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Abstract. We present efficient and robust multigrid methods for the solu-

tion of large, nonlinear, non-smooth systems as resulting from implicit time

discretization of vector-valued Allen-Cahn equations with isotropic interfacial

energy and logarithmic potential. The algorithms are shown to be robust in

the sense that convergence is preserved for arbitrary values of temperature,

including the deep quench limit. Moreover, numerical experiments indicate

that the convergence speed is independent of temperature, mesh size and time

step.

1. Introduction

Since the pioneering paper on grain boundary motion in crystalline solids [1]
Allen-Cahn equations have become a prototype model for isothermal phase tran-
sitions. Driven by practical relevance and by close connections to fundamental
geometric problems [20], Allen-Cahn equations and their discretization have been
extensively studied during the last decades (see, e.g., [7, 10, 13] and the litera-
ture cited therein). Recently, vector valued versions attracted increasing inter-
est [9, 15, 16, 18, 28].

Numerical computations for Allen-Cahn equations are often based on explicit
schemes leading to severe stability constraints limiting the time step in terms of
the mesh size. On the other hand, such kind of models describing, e.g., grain growth
or other coarsening phenomena naturally call for implicit, unconditionally stable
discretizations allowing for the adaptive selection of possibly large time steps in
combination with highly non-uniform meshes. In this paper, we present efficient
and robust multigrid methods for the solution of the resulting large, nonlinear
spatial problems. We concentrate on vector valued Allen-Cahn equations with
logarithmic potential. As the smoothness of the nonlinearity deteriorates with
decreasing temperature θ > 0 and is lost completely in the deep quench limit
θ = 0, we strive for robustness in the sense that convergence properties should be
preferably independent of the discretization parameters and of the temperature for
all θ ≥ 0. For simplicity, we concentrate on isotropic interfacial energy. Extensions
to the anisotropic case will be considered elsewhere.

Our starting point is a reformulation of the spatial problems in terms of convex
minimization. We present a polygonal Gauß-Seidel method MJ which is based on
successive one-dimensional line search in the direction of the edges of the Gibbs
simplex at each node. In contrast to a straightforward block Gauß-Seidel approach
this method avoids the solution of local systems with N unknowns reflecting the
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N phases. Convergence is proved for all θ ≥ 0. Note that such kind of robustness
has to be payed by suboptimal complexity, i.e., O(N2nJ ) point operations for each
iteration step (nJ stands for the number of nodes).

The convergence speed of Gauß-Seidel type methods typically deteriorates with
decreasing mesh size. Following [25, 26], polygonal Gauß-Seidel relaxation is accel-
erated by additional coarse grid corrections CJ , taking the low frequency compo-
nents of the error into account. The construction of CJ extends constrained Newton
linearization [26] and monotone multigrid [22] for obstacle problems from the scalar
case with box constraints to the vector valued case with Gibbs constraints. The
basic idea is to restrict the coarse grid corrections to a neighborhood of an actual
intermediate iterate in which the Newton linearization can be controlled by local
Lipschitz constants. This procedure can be interpreted as some kind of a priori
damping. Monotonically decreasing energy is enforced by additional a posteriori
damping which is applied locally to each correction at each node on each refinement
level. In the deep quench limit θ = 0, the whole approach collapses to a multilevel
version of polygonal Gauß-Seidel relaxation [27]. The resulting multigrid methods
have the same order of complexity as the Gauß-Seidel scheme and we prove con-
vergence of a standard and a truncated version for all θ ≥ 0. Asymptotic or even
global bounds for the convergence rates will be the subject of future research. In
our numerical experiments we consider 5 or 3 phases in 2 or 3 space dimensions,
respectively. In both examples, our multigrid methods showed uniformly bounded
convergence rates with respect to temperature θ. Comparisons with an undamped
version indicate that there is still some potential for even more sophisticated damp-
ing strategies.

The paper is organized as follows. In the next section, we compile some ba-
sic information about vector-valued Allen-Cahn equations and their discretization.
The resulting spatial problems can be regarded as special cases of a convex min-
imization problem as stated in Section 3. In the following section, we introduce
polygonal Gauß-Seidel relaxation and give a convergence proof based on geometri-
cal properties of the Gibbs simplex. In Section 5 we provide a general framework for
the accelaration of this scheme by additional coarse grid correction. The resulting
convergence results are then applied to monotone multigrid methods as derived in
Section 6. Numerical experiments finally illustrate the efficiency and robustness of
these solvers.

2. Vector–valued Allen–Cahn equations

We consider the evolution in isothermal, multi-phase systems on a polygonal
(polyhedral) domain Ω ⊂ R

d, d = 1, 2, 3. The concentrations of the different phases
i = 1, . . . , N at each particular point (x, t) ∈ Q = Ω × [0, T0], T0 > 0, are repre-
sented by the components ui(x, t) of the order parameter u = (u1, . . . , uN)T . As
concentrations are non-negative and add up to unity, the order parameter satisfies
the constraints

u(x, t) ∈ G = {v ∈ R
N | vi ≥ 0,

∑N

i=1 vi = 1} ∀(x, t) ∈ Q.

The closed convex set G ⊂ R
N is often called Gibbs simplex. The Ginsburg–Landau

total free energy of our system is assumed to take the form

(2.1) E(u) =

∫

Ω

ε

2

N∑

i=1

|∇ui|
2 +

1

ε
Ψ(u) dx
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with fixed ε > 0. The quadratic interfacial energy is balanced by a free energy Ψ
which potentially gives rise to phase separation. We concentrate on a multi-phase
version of the well-known logarithmic free energy (cf., e.g., Garcke et al. [15], Barrett
& Blowey [4]). More precisely, Ψ = Ψθ is given by

(2.2) Ψθ(u) = θΦ(u) + Ψ0(u), u ∈ G,

with the convex function

(2.3) Φ(u) =
N∑

i=1

ui ln(ui), u ∈ G,

and the quadratic term

Ψ0(u) = θc
N
2 u · Cu = θc

N
2

N∑

i=1

ui(Cu)i, (Cu)i =

N∑

j=1

cijuj ,

which is induced by a symmetric interaction matrix C = (cij)
N
i,j=1 (cf. De Fon-

taine [14]). Here, θ, θc are denoting absolute and critical temperature, respectively.
For θ < θc, we assume that Ψθ has exact N distinct local minima on G correspond-
ing to the pure phases i = 1, . . . , N . For example, this is true for the choice

(2.4) C = (1 − δij)
N
i,j=1 (Kronecker-δ)

which means that the interaction of all different phases is equal and no self-interac-
tion occurs. For this setting, we obtain the classical obstacle potential (cf. Garcke
et al. [16, 17, 18])

Ψ0(u) = θc
N
2

N∑

i=1

ui(1 − ui), u ∈ G.

