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TRUNCATED NONSMOOTH NEWTON MULTIGRID METHODS

FOR SIMPLEX-CONSTRAINED MINIMIZATION PROBLEMS

CARSTEN GRÄSER AND OLIVER SANDER

Abstract. We present a multigrid method for the minimization of strongly

convex functionals defined on a finite product of simplices. Such problems
result, for example, from the discretization of multi-component phase-field

problems. Our algorithm is globally convergent, requires no regularization

parameters, and achieves multigrid convergence rates. We present numerical
results for the vector-valued Allen–Cahn equation and observe that the con-

vergence rate is independent from the temperature parameter and the number

of components.

AMS classification: 65K15, 90C25, 49M20
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1. Introduction

Define the set K to be the n-fold product of the (N − 1)-dimensional Gibbs
simplex (Figure 1)

G :=
{
x ∈ RN

∣∣∣ N∑
i=1

xi = 1, xi ≥ 0, i = 1, . . . , N
}
.

It is a closed, convex subset of the space (RN )n. On K we consider the minimization
problem

u ∈ K : J (u) ≤ J (v) ∀v ∈ K(1)

for a functional J which is assumed to have the following properties:

(1) The functional J is strongly convex and continuous on K, and differentiable
on the relative interior of K.

(2) It has the decomposition

(2) J (u) = J0(u) +

n∑
i=1

N∑
j=1

φi,j(ui,j) + χK(u),

with J0 : (RN )n → R being strongly convex, coercive, and C2; and φi,j :
R → R ∪ {∞} convex, lower semi-continuous, and C2 on (0,∞). Finally,
χK is the indicator functional of the set K, i.e., χK(u) = 0 for u ∈ K,
and +∞ otherwise. The addition of the indicator functional χK allows to
reformulate the minimization problem (1) on the entire space (RN )n.

This work was supported by the DFG Research Center Matheon. The authors would like to
thank Ralf Kornhuber for advice and interesting discussions.
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Figure 1. The two-dimensional Gibbs simplex

Note that we do not require that J be differentiable on the relative boundary ∂K
of K in its affine hull. In particular, we allow that |∇J (x)| → ∞ for x → ∂K.
This generality is crucial to cover, e.g., the logarithmic potential used in phase-field
modeling (Chapter 5). It sets us apart from competing approaches like [3], which
assume J to be differentiable on the entire closure of K. We also note that the
smoothness assumptions on J0 can be relaxed from C2 to LC1. In that case, the
second partial derivatives appearing in Chapter 3 have to be replaced by suitable
generalized derivatives of J ′0, e.g., the generalized Jacobian in the sense of Clarke
[7] or slanting derivatives [14].

Minimization problems like (1) arise for example from the finite element dis-
cretization of multi-component phase-field models. There, the distribution of N
substances is described by N volume fractions. Since these fractions must each
be contained in [0, 1] and must sum up to 1 at each point, the simplex constraint
structure arises. After a suitable time discretization, the phase-field behavior is
governed by a strongly convex energy functional. A finite element discretization
then leads to problems like (1).

The multi-component phase-field framework allows to model many physical and
abstract systems. The vector-valued Allen–Cahn equations, for example, model
the behavior of physical substances with phase changes (see Chapter 5). Allen–
Cahn-type problems also arise as subproblems when solving the more challenging
Cahn–Hilliard-type problems [11]. However, multi-component phase fields have
also been used for topology optimization [2], and image segmentation [15]. All
these applications benefit from efficient and robust solvers for the minimization
problem (1).

Various methods have been proposed for minimization problems with this struc-
ture. In principle, many standard methods from convex optimization such as gra-
dient projection methods [1] or interior point methods [6] can be used. However,
such methods tend to be slow since they do not exploit the special structure of the
problem. Of the methods that do use this structure we want to highlight the Mono-
tone Multigrid Method proposed by Kornhuber and Krause [16]. They suggested a
Gauß–Seidel type smoother where the energy is minimized locally in the directions
of the simplex edges, and combined it with a special nonlinear multigrid step. This
multigrid step involved local damping of the individual scalar corrections on all lev-
els. Kornhuber and Krause proved global convergence for their scheme. However,
numerical experiments showed that this solver could only be used efficiently for very
low numbers of components N . Since by construction their local damping scales
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with the inverse of N , the coarse grid corrections effectively vanish for increasing
N . Kornhuber and Krause observed that convergence could be accelerated if the
damping was omitted. However, no convergence proof was given for that case.

