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Flow and transport in fractured porous media play an important role for many en- 
vironmental applications, e.g. the design of disposal systems for hazardous waste. The 
different hydraulic properties of the fractures and the surrounding rock matrix have a 
strong influence on the behaviour of the physical processes existing on site. 
In the two papers of this conference, we will present a new numerical concept to describe 
saturated flow and transport processes in arbitrarily fractured porous media. We will use 
an equidimensional approach where fracture and matrix are discretized with elements of 
the same dimension. To solve the problem, we developed a two-level multigrid method 
based on a hierarchical decomposition into a fracture problem and a matrix problem. 
This decoupled treatment of fracture and matrix allows us to handle the locally governing 
physical processes appropriately. In this paper we will also present convergence compar- 
isons with classical multigrid and algebraic multigrid methods (AMG). In Neunhiiuserer 
et al. (this issue, part II) we will discuss the effect of equidimensionality on the modelling 
results and the influence of the chosen transport discretisation technique. 

1. I N T R O D U C T I O N  

The simulation of groundwater flow and solute transport behaviour in fractured subsur- 
face systems is of major importance when investigating the longterm safety of legacies and 
waste disposal sites, the remediation of contaminant sites, or the safety of aquifers used as 
drinking-water reservoirs. The complex geometry as well as the vastly different hydraulic 
properties of fractures and the porous matrix lead to very heterogeneous flow and trans- 
port conditions. Fractures representing distinctive pathways allow for fast contaminant 
transport through the system, resulting in early breakthrough times. From the fractures, 
the contaminant enters the surrounding matrix by diffusive or dispersive processes. It is 
stored in the matrix and released slowly back into the fractures, thus causing a longterm 
contamination of the system. Numerical concepts employed to describe fractured porous 
formations have to take these heterogeneous conditions into account. 

In this paper we consider a discrete model for the flow in porous media in two space 
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dimensions. Matrix as well as fractures are represented by quadrilaterals (equidimen- 
sional modelling). This contrasts to most of the previous works on this field where frac- 
tures are usually represented by ld-elements (2-D) or ld-and 2d-elements (3-D) (el. 
e.g. Helmig[6], Barlag [2]). Though well-working in a number of applications this lower 
dimensional approach does not provide local mass conservation and does not allow to 
follow unambiguous streamlines in and out of the fracture. This might be a drawback in 
some situations. It will be shown by numerical experiments in part II that our equidi- 
mensional approach might end up with different results in simulation. In part I of this 
paper, we will concentrate on numerical computation of the flow field, in particular on 
steady state flow. The resulting flow field will be used for an ideal tracer transport to be 
considered in part II. A triangulation of the fractures with a reasonable number of nodes 
leads to long, thin elements. Though almost degenerate elements are not a problem from 
the approximation point of view (cf. e.g. Jamet [8]), they cause severe problems in the 
iterative solution of the discretized problems. For example, classical multigrid methods 
usually fail for vanishing width of fractures. Additionally jumping coefficients along the 
fracture-matrix interface have to be taken into account. 

In part I of this paper we present a two-level multigrid approach based on hierarchical 
decomposition of the original equation and a special multigrid method involving additional 
corrections at the fracture-matrix interface in the smoothing step of the resulting matrix 
problem. It turns out in numerical experiments that the convergence of our two-level 
multigrid method is robust with respect to vanishing width of fractures and jumping 
coefficients. 

2. G O V E R N I N G  E Q U A T I O N S  

We consider saturated Darcy flow in a confined aquifer. Incompressibility of the fluid 
and nondeformability of the fractured porous medium are assumed. Then the continuity 
equation 

Oh 
So - ~  + V .  vf = :, (1) 

in combination with Darcy's law 

vs = - K : .  V h (2) 

leads to a linear parabolic equation for the piezometric head h. So represents the specific 
storage coefficient, t the time, v I the Darcy velocity, f external sources and sinks and K /  
the hydraulic conductivity tensor. The coefficients of K S are uniformly bounded functions 
on ~ and K / i s  symmetric and uniformly positive de-finite. We will use the formulation 

with unknown pressure p = p g ( h -  z) and given fluid density p, gravity g and geodetic 
altitude z. Furthermore, we will restrict ourselves to the steady state solution 

v �9 (g :Vp)  + p g V.  (__K:Vz)+ p g :  = o (3) 



337 

3. H I E R A R C H I C A L  D E C O M P O S I T I O N  A N D  R O B U S T  S M O O T H E R  

We consider the flow in the pressure-formulation (3). For simplification we assume 
homogenous Dirichlet boundary conditions. 