For N = 2 the well-known logarithmic free energy

Ψθ(w) = 1
2θ[(1 + w) ln(1+w

2 ) + (1 − w) ln(1−w
2 )] + 1

2θc(1 − w2)

of the scalar order parameter w := u2 − u1 is recovered in this way. In the shallow
quench, i.e. for θ ≈ θc, polynomial free energies generalizing the quartic potential
(1−w2)2 provide good approximations of the logarithmic free energy Ψθ (cf. Stein-
bach et al. [30]). As polynomials are defined everywhere, the non-differentiable
constraints ui ≥ 0 are usually skipped in this case. On the other hand, in the deep
quench limit θ → 0 we obviously have Ψθ(u) → Ψ0(u) uniformly on G.

The vector-valued Allen-Cahn equation

(2.5) εut = ε∆u−
1

ε
PΨ′(u)

is the projected L2-gradient flow of the total free energy E defined in (2.1). The
orthogonal projection Pv = v− 1

N
(1 · v)1 with 1 := (1, . . . , 1)T ∈ R

N maps R
N on

the linear subspace

H = {v ∈ R
N |

∑N

i=1 vi = 0}.

It accounts for the fact that admissible variations of u(x, t) ∈ G must be in H . In
addition, we prescribe suitable initial conditions u(x, 0) ∈ G on Ω and we impose
Neumann conditions on the boundary ∂Ω of Ω. Concerning existence, uniqueness
and sharp interface limits of (2.5), we refer to Bronsard & Reitich [9] and Garcke
et al. [15].
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Let TJ denote a given partition of Ω into simplices with the minimal diameter
hJ = O(2−J ). We assume that the intersection of two simplices is either a common
lower-dimensional simplex or empty. The sets of edges and vertices are denoted by
EJ and NJ , respectively. Then

SJ = {v ∈ C(Ω) | v|t is linear ∀t ∈ TJ}

is the space of piecewise linear finite elements associated with TJ and

ΛJ = {λ(J)
p | p ∈ NJ}

is the nodal basis of SJ . It is convenient to introduce the subspace

HJ = {v ∈ SN
J | v(p) ∈ H ∀p ∈ NJ} ⊂ SN

J

and the subset

G◦
J = {v ∈ SN

J | v(p) ∈ G and vi(p) > 0, ∀i = 1, . . . , N, p ∈ NJ}.

Discretizing the Allen-Cahn equation (2.5) in time by the backward Euler scheme
with step size τ > 0 and in space by piecewise linear finite elements with respect
to TJ , we obtain the nonlinear problem

(2.6) uk
J ∈ G◦

J : a(uk
J , v) +

τ

ε2
〈Φ′(uk

J), v〉 = ℓk(v) ∀v ∈ HJ

which has to be solved in the k–th time step. Here,

a(v, w) = 〈(I + θcN
τ
ε2C)v, w〉 + τ(∇v,∇w), v, w ∈ SN

J ,

is a symmetric bilinear form and

ℓk(v) = 〈uk−1
J , v〉, v ∈ SN

J ,

is a linear functional. We have used the notation (∇v,∇w) =
∫
Ω
∇v(x) : ∇w(x) dx

and

〈v, w〉 =
∑

p∈NJ

v(p) · w(p) hp, hp =

∫

Ω

λ(J)
p (x) dx,

stands for the lumped L2-product on SN
J . Note that we used the test space HJ ⊂

SN
J in (2.6) instead of the projection P . For sufficiently small τ , the bilinear form
a(·, ·) is positive definite on SN

J . For example, τ has to satisfy τθcN < ε2 for C taken
from (2.4). In order to avoid such severe stability restrictions on the time step, the
expanding linear part of Ψ′ is often discretized explicitly (cf. Blowey & Elliott [6],
Eyre [12], Barrett et al. [3], and others). This approach leads to an unconditionally
stable scheme of the form (2.6) with the symmetric, positive definite bilinear form

(2.7) a(v, w) = 〈v, w〉 + τ(∇v,∇w), v, w ∈ SN
J ,

and the right hand side

(2.8) ℓk(v) = 〈(I − θcN
τ
ε2C)uk−1

J , v〉, v ∈ SN
J .

A priori error estimates have been derived mainly for the scalar case and polyno-
mial free energies or for the deep quench limit (see, however, Barrett & Blowey [4]).
Such estimates typically degenerate with decreasing ε. For detailed information,
we refer, e.g., to recent work of Feng & Prohl [13] and the literature cited therein.
A posteriori error estimates for the quartic free energy have been derived recently
by Kessler et al. [21].
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3. Discrete minimization

We consider the discrete variational problem

(3.1) uJ ∈ G◦
J : a(uJ , v) + φ′J,θ(u)(v) = ℓ(v) ∀v ∈ HJ ,

where a(·, ·) denotes a symmetric, positive definite bilinear form with the associated
energy norm ‖ · ‖ on SN

J , ℓ ∈ (SN
J )′, and φJ,θ is a convex functional of the form

φJ,θ(v) = θ
∑

p∈NJ

Φ(v(p)) hp, v ∈ GJ ,

with a sufficiently smooth convex function Φ : G→ R. To fix the ideas, we choose
Φ according to (2.3) so that the discretized Allen-Cahn equation (2.6) is a special
case of (3.1).

The variational problem (3.1) is equivalent to the minimization problem

(3.2) uJ ∈ GJ : J (uJ) + φJ,θ(uJ) ≤ J (v) + φJ,θ(v) ∀v ∈ GJ

with the strictly convex quadratic energy

J (v) = 1
2a(v, v) − ℓ(v)

and the closed convex subset GJ ,

GJ = {v ∈ SN
J | v(p) ∈ G, p ∈ NJ},

which is the closure of G◦
J . Utilizing the reformulation (3.2), existence and unique-

ness of a solution of (3.1) follows from Proposition 1.2. of Ekeland & Temam [11].
For θ → 0 the solutions uJ = uJ,θ of (3.2) converge to the unique solution of the

quadratic obstacle problem

(3.3) uJ ∈ GJ : J (uJ ) ≤ J (v) ∀v ∈ GJ

which is obtained from (3.2) for θ = 0. Observe that the variational reformulation
of (3.3) leads to the variational inequality

(3.4) uJ,0 ∈ GJ : a(uJ,0, v − uJ,0) ≥ ℓ(v − uJ,0) ∀v ∈ GJ .

in contrast to the equality (3.1) that holds for θ > 0. In order to obtain robust
solvers for (3.1), we shall now derive algorithms for (3.2) that converge for all θ ≥ 0.
Note that standard Gauß-Newton methods for (3.1) are not robust in this sense.