Alternatively, Blank and coworkers presented a primal–dual active set method
for the vector-valued Allen–Cahn equation with mass conservation in [3]. They
considered only the simpler case of the pure obstacle potential, where φi,j ≡ 0. For
this method they showed local convergence.

Inspired by [16], we proposed the Polyhedral Gauß–Seidel method (PGS), which
can reliably minimize strictly convex functionals that are piecewise smooth on gen-
eral polyhedral decompositions of a general polyhedron contained in (RN )n [13].
For this method we showed global convergence even for inexact local minimizations.
The convergence result also allows for a general acceleration step, which does not
impede convergence as long as it is monotone, i.e., energy decreasing.

The product of simplices K =
⊗n

i=1G discussed in this article forms a special
case of the general PGS framework. For this setting, we propose a coarse grid
correction that leads to optimal convergence rates and is much simpler to con-
struct than the one proposed in [16]. The resulting method is called Truncated
Nonsmooth Newton Multigrid (TNNMG), because it can be interpreted as an in-
exact Newton method for the stationarity equation of the Gauß–Seidel smoother in
the quadratic obstacle case [9]. It generalizes the corresponding method for scalar
problems from [12].

When comparing with the numerical results of Kornhuber and Krause given
in [16], our solver turns out to be much more efficient and robust. Indeed, the con-
vergence rates appear to be independent of N . In Chapter 5 we show experiments
for up to 18 components, with the convergence rate staying below 0.1 in all cases.
Additionally, our multigrid correction is much easier to implement than the one
from [16]. Our coarse grid correction involves only one global damping step. This
turns out to be the right middle-ground between the too aggressive local damping
of [16] (which converges only slowly), and no damping at all (which may diverge).
Compared to [3], our method is much more efficient, since only one multigrid cycle
is used for the coarse grid correction. Moreover, our method is globally convergent
and is not restricted to quadratic functionals.

One final advantage of our method is its robustness with respect to certain
singular limits of the functional. Several potentials used in phase-field modeling
approach functions that are nonsmooth on ∂K for particular parameter choices.
This does not disturb our method as it can easily handle the nonsmooth case.

We proceed as follows. In Chapter 2 we specialize the polyhedral Gauß–Seidel
method to the case of simplex constraints. This leads to a globally convergent
method, with an energy-decreasing acceleration step left to be specified. To obtain
multigrid convergence rates we then propose a Newton-type correction in Chapter 3
and introduce a linear multigrid method for its inexact evaluation in Chapter 4.
We test our algorithm with the vector-valued Allen–Cahn equation both for the
logarithmic and the obstacle potential in Chapter 5 and discuss its complexity in
Chapter 6. We observe optimal convergence rates independent from the tempera-
ture parameter and the number of components.
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2. Accelerated Polyhedral Gauß–Seidel Methods

In [13] the polyhedral Gauß–Seidel method (PGS) was introduced for strictly
convex functionals J that are piecewise smooth on a polyhedral partition of the
admissible set. For the special case of a single polyhedron it was shown there that
a Gauß–Seidel-type method that successively minimizes J in all edge directions
converges globally. This generalized the corresponding result for simplices from [16].

In the following we describe the PGS method for the admissible set being an
n-fold product K of the Gibbs simplex G. Let ei ∈ RN such that (ei)j = δij (the
Kronecker symbol). Then the edges of G are given by

E =
{
ηij = ei − ej ∈ RN | 1 ≤ i < j ≤ N

}
,

and the number of such edges is M = |E| = (N − 1)N/2. To extend these local
edge directions to global ones let Ek ∈ Rn with (Ek)l = δkl. Then the elements of{

η ⊗ Ek ∈ (RN )n | η ∈ E , 1 ≤ k ≤ n
}

are the edges of the polyhedron K =
⊗n

i=1G.
We will use these directions as search directions for a nonlinear Gauß–Seidel

method. For a fixed ordering E = {η1, . . . , ηM}, denote by Vk,l the linear subspace
of (RN )n spanned by ηl⊗Ek. The (non-direct) sum of all these spaces is the linear
hull V of K − w for any w ∈ K.

