

0) r

N

1

:

In a last step, we get the normal stress �

n

and the tangential stress �

T

by a loal

rotation from �. We remark, that the numerial results show that �

T

= 0, although

we do not enfore this ondition.

Remark 7.2. If the atual ontat zone is known, problem (7.1){(7.3) will be

linear. In this ase, we an expet the same order of onvergene as for a standard

Dirihlet{Neumann type preonditioner.

Finally, we present numerial examples for the proposed algorithm. Our �rst test

problem is the Hertzian ontat of a linear elasti irle with a linear elasti plane. In

this example, the ontat stresses an be omputed analytially [Her82℄. To test the

performane of our algorithm, we ompare the omputed boundary stresses with the

analytial ones. For omparability, we hoose the same problem data and geometry as

in [CSW99℄. We onsider an elasti irle with saled material parameters E = 7000,

� = 0:3 and radius r = 1, pressed by a point load F = 100 onto a quadrilateral with

material parameters E = 10

6

, � = 0:45.

As is done in [CSW99℄, we apply the single load as surfae load to avoid a sin-

gularity. Homogeneous Dirihlet boundaries have been applied on the right and left

boundary part of the quadrilateral, see the right part of Figure 7.1. We use bilinear

funtions on quadrilaterals and uniform re�nement. On both subdomains, we apply

a V(3; 3){yle. In this example, we hose �

1

= 1 and �

2

= 0:5. The problems on the

two subdomains are solved up to a tolerane of 10

�10

. On eah level, only a few outer

iteration steps are required to reah the stopping riterion for "

TOL

= 10

�5

,

kp

�

� S

T

r

�

1

k

kp

�

k

� "

TOL

:

In the left of Figure 7.3, the maximal ontat stress on eah level is displayed, showing

the performane of our method. The analytial value of �

max

n

= 495 is already reahed

on level 5. Here, only 5 nodes of the irle are atual in ontat with the plane. In the

middle of Figure 7.3, the ontat and tangential stresses are shown, in the right, the

omponent �

22

(u) of the stress tensor is depited. To demonstrate the exibility of

our approah, we do not enfore �

T

= 0 on the spae. The Lagrange multiplier of the

mortar method plays the role of the boundary stresses at �

C

. Thus, the boundary

stresses are handled as additional unknowns whih an be obtained by a loal post{

proessing from the residual. This observation predestinates our algorithm for ontat

problems with frition.

In our last example, we apply our algorithm to a more omplex geometry. The

elasti ontat of a wrenh and a nut is onsidered. At the interior boundary of the nut,

i.e., the part of the boundary with outer normal pointing towards the enter of gravity

of the nut, we impose Dirihlet boundary onditions orresponding to a rotation by

�=180. Homogeneous Dirihlet boundary onditions are applied at the handle of

the wrenh and on all remaining parts of the boundary we impose homogeneous

Neumann onditions. We use linear elements on triangles, and adaptive re�nement.

The spei�ed material parameters are E = 7000 and � = 0:28 and the damping

parameters are �

1

= 1, �

2

= 0:25. As an be seen in the right of Figure 7.4, the atual
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(right)

ontat zone is only a small part of the ontat boundary �

C

. We remark, that a

more realisti model would inlude frition at the interfae.

Fig. 7.4. Details of the deformed on�guration for the nonlinear ontat problem
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