4. Polygonal Gauß-Seidel relaxation

We consider the splitting

(4.1) HJ =

mJ∑

l=1

Vl, Vl = span{µl}, µl(n,m) = λ(J)
pn
Em, l = 1, . . . ,mJ ,

whereEm ∈ R
N , m = 1, . . . ,M := 1

2N(N−1) denote the edges of the Gibbs simplex
G, l = l(n,m) is some enumeration and mJ := nJM . Note that Em = Em(i,j) =

ei − ej , 1 ≤ i < j ≤ N , where ei is denoting the i-th unit vector in R
N and m =

m(i, j) is another enumeration. As each subspace Vl = span{λ
(J)
pn Em} is generated

by a nodal basis function λ
(J)
pn and an edge Em of the polygon G, the nonlinear

successive subspace correction method (cf. Xu [31], Kornhuber [22, 26]) generated
by the splitting (4.1) can be regarded as a polygonal Gauß-Seidel relaxation. It
reads as follows.
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Let θ ≥ 0 be fixed. For a given ν-th iterate uν
J ∈ GJ we compute a sequence of

intermediate iterates wν
l = wν

l−1 + vν
l , l = 1, . . . ,mJ , starting with wν

0 = uν
J . The

corrections vν
l are the unique solutions of the local subproblems

(4.2)
vν

l ∈ Dν
l : J (wν

l−1 + vν
l ) + φJ,θ(w

ν
l−1 + vν

l )

≤ J (wν
l−1 + v) + φJ,θ(w

ν
l−1 + v) ∀v ∈ Dν

l

where the closed convex subsets Dν
l are defined by

(4.3) Dl = Dl(wl−1) = {v ∈ Vl | w
ν
l−1 + v ∈ GJ}.

Finally, the new iterate of the polygonal Gauß-Seidel relaxation is given by

(4.4) uν+1
J = MJ,θ(u

ν
J) := wν

mJ
= uν

J +

mJ∑

l=1

vν
l .

For ease of presentation the indices θ and ν will be frequently skipped in the sequel.
By construction, we have monotonically decreasing energy,

(4.5) J (wl) + φJ (wl) ≤ J (wl−1) + φJ (wl−1), l = 1, . . .mJ ,

and the uniqueness of the solutions vl of (4.2) implies

(4.6) J (MJ(w)) + φJ (MJ(w)) = J (w) + φJ (w) ⇔ MJ(w) = w.

For θ > 0 and given wl−1, each correction vl(n,m(i,j)) = zlλ
(J)
pn (ei − ej), can be

equivalently computed from the scalar nonlinear equation

(4.7) zl ∈ (−αl, βl) : dlzl − rl−1 + θ[ln(αl + zl) − ln(βl − zl)]hpn
= 0

where αl = (wl−1(pn))i, βl = (wl−1(pn))j , dl = a(µl, µl), rl−1 = ℓ(µl)−a(wl−1, µl).
In the deep quench limit θ = 0, we directly obtain

(4.8) zl = max{−αl,min{βl, rl−1/dl}}.

Assuming that each local problem (4.7) can be solved with O(1) complexity, each
overall iteration step (4.4) requires O(N2nJ ) point operations. The suboptimal
quadratic growth in N will turn out to be the price to be paid for robustness.

The following representation lemma which was already stated without proof by
Kornhuber & Krause [27] will be crucial for the convergence of the polygonal Gauß-
Seidel relaxation (4.4) in the limit case θ = 0.

Lemma 4.1. For any given u∗, v ∈ G there is a decomposition

(4.9) v = u∗ +

N−1∑

e=1

ηe, ηe ∈ span{Eme
},

with the property

(4.10) u∗ + ηe ∈ G ∀e = 1, . . . , N − 1.

Proof. We present a proof due to Ziegler [32]. Let w ∈ H with exactly n∗ ≤ N
non-zero components wik

, k = 1, . . . , n∗. Assume for the moment that for such w
there is a decomposition

(4.11) w =

n∗
−1∑

e=1

ηe, ηe ∈ span{Eme
}
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with the properties

(4.12) (ηe)ik
wik

≥ 0, k = 1, . . . , n∗, (ηe)ik
= 0, k = n∗ + 1, . . . , N,

for all e = 1, . . . , n∗ − 1. Then the assertion can be shown in the following way.
For given u∗, v ∈ G, let

v − u∗ =
n∗

−1∑

e=1

ηe

be a decomposition (4.11) of w := v− u∗ ∈ H satisfying (4.12). It remains to show
(4.10) or, equivalently,

u∗i + (ηe0 )i ≥ 0 ∀i = 1, . . . , N

for each fixed e0 = 1, . . . , n∗ − 1. As a consequence of (4.12) vi ≥ u∗i leads to
(ηe0)i ≥ 0 so that

u∗i + (ηe0 )i ≥ u∗i ≥ 0.

In the case vi ≤ u∗i we get (ηe)i ≤ 0 ∀e = 1, . . . , n∗ − 1 and therefore

u∗i + (ηe0 )i ≥ u∗i +

n∗
−1∑

e=1

(ηe)i = vi ≥ 0.

This proves the assertion.
We still have to show existence of a decomposition (4.11) with the properties

(4.12). For given w ∈ H let

I+(w) = {i | wi > 0}, I−(w) = {i | wi < 0}, I∗(w) = I+(w) ∪ I−(w).

We proceed by induction on the number of elements |I∗(w)| of I∗(w). The first
non-trivial case is |I∗(w)| = 2, i.e., I+(w) = {i1}, I−(w) = {j1}. Then w ∈ H
implies the representation

w = wi1 (ei1 − ej1) =: η1 ∈ span{Em(i1,j1)}

which clearly has the form (4.11). It is easily checked that the conditions (4.12)
are satisfied. Now assume that the assertion holds for all w ∈ H with |I∗(w)| ≤ n∗

and fixed n∗ ≥ 2. We consider some v ∈ H with |I∗(v)| = n∗ + 1. First we select
i0 ∈ I∗(v) such that

0 < |vi0 | = min
i∈I∗(v)

|vi|.

Without loss of generality let i0 ∈ I+(v). Then we set

(4.13) w = v − ηn∗ , ηn∗ = vi0(ei0 − ej0).

with arbitrary j0 ∈ I−(v). By construction, we have

(4.14) I+(w) = I+(v) \ {i0}, I+(w) ∩ I−(v) = ∅, i0 /∈ I∗(w), |I∗(w)| ≤ n∗.