Let uν ∈ K be a given iterate. One step of the polyhedral Gauß–Seidel method
takes the form

(1) Set w0,M = uν

(2) For k = 1, . . . , n do
(a) Set wk,0 = wk−1,M

(b) For l = 1, . . . ,M do
Find wk,l = arg min

v∈wk,l−1+Vk,l

J (v)

(3) Set uν+ 1
2 = wn,M

(4) Find some

uν+1 ∈ uν+ 1
2 +W(uν+ 1

2 ) : J (uν+1) ≤ J (uν+ 1
2 ),

where W(uν
1
2 ) is an additional subspace of (RN )n which may depend on

uν+ 1
2 .

Our setting here is a special case of the more general polyhedral setting discussed
in [13]. The following convergence result is therefore a corollary of the main con-
vergence theorem from there.

Theorem 2.1. Under the stated assumptions, the algorithm converges to the unique
minimizer of J on K for all initial iterates u0 ∈ K.

Note the additional monotone correction Step 4. It is the key to obtaining
algorithms with multigrid performance, because it allows an additional correction
in a space of suitable long-range interactions. Importantly, we do not require uν+1

to be minimal in the space uν+ 1
2 +W(uν+ 1

2 ), but only to decrease energy.
The Truncated Nonsmooth Newton Multigrid (TNNMG) method is obtained as

a particular choice of this correction step, which we construct in the following
section. Since that correction is energy-decreasing, the global convergence of the
overall method follows from Theorem 2.1.
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Remark 2.1. The convergence result in Theorem 2.1 also holds if the local min-
imization problems are only solved inexactly. This can lead to significant perfor-
mance gains. See [13] for details.

3. Truncated Newton Corrections

A naive choice of coarse correction would consist of an inexact Newton-type cor-
rection at the iterate uν+ 1

2 . Straightforward linearization is not possible, however,
due to the nonsmoothness of the problem. Instead, to obtain an efficient method,
we restrict the Newton-type correction at the iterate uν+ 1

2 ∈ K to a subspace where
J is locally smooth. This subspace is then precisely the spaceW(uν+ 1

2 ) mentioned
in the general algorithm. Since J is non-differentiable perpendicular to K any such
choice of W(uν+ 1

2 ) will be a subset of the linear hull V of K − uν+ 1
2 . We expect

that this subspace varies only mildly in the neighborhood of the solution. Then the
method can be expected to be very efficient if good initial iterates are available.
Note, however, that the method converges even for bad initial iterates.

3.1. Truncated Subspace Linearization. For a given point w ∈ K we now
consider the construction of a linear subspace W(w) ⊂ (RN )n such that J can
be linearized in w +W(w). The most simple guess W(w) = V will not work in
general as J may not be differentiable in this space if w ∈ ∂K. To construct a
more sophisticated guess we consider the active sets ak(wk) := {j | wk,j = 0} for
each block wk ∈ G. Then J is differentiable near w in the space

n∏
k=1

span
{
ηij ∈ E

∣∣ i, j /∈ ak(wk)
}
.

It can be shown that this space is the maximal subspace of V where J (w + ·) is
differentiable near zero. It therefore makes a good first guess for the correction
spaceW(w). However, there is a second problem. Using a linearization of J in this
space to compute Newton-type corrections may lead to numerical problems due to
unbounded derivatives as some wi,j approach 0. In order to avoid this we use the
extended sets of active component given by Ak(wk) = {j | wk,j = 0 or ϕ′′k,j(wk,j) >

C} for a large constant C. We can then define the truncated space W(w) ⊂ V as

W(w) =

n∏
k=1

Wk(wk), Wk(wk) = span
{
ηij ∈ E

∣∣ i, j /∈ Ak(wk)
}
.

With the space W(w) defined we now construct an energy-decreasing step in
W(w). Consider the linearized problem

v ∈ W(w) : H(w)v = −g(w),(3)

where g(w) = J ′(w)|W(w) and H(w) = J ′′(w)|W(w)×W(w) are the gradient and
Hessian of J on W(w), respectively. We call g(w) and H(w) the truncated lin-
earization of J at w.

Lemma 3.1. There is a unique solution v ∈ W(w) of (3).