Fini te  e lement  discret isat ion.  By multiplying the differential equation with an 
arbitrary v from the solution space Y = {v e Hl(f~)lv(x) = 0 Vx E 0f~}, integrating over 
f~ and applying Greens formula we obtain the weak formulation 

p e V:  a(p, v) = ~(v) Vv e V, (4) 

with 

a(p, v ) :=  fa VpTKIVV dz and t?(v)"= pg/~  ( Iv  + (gfVz)WVv) dx. (5) 

As K I is symmetric, uniformly positive definite and uniformly bounded on f~, the bilinear 

form a(., .) is symmetric, positive definite and bounded on V. Hence, for each f E L2(f~) 
there exists an uniquely defined weak solution p e Y (cf. e.g. Braess(1997)[4]). 

For ease of presentation we only consider the 1D case, i.e. ft - ( -1 ,1) .  2D calculations 
will be reported later on. Starting with the grid Af~ as depicted in figure 1, we construct 
a sequence of grids Af~ c Af~ c . . .  c Afj ~ by bisection. The corresponding spaces of linear 
finite elements 8~ C 8~ C . . .  C S] will be used as a starting point for the construction 
of multigrid methods for the discretized problem 

p; e S~ : a(p~, v) = e(v) Vv e S~ (6) 

to be described below. 
Hierarchical  decomposi t ion .  We consider the hierarchical decomposition 

s; : C  e C  (7) 
into the matrix space 8 M and the fracture space S~. In our introductory example 8 K is 
spanned only by the one nodal basis function A05 associated with the node x0, while the 
matrixspace S M is spanned by the nodal basis functions corresponding to Afy = Afj ~ \ {x0} 
(cf. figure 1). According to Xu [12] and Yserentant [13] the hierarchical decomposition 
(7) immediately induces the following successive subspace correction method. 

A l g o r i t h m u s  3.2 ( T w o  level i t e ra t ion )  

given: p~' E 8~ 

solve: v M e 8 M" a(v M, v) = e(v) - a(py, v) Vv e 8 M (8) 

solve: v K E 3 K"  a(v g ,  v) = g(v) - a(p~ + v M, v) Vv E S g (9) 

new iterate: p~+l _ p~, + v M + v~ 

Algorithm 3.2 is linearly convergent. Each iteration step requires the solution of the 
matrix problem (8) and of the fracture problem (9) with unknowns located in the interior 
of the fractures. Convergence is preserved if the exact solution is replaced by one step 
of suitable subspace correction methods applied to the two subproblems. The choice of 
these methods is discussed below. 
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Figure 1. Hierarchical decomposition 
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F r a c t u r e - P r o b l e m .  For our introductory problem the solution of (9) is trivial. In 
the 2D case triangulation of fractures by a coarse mesh To leads to long and thin elements. 
The number of unknowns located in the interior of the fractures is expected to be much 
smaller than the number of unknowns associated with the matrix. This suggests exact 
solution of (9) by a direct solver. Anisotropic multigrid with line relaxation (cf. Wittum 
(1989) [11] or Apel und Sch5berl (2000) [1]) might be considered in more complicated 
situations. 
M a t r i x - P r o b l e m .  The construction of suitable iterative schemes for the matrix problem 
is more complicated. As a first step towards multigrid methods which are robust with 
respect to jumping coefficients and (in higher space dimensions) to almost degenerate 
elements, we now describe a multigrid method which will turn out to be robust for ~ --, 
O. Using the hierarchy of grids ArM -- ./Y'~ \ {x0} and the corresponding hierarchy of 
finite element spaces S M, k = 0 , . . . ,  j ,  we first consider the classical multigrid method 
with canonical restriction and prolongation and GauB-Seidel smoother. For arbitrary 
intermediate iterate w E 8 M the correction associated with the node x-1 = - ~  E JY "M 
(left f racture-matr ix interface) on level k is given by 

f ( A - l , k )  --  a ( w ,  A_l ,k )  (10)  
z ~ - -  

-1,k - -  a ( A - l , k ,  / k - l , k )  

Here A-l,k C SM denotes the nodal basis function on level k corresponding to x-1. It is 
easily seen that  e ~ 0 leads to [[A-t,k[I = a(A-l,k, A-l,k) 1/2 ~ co giving Z~l, k ---+ O. As 
coarse grid corrections at the fracture-matrix interface are vanishing, convergence rates 
of Gau6-Seidel multigrid deteriorate dramatically for e --+ 0. This property is typical for 
common multigrid methods. 

In order to achieve robust convergence behavior for e ~ 0, we introduce an additional 
correction at the fracture-matrix interface associated with CD,k = A-l,k + Al,k (cf. figure 2). 
The additional correction is 

6 f(r - a(w, r 
ZO, k : a(r  r " (11) 

Note that  CD,k tends to the hat function r176 as c ~ 0. This is a coarse grid nodal 
basis function for the reduced grid Af~ = Ark \ {x-l ,  Xl} and z ~ is the local Gau6-Seidel 0,k 
correction given by the Gau6-Seidel multigrid method as applied to the reduced problem 

pO E S ~  e~ v) = [(v) Vv E S ~ (12) 
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Figure 2. Additional coarse grid correction 

The reduced problem (12) describes the situation for the case x-1 - x0 - xl, that is 
without fracture. Note that p~ ~ pO w.r.t, the energy norm holds uniformly in j as 
e ~ 0 .  