Hence, there is a decomposition (4.11) of w with the properties (4.12). Inserting it

in (4.13) we obtain v =
∑n∗

e=1 ηe and

(ηe)ivi ≥ 0 ∀i ∈ I∗(v), (ηe)i = 0 ∀i /∈ I∗(v) ∀e = 1, . . . , n∗

follows directly from related properties of w and (4.14). This concludes the proof.
�

Now we are ready to prove convergence.
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Theorem 4.1. For each fixed θ ≥ 0 and arbitrary initial iterate u0
J ∈ GJ , the

polygonal Gauß-Seidel relaxation (4.4) converges to the solution uJ of (3.2).

Proof. We first state that any subsequence of (uν
J )ν∈N has a convergent subsequence

(uνk

J )k∈N with limit u∗J ∈ GJ satisfying

(4.15) MJ(u∗J) = u∗J .

Based on the strict monotonicity (4.5), (4.6) of the energy J + φJ , this assertion
follows literally as in the proof of Theorem 2.1 in [24].

We now show that u∗J is the solution uJ of (3.2). First let θ > 0. Then, rewriting
(4.2) in variational form and utilizing (4.15), we obtain

a(u∗J , µl) + φ′J (u∗J)(µl) = ℓ(µl) ∀l = 1, . . . ,mJ .

As HJ = span{µl | l = 1, . . . ,mJ}, this variational equality holds for all v ∈ HJ .
Hence, u∗J solves (3.1) and therefore u∗J = uJ .

Now let θ = 0. In this case, the variational reformulation of (4.2) takes the form

vl ∈ Dl(wl−1) : a(vl, η − vl) ≥ ℓ(η − vl) − a(wl−1, η − vl) ∀η ∈ Dl(wl−1)

for all l = 1, . . . ,mJ . Hence, (4.15) implies

(4.16) 0 ≥ ℓ(η) − a(u∗J , η) ∀η ∈ Dl(u
∗
J ) ∀l = 1, . . . ,mJ .

Let v ∈ GJ be arbitrarily chosen. Then, utilizing Lemma 4.1, we find ηe(p) ∈
span{Eme

} with the property

v(p) − u∗J(p) =

N−1∑

e=1

ηe(p), u∗J(p) + ηe(p) ∈ G,

for each p ∈ NJ . Hence, η = λ
(J)
pn ηe(pn) ∈ Dl(n,me)(u

∗
J) can be inserted in (4.16)

for each pn ∈ NJ and e = 1, . . . , N − 1. Summing up all the resulting inequalities,
we obtain

a(u∗J , v − u∗J) ≥ ℓ(v − u∗J)

and therefore u∗J = uJ .
We have shown that any subsequence of (uν

J )ν∈N has a subsequence converging
to uJ . Hence, the whole sequence must converge to uJ . �

Observe that for θ > 0 a splitting of the form (4.1) into nJ(N − 1) < mJ

subspaces associated with any selection Emk
, k = 1, . . . , N − 1, of edges for each

node p ∈ NJ would lead to a O(NnJ ) algorithm which still converges for θ > 0.
However, the convergence speed typically deteriorates for θ → 0, because in general
no convergence occurs for θ = 0.

As another alternative to (4.1) one might consider the splitting of HJ into the
(N − 1)-dimensional subspaces

Vi = span {λ(J)
pn

| v ∈ H}, n = 1, . . . , nJ .

which leads to a natural block version of the well-known scalar Gauß-Seidel relax-
ation. Though such an algorithm is clearly convergent, it seems to be less attractive,
because the solution of the resulting (N − 1)-dimensional nonlinear subproblems
becomes more and more complicated for increasing N .

In general, the local problems (4.7) have to be solved iteratively, e.g., by a
bisection scheme. The convergence of inexact variants of (4.4) is preserved, if
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approximations of zl are sufficiently accurate. Suitable stopping criteria can be
derived according to Kornhuber [26].

5. Constrained Newton linearization and coarse grid correction

Due to a poor representation of low frequency components of the error, the
convergence speed of the polygonal Gauß-Seidel relaxation MJ rapidly degener-
ates with decreasing mesh size. The convergence speed can be increased by an
additional coarse grid correction CJ . On the other hand, application of CJ should
not increase the complexity O(N2nJ ) of MJ . Successive minimization based on
a straightforward extension of the splitting (4.1) by additional coarse grid spaces
would not have this property, because the evaluation of nonlinear functionals on
such spaces requires additional prolongations and restrictions. We now provide a
construction of CJ based on constrained Newton linearization. It can be regarded
as an extension of classical Newton multigrid methods (cf., e.g., Hackbusch [19]) to
piecewise smooth φJ,θ. The underlying ideas have been discussed in some detail by
Kornhuber [26].

Additional coarse correction CJ,θ leads to the two-stage iteration

(5.1) uν+1
J = CJ,θū

ν
J , ūν

J = MJ,θu
ν
J , θ ≥ 0.

Adopting multigrid terminology, MJ,θ is sometimes called fine grid smoother and
ūν

J is the smoothed iterate. As usual, the subscript θ is mostly skipped in the sequel.
The following convergence result is an immediate consequence of Theorem 4.1 and
Theorem 3.1 in [26].

Theorem 5.1. Assume that CJ is monotone in the sense that

(5.2) J (CJw) + φJ(CJw) ≤ J (w) + φJ (w)

holds for all w in the range of MJ . Then, for each initial iterate u0
J ∈ GJ the

iteration (5.1) converges to the solution uJ of (3.2).

Let us proceed with constructing CJ,θ in the case θ > 0. As a starting point
we determine a neighborhood Gūν

J
of a given smoothed iterate ūν

J ∈ G◦
J on which

the Fréchèt derivative φ′′J,θ can be controlled by local Lipschitz constants. This
requires some preparation. For each node p ∈ NJ we define the closed convex
subset Gūν

J
(p) ⊂ G,

(5.3) Gūν
J
(p) = {v ∈ G | vi ≥ ǫi if (ūν

J(p))i > ǫ0 else vi = (ūν
J(p))i},

with

(5.4) ǫi = 1
1+θ

ǫ0 + θ
1+θ

(ūν
J(p))i, ǫ0 =

√
(θ(1+θ))

1
2 N

L
< 1

and given sufficiently large L > 0. Note that Gūν
J
(p) is a proper subset of G which

might even reduce to Gūν
J
(p) = {ūν

J(p)} if ūν
J(p) is close to a vertex of G.

For an illustration of the case N = 3, θ > 0 we refer to Figure 1 showing Gūν
J
(p)

for (ūν
J(p))i ≥ ε0, i = 1, 2, 3, on the left (triangle), for (ūν

J(p))i ≥ ε0, i = 1, 2, but
(ūν

J(p))3 < ε0 in the middle (interval), and for (ūν
J (p))i < ε0, i = 1, 3, on the right

(point). We set

N•
ūν

J
(p) = {i ∈ {1, . . . , N}|vi = (ūν

J(p))i ∀v ∈ Gūν
J
(p)}, N

◦
ūν

J
(p) = {1, . . . , N}\N•

ūν
J
(p).
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Figure 1. The subset Gūν
J
(p) depending on the location • of ūν

J(p)

The definition (5.3) is motivated by the following lemma which can be proved by
straightforward computation.