Proof. By definition we have kerH(w) ⊥ W(w) and g(w) ∈ W(w). Using the
strong convexity of J we find that H(w) is symmetric positive definite on W(w),
which implies the assertion. �
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While the definitions of H(w) and g(w) as operator and functional on W(w)
are straightforward, in practice one has to extend them by zero to the orthogo-
nal complement of W(w) in (RN )n in order to derive actual matrix and vector
representations.

In the following we will briefly sketch how to do this. Denote by PS the orthogo-
nal projection onto a closed convex set S, and let J ′(w) and J ′′(w) be a generalized
gradient and Hessian of J at w ∈ (RN )n, respectively. Here we understand “gener-
alized” in the sense that the entries are the partial derivatives of J wherever they
exist, and arbitrary elsewhere. Then the global projection PW(w) : (RN )n →W(w)
is a block-diagonal matrix given by

PW(w) ∈ (RN×N )n×n,
(
PW(w)

)
ij

= δijPWi(wi),

with (
PWk(wk)

)
ij

=

{
δij − 1

N−|Ak(wk)| if i, j /∈ Ak(wk),

0 else.

We can then write

H(w) = PTW(w)J
′′(w)PW(w), g(w) = PTW(w)J

′(w).

As PW(w) is block-diagonal H(w) inherits the sparsity pattern of J ′′(w), and all
entries can be computed independently according to

H(w)ij = PTWi(wi)

(
J ′′(w)ij

)
PWj(wj).

Using this matrix representation the solution of (3) is given by v = −H(w)+g(w),
where (·)+ is the Moore–Penrose pseudo-inverse. Notice that this is independent
of the entries selected for non-existing partial derivatives.

Remark 3.1. As each local subspace Wi(wi) is a subspace of {x ∈ RN |
∑
xi = 0}

the size of the local blocks can be reduced from RN×N to R(N−1)×(N−1) by represent-
ing them using a fixed basis of this space. This can lead to considerable storage and
run-time savings, especially for small N . The basis change leads to an equivalent
algorithm, unless the regularization described at the end of Chapter 4 is used. The
properties of the regularized problem described there hold irrespectively of the choice
of basis, though.

3.2. Post-Processing of Inexact Newton Corrections. Using the truncated
linearization we can compute Newton-like corrections at the intermediate iterate
w = uν+ 1

2 in the subspace W(w) by solving (3). However, one will normally only
want to use an approximation ṽ of v = −H(w)+g(w). In order to guarantee energy
decrease one could use a simple damping strategy. Unfortunately this may lead to
very small damping parameters if the correction is nonzero in components where w
is close to ∂K. To overcome this we first project ṽ onto the admissible set.

Let PK−w be the orthogonal projection onto K−w. Due to the product structure
of K, the projection PK−wṽ is given by

(PK−wṽ)i = PG−wi ṽi ∈ G− wi, i = 1, . . . , n,

where PG−wi is the orthogonal projection onto the Gibbs simplex. This projection
can be evaluated efficiently in O(N logN) steps [17]. Since PG−wi(x) = PG(x +
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wi) − wi it is enough to consider the evaluation of y = PGx. The associated
minimization problem is equivalent to the optimality system(

I + ∂χ[0,∞)N 1
1T

)(
y
λ

)
3
(
x
1

)
,

where 1 = (1, . . . , 1)T ∈ RN and λ ∈ R is the Lagrange multiplier for the linear
constraint

∑
yi = 1. For given λ this implies yi = (1 + ∂χ[0,∞))

−1(xi − λ) =
max(xi − λ, 0). Inserting this in the second equation yields the nonlinear Schur
complement equation

1 =

N∑
i=1

max(xi − λ, 0).(4)

To solve for λ we first sort x such that x1 ≤ · · · ≤ xN . Since λ < xN there is a
minimal index i0 ≤ N such that λ < xi0 . For this index (4) implies

1 =

N∑
i=1

max(xi − λ, 0) =

N∑
i=i0

(xi − λ),

and thus λ = µi0 where µi = (
∑N
j=i xj)/(N − j + 1). Hence we can find i0 as

the maximal index with xi0−1 ≤ µi0 . While sorting x is an O(N logN) operation
finding i0 can be done in O(N) steps by successively checking for i = N, . . . , 1. An
alternative proof for the correctness of this method has been given in [17].