Mul t ig r id  m e t h o d .  Our final multigrid method is now obtained by replacing the 
exact solution of the matrix problem (8) in Algorithm 3.2 by one step of the multigrid 
method described above. The fracture problem (9) is solved directly. 

The resulting multigrid method can be easily extended to higher space dimensions. For 
example, consider the crossing of two fractures in 2D. Then the additional correction of 
the form (11) is carried out for r = ~l,k + )~2,k + ~3,k + ~4,k, where )~,k C S ~ , i  = 
1, . . . ,  4 denote the nodal basis functions associated with the nodes xi at the corners of 
the crossing. 

4. E X A M P L E S  

To evaluate our two-level multigrid method we consider the following simplified case 
of (4) as a model problem (see figure 3) 

- K  fAp(x) = f (z) for x e 
p = C1,3 for xEF1,3 with C i = c o n s t  

Op  = 0 for xEF0,2. 

The following convergence rates were computed for a multigrid V-cycle with one pre- and 
one post smoothing step in the matrix problem. 
In figure 4 the convergence rates for different smoothers in the multigrid of the matrix 
problem of the hierarchical decomposition for a fixed number of unknowns (6821) and 
variable fracture width are displayed. As expected, the Gaufl-Seidel smoother ( ' -  - - ' )  
is not applicable for small ~: The convergence rates rapidly tend to 1 for vanishing frac- 
ture width. On the other hand, the convergence rates for our two-level multigrid method 
( ' . . . ' )  seem to be robust with respect to the fracture width. We also tested the incom- 
plete LU--decomposition (ILU, Wittum[ll]) as a smoother in the multigrid of the matrix 
problem (' . . . .  ') but found no convergence for medium fracture widths. Note that the 
convergence rates of our two-level multigrid method tend to the convergence rates of clas- 
sical Gaufl-Seidel multigrid as applied to the reduced problem without fractures ( '-- ') .  
Since algebraic multigrid methods where developed for similar examples, we will now 
compare the convergence behaviour of our method and of the algebraic multigrid method 
(Ruge/Stiiben [10] and Braess [5]). We will investigate robustness with respect to frac- 
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ture width, jumps in the hydraulic conductivity and refinement depth. 
Again we computed the convergence rates for the simple crossing (cp. figure 3) with 
a multigrid V-cycle with one pre- and one post smoothing step both for Gaut3- Seidel 
multigrid with additional corrections (matrix problem) and for the AMG (complete prob- 
lem). 

The left picture in figure 5 shows the convergence rates for 26437 unknowns over the 
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Figure 3. Domain with a simple crossing of two fractures (Coarse Grid of Matrixproblem) 
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Figure 4. Convergence rates for small ~ for different smoothers in the multigrid of the 
matrixproblem 

fracture width ~. The algebraic multigrid method developed by K. Ruge, J. W. Stueben 
[10]('- - - ' )  shows even better performance for wide fractures than our method ('-.. ') 
but does not converge for smaller fracture widths. This might be due to roundoff errors 
or to the method itself. Another algebraic multigrid method by Braess [5] only converged 
in combination with a Krylov-method, e. g. BCGS. On the right picture we depict the 
convergence rates over the hydraulic conductivity in the matrix. Obviously neither the 
algebraic multigrid method nor our two-level multigrid has any difficulties with the jump 
in the hydraulic coefficients at the fracture-matrix interface. 
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Figure 5. Convergence rates for small s and large jumps in the hydraulic conductivity k/ 
in fracture and matrix 
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Figure 6. Convergence rates for varrying refinement depth, ~ - 10 -5 left, ~ - 10 -6 right 

Figure 6 shows the convergence rates for an increasing number of unknowns. On the 
left the fracture width ~ is slightly bigger (10 -5) than on the right (10-6). It turns out 
that the algebraic multigrid method is not independent of the refinement depth inasmuch 
the smaller the fracture width, the earlier the algebraic multigrid method diverges. The 
convergence rates of our two-level multigrid method seem to saturate with increasing 
refinement. 
All computations in this paper were done with the software toolbox MUFTE-UG (Bastian 
et al. [3] and Helmig et el. [7]). 

5. C O N C L U S I O N S  

We have seen in the numerical examples that usual multigrid methods do not work well 
for the extreme conditions in fractured porous media with equidimensional fractures. For 
example, the convergence rates of straightforward Gaufl-Seidel multigrid rapidly tend to 1 
with decreasing fracture width ~. Algebraic multigrid method, though faster for moderate 
~, did not converge at all for small values of ~. 
Our method turned out to be robust with respect to vanishing fracture width ~, strongly 
varying coefficients and vanishing mesh size. Mathematical justification is the subject of 
current work. 
Future research will concentrate on extensions of our approach to mixed methods. 
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