Lemma 5.1. For each node p ∈ NJ and all v, w ∈ R
N the Lipschitz continuity

(5.5) |Φ′′(z1)(v, w) − Φ′′(z2)(v, w)| ≤ Lp|z1 − z2|∞|v|∞|w|∞ ∀z1, z2 ∈ Gūν
J
(p)

holds with the local Lipschitz constant

(5.6) Lp = θ
∑

i∈N◦

ūν
J

(p)

1
ǫ2

i

≤ ( θ
1+θ

)
1
2L

denoting |v|∞ = maxi=1,...,N |vi|, v ∈ R
N .

The Lipschitz continuity (5.5) of the Jacobian Φ′′ is inherited by the Fréchèt
derivative φ′′J on the closed convex subset Gūν

J
⊂ GJ defined by

Gūν
J

= {v ∈ SN
J | v(p) ∈ Gūν

J
(p) ∀p ∈ NJ}.

Observe that
φJ (w) = φūν

J
(w) + const. ∀w ∈ Gūν

J

holds with

(5.7) φūν
J
(w) = θ

∑

p∈NJ

∑

i∈N◦

ūν
J

(p)

wi(p) ln(wi(p)) hp. w ∈ Gūν
J

Hence, for fixed ūν
J , minimization of J +φūν

J
is equivalent to minimization of J +φJ

on Gūν
J
. Using Taylor’s expansion

φūν
J
(w) ≈ φūν

J
(ūν

J) + φ′ūν
J
(ūν

J)(w − ūν
J) + 1

2φ
′′
ūν

J
(ūν

J)(w − ūν
J , w − ūν

J)

we approximate J + φūν
J

by the quadratic energy functional Jūν
J

defined by

Jūν
J
(w) = 1

2aūν
J
(w,w) − ℓūν

J
(w) ≈ J (w) + φJ (w)

with the bilinear form

aūν
J
(w,w) = a(w,w) + φ′′ūν

J
(ūν

J )(w,w)

and the linear functional

ℓūν
J
(w) = ℓ(w) − φ′ūν

J
(ūν

J )(w) + φ′′ūν
J
(ūν

J)(ūν
J , w).

The resulting quadratic minimization problem

(5.8) wūν
J
∈ Gūν

J
: Jūν

J
(wūν

J
) ≤ Jūν

J
(v) ∀v ∈ Gūν

J

can be regarded as a constrained Newton linearization of (3.2). The effect of the
constraints Gūν

J
is an a priori damping of usual Newton corrections. Note that

the linearity of J ′
ūν

J
will be crucial for the optimal complexity of each step of the

monotone multigrid methods to be constructed later on.
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In the next step, we approximate (5.8) by a relaxation scheme generated by
additional search directions µl with the properties

(5.9) µl ∈ SJ , max
p∈NJ

|µl(p)|∞ = 1, l = mJ + 1, . . . ,MJ .

More precisely, we compute intermediate iterates wν
l according to

(5.10) wν
mJ

= ūν
J , wν

l = wν
l−1 + ων

l v
ν
l , l = mJ + 1, . . . ,MJ .

Each correction vν
l is the solution of the one-dimensional quadratic obstacle problem

(5.11) vν
l ∈ Dν

l : Jūν
J
(wν

l−1 + vν
l ) ≤ Jūν

J
(wν

l−1 + v) ∀v ∈ Dν
l

with constraints of the form

(5.12) Dν
l = {v ∈ Vl | ψ

ν

l
≤ v ≤ ψ

ν

l } ⊂ Vl := span{µl}

satisfying

(5.13) 0 ∈ Dν
l ⊂ {v ∈ Vl | w

ν
l−1 + v ∈ Gūν

J
}.

As usual, the index ν is often skipped in the sequel.
The local damping parameters ωl in (5.10) are used to ensure the monotonicity

(5.2) a posteriori. Inductive computation of ωl can be performed according to the
following lemma.

Proposition 5.1. Let vl = zlµl 6= 0 be the solution of (5.11). Define

(5.14) ωl = min

{
1, 2

{
|ℓūν

J
(µl) − aūν

J
(wl−1, µl)| − LlB

2
l

|zl|(aūν
J
(µl, µl) + Ll(Bl + |zl|))

}

+

}

with the local Lipschitz constant Ll and the sum of preceding corrections Bl,

(5.15) Ll =
∑

p∈NJ

Lp|µl(p)|∞ hp, Bl =
l−1∑

k=mJ+1

‖vk‖∞

and z+ = max{0, z}. Then the next intermediate iterate wl+1 = wl + ωlvl fulfills
the monotonicity condition

(5.16) J (wl+1) + φūν
J
(wl+1) ≤ J (wl) + φūν

J
(wl).

Proof. Using Bl ≥ ‖ūν
J − wl−1‖∞ the assertion can be shown in the same way as

Proposition 4.1 by Kornhuber [26]. �

Observe that

(5.17) |zl|a(µl, µl)ūν
J
≤ |ℓūν

J
(µl) − aūν

J
(wl−1, µl)|

holds because vl = zlµl solves (5.11). Hence, we obtain ωl = 1, if Ll is sufficiently
small, which, in turn, occurs for sufficiently small θ (cf. Lemma 5.1).

Now we are ready to define the coarse grid correction

(5.18) CJ,θū
ν
J = wν

MJ
= ūν

J +

MJ∑

l=mJ+1

ων
l v

ν
l .

By construction, CJ is monotone in the sense of (5.2).
We still have to consider the case θ = 0. Inserting θ = 0 in (5.4) and (5.7)

we directly obtain Gūν
J
(p) = G, Lp = 0, Gūν

J
= GJ , Jūν

J
= J and ωl = 1 As a

consequence, the coarse grid correction CJ,0 resulting from (5.18) for θ = 0 reduces
to the successive minimization of the energy J in the direction of the additional
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search directions µl (cf. Kornhuber & Krause [27]). Obviously Lemma 5.1 and
Proposition 5.1 still remain valid in this case.

Suitable multilevel search directions µl and corresponding defect constraints ψ
l
,

ψl will be specified in the next section.

6. Monotone Multigrid

Assume that TJ is resulting from J refinements of an intentionally coarse parti-
tion T0. In this way, we obtain a sequence of partitions T0, . . . , TJ and corresponding
nested finite element spaces S0 ⊂ · · · ⊂ SJ . Though the algorithms and convergence
results to be presented can be easily generalized to nonuniform grids, we assume
for convenience that the partitions are uniformly refined. For example, in the case
of two space dimensions each triangle t ∈ Tk is subdivided into four congruent
subtriangles in order to produce the next triangulation Tk+1. Note that refinement
is more delicate for Ω ∈ R

3. We refer, e.g., to [5, 8] for further information. Col-
lecting all nodal basis functions from all refinement levels, we obtain the standard
multilevel nodal basis ΛS ,

(6.1) ΛS =
(
λ(J)

p1
, λ(J)

p2
. . . , λ(J)

pnJ
, . . . , λ(0)

p1
, . . . , λ(0)

pn0

)
.

The elements λs(k,n) = λ
(k)
pn , s = 1, . . . , nS := nJ + · · · + n0 are ordered from fine

to coarse, i.e. s(k, n) ≤ s(k′, n′) implies k ≥ k′.

6.1. Standard monotone multigrid methods. In order to apply the abstract
framework of the preceding section, we first select the search directions

(6.2) µl(s,m) = λsEm, s = 1, . . . nS , m = 1, . . . ,M,

which obviously have the properties (5.9). The enumeration l = mJ +1, . . . ,MJ :=
nSM first counts all edges Em before proceeding to the next multilevel nodal basis
function λs, i.e. l(s,m) ≤ l(s′,m′) implies s ≤ s′. The definition of suitable local
obstacles ψ

l
, ψl as occuring in (5.12) requires some preparation. Let p ∈ NJ and

Em = Em(i,j) = ei − ej . With ǫi, ǫj and ǫ0 taken from (5.4), we then define

(6.3) ψ(J)

Em
(p) = 1

N−1 (ǫi − (ūν
J(p))i), ψ

(J)

Em
(p) = 1

N−1((ūν
J (p))j − ǫj)

if (ūν
J(p))i, (ūν

J(p))j > ǫ0 and

(6.4) ψ(J)

Em
(p) = ψ

(J)

Em
(p) = 0

otherwise. As exactly N−1 edges have a non-zero entry in each fixed component i,
successive corrections of the form vEm

Em with vEm
∈ SJ satisfying the conditions

(6.5) ψ(J)

Em
≤ vEm

≤ ψ
(J)

Em
∀m = 1, . . . ,M,

are feasible in the sense that

(6.6) ūν
J +

M∑

m=1

vEm
Em ∈ Gūν

J
.

Observe that the polygonal constraints (6.5) can be checked separately for each
edge Em. This is in analogy to box constraints. For N = 3, θ = 0 and some ūν

J(p)
the nodal values vEm

(p)Em with vEm
satisfying (6.5) are illustrated in Figure 2.

Here, the star of intervals intersecting at ūν
J(p) represents the polygonal constraints.



MULTIGRID FOR ALLEN–CAHN 13

Linear combinations of constrained corrections are feasible in the sense of (6.6) as
depicted, e.g., by the dotted lines.

Figure 2. Polygonal constraints for N = 3, θ = 0 and the location • of ūν
J(p)

Additional prolongations would be necessary to check whether coarse grid correc-

tions v
(k)
Em

∈ Sk satisfy the fine grid constraints (6.5) or not. This would increase the
order of complexity by a factor ranging from lognJ in case of uniform refinement
to nJ in the highly non-uniform case. Following Mandel [29] and Kornhuber [22]
we therefore introduce the monotone restriction operators rk

k+1, r
k
k+1 : Sk+1 → Sk

defined by

(6.7)
rk

k+1v(p) = max{v(q) | q ∈ Nk+1 ∩ int supp λ
(k)
p }

rk
k+1v(p) = min{v(q) | q ∈ Nk+1 ∩ int supp λ

(k)
p }

p ∈ Nk, v ∈ Sk+1.

Starting with ψ(J)

Em
, ψ

(J)

Em
and v

(J)
Em

= 0, coarse grid constraints ψ(k)

Em
, ψ

(k)

Em
are

obtained by successive update and restriction

(6.8) ψ(k)

Em
= rk

k+1(ψ
(k+1)

Em
− v

(k+1)
Em

), ψ
(k)

Em
= rk

k+1(ψ
(k+1)

Em
− v

(k+1)
Em

),

where k = J − 1, . . . , 0 and

v
(k+1)
Em

Em =

nk+1∑

n=1

ωl(s(k+1,n),m)vl(s(k+1,n),m)

denotes the sum of all local corrections in the direction Em on level k+ 1. Finally,
we define the local obstacles ψ

l
, ψl according to

(6.9) ψ
l(s(k,n),m)

= ψ(k)

Em
(pn)λ(k)

pn
Em, ψl(s(k,n),m) = ψ

(k)

Em
(pn)λ(k)

pn
Em.

The conditions (5.13) are satisfied by construction. For a more detailed discussion
of monotone restriction, we refer to Kornhuber [22] or [24, pp. 74].

Inserting the search directions µl and the local defect obstacles ψ
l
, ψl as speci-

fied in (6.2) and (6.9) into (5.9) and (5.12), respectively, the standard coarse grid
correction Cstd

J,θ , θ ≥ 0, is obtained from (5.18).

Theorem 6.1. For each fixed θ ≥ 0 and arbitrary initial iterate u0
J ∈ GJ the

standard monotone multigrid method

(6.10) uν+1
J = Cstd

J,θ ū
ν
J , ūν

J = MJ,θu
ν
J

converges to the solution uJ of (3.2).

Proof. In the light of Proposition 5.1 the proof is an immediate consequence of
Theorem 5.1. �
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For N = 2, algorithm (6.10) turns out to be equivalent to the scalar version
introduced by Kornhuber [22, 26]. In this case, asymptotic multigrid convergence
rates are available for each fixed θ ≥ 0. The proofs are essentially based on linear
convergence theory which can be applied to non-degenerate problems after a finite
number of iteration steps (θ = 0) and on higher order approximation of Newton
linearization (θ > 0). Extensions to N > 2 could rely on similar arguments and
will be considered elsewhere. Even for scalar problems, upper bounds for the con-
vergence rates which hold uniformly in J , still seem to be an open problem (see,
however, Badea et al. [2] for results concerning a related approach).

The computational cost of the overall multigrid method (6.10) is of the same
order as Gauß-Seidel smoothing MJ , because the coarse grid correction Cstd

J can
be implemented as a classical V-cycle with complexity O(N2nJ): The successive
solution of the local subproblems (5.11) amounts to projected polygonal Gauß-
Seidel smoothing on each refinement level k = 1, . . . , J . As local corrections on all

levels have the form zλ
(k)
p Em, it is convenient to choose the generating system

(6.11) Λ
(k)
E = {λpEm | p ∈ Nk, m = 0, . . . ,M}

of Sk for the representation of bilinear forms, residuals and corrections in terms
of stiffness matrices and vectors on each level k. Here, E0 ∈ R

N is a vector not
contained in the subspace spanned by the edges E1, . . . , EN . For instance, one
might choose E0 = e1. Stiffness matrices and residuals are then restricted in the
canonical way. The coarse grid obstacles (6.9) are resulting from successive up-
date and monotone restriction (6.8). Computation of local damping parameters
ωl according to (5.14) requires local Lipschitz constants Ll that can restricted like
linear functionals, e.g., like residuals, and the sum of preceding corrections Bl are
obtained by straightforward updates. Finally all corrections represented in terms

of Λ
(k)
E are prolongated in the canonical way. Multiple pre- or post-smoothing or

W -cycles are carried out as usual. Within the framework of Section 5 those variants
can be formulated by multiple occurrence of the same local coarse grid space Vl.

6.2. Truncated monotone multigrid methods. The representation of low fre-
quencies as incorporated in Cstd

J is still suboptimal as compared with the linear un-
constrained case. As an example, we consider a phase transition from pure phase
i to pure phase j for θ = 0. Assume that the corresponding diffuse interface is
resolved by TJ but not by Tk, i.e., that all triangles t ∈ Tk contain nodes from both
phases i, j. Assume further that ūν

J is sufficiently accurate, i.e., (ūν
J)j = 0 on phase

i and (ūν
J)i = 0 on phase j. Then any coarse grid correction of the form zλ

(k)
p Em,

Em = (ei − ej), applied to ūν
J must be zero, because it would violate either the

constraint (ūν
J)j ≥ 0 or (ūν

J)i ≥ 0 otherwise. As a well-known remedy [22, 24, 26],
we adapt the search directions µl(s,m) = λsEm to the approximate discrete phases

N •
J,Em

(ūν
J ) = {p ∈ NJ | ψ(J)

Em
(p) · ψ

(J)

Em
(p) = 0}

by so-called truncation. More precisely, we set

µ̃ν
l(s(k,n),m) = ISν

J,Em
◦ · · · ◦ ISν

k+1,Em
λ(k)

pn
Em, k = J − 1, . . . , 0,

where ISν
k,Em

: SJ → Sν
k,Em

denotes nodal interpolation to the subspace

Sν
k,Em

= {v ∈ Sk | v(p) = 0 ∀p ∈ N ν
k,Em

} ⊂ Sk
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and N ν
k,Em

= Nk ∩ N •
J,m(ūν

J). This construction is motivated by the fact that the

resulting search directions µ̃ν
l vanish on N •

J,Em
(ūν

J), nevertheless have large support

and are easy to implement (see below). Corresponding local obstacles ψ̃
ν

l
, ψ̃

ν

l are

constructed in a similar way as mentioned above. We refer to Kornhuber [22] or
[24, p. 81] for details.

Inserting µ̃ν
l and corresponding local obstacles ψ̃

ν

l
, ψ̃

ν

l into (5.9) and (5.12),

respectively, the resulting truncated coarse grid correction Ctrc
J,θ, θ ≥ 0, is obtained

from (5.18).

Theorem 6.2. For each fixed θ ≥ 0 and arbitrary initial iterate u0
J,θ ∈ GJ the

truncated monotone multigrid method

(6.12) uν+1
J = Ctrc

J,θū
ν
J , ūν

J = MJ,θu
ν
J

converges to the solution uJ of (3.2).

Proof. The proof of Theorem 5.1 easily extends to coarse grid corrections CJ = Cν
J

varying in each iteration step (cf. [26] or [24, pp. 53]). Hence, the assertion follows
from Theorem 5.1 and Proposition 5.1. �

As for the standard version (6.10), asymptotic multigrid convergence rates are
available in the scalar case [22, 26].

The implementation of Ctrc
J,θ can be obtained as a simple variant of the standard

version: Let p ∈ N •
J,Em

(ūν
J). Then the Em-component at node p is set to zero in

the restriction of the stiffness matrix and the residual. In turn the prolongation
contributes zero to the Em-component at node p in this case. Finally, the monotone
restrictions (6.7) of the upper or lower defect obstacles are modified in such a way
that all entries v(p) are treated as ∞ or −∞, respectively.

7. Numerical Experiments

We consider the vector-valued Allen-Cahn equation (2.5) with the interaction
matrix C given in (2.4), the critical temperature θc = 1 and ε = 0.05 for N =
5, 3 components in d = 2, 3 space dimensions. After discretization in time by
the semi-implicit Euler method, the discrete spatial problems take the form (2.6)
with bilinear form and right hand side given in (2.7) and (2.8), respectively. For
simplicity, we use constant time steps and an heuristic strategy for adaptive mesh
refinement. The refinement indicators ηT ,

ηT =
∑

p,q∈T∩NJ

|u(p) − u(q)|, T ∈ TJ ,

are intended to detect the steep gradients in the diffuse interface. A triangle T is
refined or coarsened, if ηT is above or below certain thresholds. Starting from a
given coarse triangulation T0 we obtain the refined triangulation TJ for the first
time step by performing adaptive refinement geared to the initial condition u(·, 0).
Refinement is stopped as soon as the maximal refinement depth J is reached. The
subsequent triangulations are produced by adaptive refinement and coarsening in
a similar way.

The spatial problems arising in each time step are solved iteratively using a V -
cycle with 3 pre- and 3 post-smoothing steps of the truncated monotone multigrid
method (MMG) introduced in Theorem 6.2. We select the threshold L = 105 for
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the local Lipschitz constants (cf. (5.4) and Lemma 5.1). Similar behavior of our
multigrid solvers was observed for L = 10i, i = 4, . . . , 8. The initial iterate on the
finest grid TJ is taken directly from the previous time step. In each time step we
require an algebraic accuracy of 5%. More precisely, we use the stopping criterion

(7.1) ‖uν
J − uν−1

J ‖ ≤ σ 0.05‖uν
J‖

with the (quite pessimistic) safety factor σ = 10−3 accounting for the approximation
of the exact algebraic error ‖uJ − uν−1

J ‖ by the increment ‖uν
J − uν−1

J ‖.
For detailed investigations of the convergence speed we consider the averaged

convergence rates

(7.2) ρ = ν0

√
‖uJ − uν0

J ‖/‖uJ − u0
J‖

where ν0 is chosen such that ‖uJ − uν0

J ‖ < 10−12. The “exact” solution uJ is
precomputed by iterative solution up to machine accuracy.

7.1. Example 1: N = 5 components and d = 2 space dimensions. In our
first example, we consider grain growth of N = 5 components in the unit square
Ω = (0, 1)2 in d = 2 space dimensions. The initial condition u(·, 0) ∈ G is a
randomly chosen superposition of circular grains each of which corresponds to a
pure phase (see the upper left picture of Figure 3).

The coarse triangulation T0 is obtained by one uniform refinement step applied
to Ω. More precisely, Ω is divided into two congruent triangles and each of them is
then refined once. Adaptively refined triangulations TJ with maximal refinement
depth J = 7 are are obtained as described above. Note that hJ = 2−8 ≈ 1

12ε so
that we can expect that the diffuse interface is well resolved by TJ . We select the
uniform time step size τ0 = 1

2ε and perform 100 time steps. About 5 - 8 multigrid
iterations are required for each spatial problem to meet the stopping criterion (7.1).
The evolution for the temperature θ = 0.1 is shown in Figure 3. Comparing the
approximate solutions for t = 0 with t = τ0 and for t = 50τ0 with t = 100τ0, the
uniform time step size τ0 seems to be too large in the beginning and too small in
the end of the evolution. This motivates adaptive time stepping in the future.

In order to investigate the convergence properties of the underlying monotone
multigrid solver MMG (cf. Theorem 6.2), we now consider the first spatial problem.
The initial iterate on the underlying grid TJ (J = 7, 17293 nodes) is taken directly
from the previous time step, i.e. the interpolation of u(·, 0) to TJ is taken as an initial
iterate. In our first experiment, we investigate the robustness of the convergence
speed with respect to the time step size τ . This seems to be relevant for a future
combination of MMG with adaptivity in time. In the left picture of Figure 4, we
show the averaged convergence rates ρ (cf. (7.2)) occurring for τ = 10iτ0, i =
−2, . . . , 5. Observe that the convergence speed of MMG improves for smaller and
also for larger time steps. We compare MMG with an undamped version as obtained
by simply setting ων

l = 1 in (5.18). As undamped MMG is always much faster it
seems at first sight that damping is not necessary or even counterproductive.

Next we consider the robustness with respect to temperature θ. The right picture
of Figure 4 shows the averaged convergence rates ρ over θ−1. Observe that the
convergence rates of MMG are uniformly bounded for all values of θ. As expected
from theory, the damping parameters tend to one as θ → 0 so that MMG tends
to the undamped version in this case. Though undamped MMG is mostly faster
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initial condition: t = 0 t = τ0

t = 5τ0 t = 10τ0

t = 50τ0 t = 100τ0

Figure 3. Evolution of the phases
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Figure 4. Robustness with respect to τ and θ (N = 5, d = 2)
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Figure 5. MMG and polygonal Gauß-Seidel (N = 5, d = 2)

than MMG, it fails to converge for sufficiently large θ, e.g., for θ = 0.95. Hence,
appropriate damping is necessary for convergence.

In order to get more detailed insight into the convergence behavior, we now
consider the iteration history of our multigrid methods. Here we use the default
parameters τ = τ0 and θ = 0.1 again. The left picture in Figure 5 is showing the
algebraic error ‖uJ − uν

J‖ over the number of iteration steps ν = 1, . . . , 100. For
a comparison, we included the polygonal Gauß-Seidel relaxation (cf. Theorem 4.1)
represented by the square markers and the dashed line. The convergence behavior
of MMG can be divided into a transient phase and an asymptotic phase. In the
transient phase damping slows down the convergence speed while asymptotically
the iterates become accurate enough to let the damping parameters tend to one.
After 85 iteration steps the convergence speed of MMG and of the undamped
version more or less coincide. Such a behavior is typical for monotone multigrid
methods [23, 26] and could be remedied by better initial iterates as resulting, e.g.,
from nested iteration. Once the high frequency components of the error have been
eliminated in the first iteration step, polygonal Gauß-Seidel relaxation is clearly
outperformed by multigrid.
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Figure 6. Robustness with respect to τ and θ (N = 3, d = 3)
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Figure 7. MMG and polygonal Gauß-Seidel (N = 3, d = 3)

The right picture in Figure 5 shows the averaged convergence rates over the
number of nodes. As expected, Gauß-Seidel relaxation fails to converge reasonably
well as soon as the diffuse interface is resolved, i.e. as soon as low frequency com-
ponents of the error occur. Recall that the averaged convergence speed of MMG
strongly depend on the quality of the initial iterate. Hence, increasing convergence
rates with decreasing mesh size indicate a possible mesh dependence of the damping
strategy. It seems that the convergence rates of the undamped MMG are about to
saturate. This would be in agreement with related results in the scalar case [26].

7.2. Example 2: N = 3 components and d = 3 space dimensions. Now we
study a related situation for N = 3 components in the unit cube Ω = (0, 1)3 in
d = 3 space dimensions. As in the previous example, the initial condition u(·, 0) ∈ G
is resulting from the superposition of randomly chosen spherical grains. The coarse
partition T0 is obtained by one uniform refinement step applied to Ω. Adaptively
refined triangulations TJ with maximal refinement depth J = 7 are are obtained as
described in the preliminary part of this section. In contrast to the first example,
we now select the more realistic initial time step τ0 = 1

200ε.
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In order to illustrate the behavior of MMG (cf. Theorem 6.2) and its undamped
version, we again concentrate on the first time step. The underlying partition TJ

has 215502 nodes and the minimal mesh size is hJ = 2−8 ≈ 1
12ε. The initial iterate

u0
J is taken from the previous time step, i.e. u0

J is just the interpolation of u(·, 0) to
TJ . The left picture of Figure 6 shows the averaged convergence rates ρ (cf. (7.2))
over the time step size τ = 10iτ0, i = 0, . . . , 5. As in the previous example, the
convergence rates of MMG seem to be uniformly bounded in τ and the undamped
version of MMG (dotted line) is significantly faster.

Robustness with respect to temperature θ is illustrated in the right picture of
Figure 6 showing the averaged convergence rates ρ over θ−1. Both for MMG and
the undamped version the averaged convergence rates are uniformly bounded in
θ. In accordance with theory, the damping parameters tend to one as θ → 0 and
therefore MMG tends to the undamped version in this case.

The left picture in Figure 7 displays the algebraic error ‖uJ−uν
J‖ of MMG, of the

undamped version and of the polygonal Gauß-Seidel iteration (dashed line). Here
we use the default parameters τ = τ0 and θ = 0.1 again. Observe that MMG is
about to accelerate towards the asymptotic convergence speed as the final accuracy
10−10 is reached.

The right picture in Figure 5 shows the averaged convergence rates over the
number of nodes. As usual, Gauß-Seidel relaxation deteriorates with increasing
refinement. Though the diffuse interface is well resolved by TJ , we do not observe
saturation of the multigrid convergence rates. Again, undamped MMG performs
best suggesting future research concerning even more sophisticated damping.

Acknowledgment . Special thanks to G.M. Ziegler for providing a proof of Lem-
ma 4.1 within a couple of days.
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