The projected inexact directions P(
K−uν+

1
2

)ṽ cannot be guaranteed to always

be descent directions for the energy J . In practice, however, it is observed that
they are descent directions in almost all cases. To really guarantee a correction
step with non-increasing energy we perform a line search in the projected direction

uν+1 = uν+ 1
2 + ρP(

K−uν+
1
2

)ṽ, ρ = arg min
σ∈[0,∞)

J
(
uν+ 1

2 + σP(
K−uν+

1
2

)ṽ).(5)

Then we have uν+1 ∈ K and J (uν+1) ≤ J (uν+ 1
2 ) by construction. Numerical

experiments show that this construction leads to very efficient methods.

3.3. The TNNMG Method. Obviously one can replace the optimal line-search
parameter ρ in (5) by approximations as long as the monotonicity criterion J (uν+1) ≤
J (uν+ 1

2 ) is satisfied. Notice that such approximations can always be computed us-
ing a simple bisection method. One can also check whether ρ = 1 does already
satisfy the criterion and resort to the bisection only if this is not the case. For ef-
ficiency reasons this procedure was used in all computations to be reported below.
In any case Theorem 2.1 implies global convergence for all such corrections.

Corallary 3.2. The extended Gauß–Seidel method with the additional monotone
correction (5) converges to the unique minimizer of J on K for all initial iterates
u0 ∈ K.

In the previous chapter we have constructed corrections as solutions to the under-
determined linear system of equations (3). For efficiency reasons, inexact solutions
will usually be used. It is one of the strengths of the presented method to al-
low many alternatives here. For example, iterations of a CG method are possible,
as is the use of an actual direct solver. Since multigrid methods are known to
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be amongst the most efficient solvers for symmetric positive (semi-)definite linear
systems related to partial differential equations we propose to solve (3) inexactly
by one linear multigrid step. We call the resulting method Truncated Nonsmooth
Newton Multigrid (TNNMG). It can be viewed as an overall nonlinear multigrid
method with nonlinear fine grid smoother and linear coarse grid corrections in suit-
able subspaces. A possible choice for the linear multigrid method will be discussed
in the next chapter.

4. Multigrid Solution of Linear Subproblems

Assume the important special case that (RN )n is the coefficient space of a vector-
valued discrete function space SNJ . We now briefly discuss the computation of
multigrid corrections for (3) based on a hierarchy S0 ⊂ · · · ⊂ SJ of subspaces
of the corresponding scalar function space SJ . To this end we identify Sk with
Rnk , where nJ = n, and assume that the natural embedding of Sk−1 into Sk
is given by the prolongation matrix P̃k ∈ Rnk×nk−1 . This induces a hierarchy
SN0 ⊂ · · · ⊂ SNJ of vector-valued function spaces and corresponding vector-valued

prolongation operators Pk ∈ (RN×N )nk×nk−1 given by (Pk)ij = (P̃k)ijI ∈ RN×N .
We set AJ = H(w) and construct a hierarchy of stiffness matrices by setting

Ak−1 = PTk AkPk. We further assume the existence of linear smoothing operators
Bk : (RN )nk → (RN )nk . A linear multigrid step for (3) starting from a zero initial
value takes the form

(1) Set rJ = −g(w)
(2) For k = J, . . . , 1 do

(a) Compute vk = B−1
k rk

(b) Set rk−1 = PTk (rk −Akvk)

(3) Compute v0 = B−1
0 r0

(4) Set ṽ = PW(w)

∑J
k=0

(∏J
l=k+1 Pl

)
vk.

In this simple form there is a single pre-smoothing step and no post-smoothing.
The extension to a V -cycle with multiple pre- and post-smoothing steps is straight-
forward.

We note that the only difference to a standard linear multigrid step is the pro-
jection PW(w) in the last step. This modification is needed since, while the method

does in principle act in the quotient space (RN )n/ kerH(w) =W(w), it represents
all corrections in the larger space (RN )n. Round-off errors may create spurious con-
tributions in kerH(w). However the corrections in the quotient space are invariant
under those contributions and the latter can easily be removed by the additional
projection to guarantee ṽ ∈ W(w).

Since the matrices Ak are in general symmetric but positive semi-definite only,
we will briefly discuss the smoothers Bk. A simple choice is a block Gauß–Seidel
method based on a block-triangular decomposition Ak = Dk + Lk + LTk , where
(Dk)ij = δij(Ak)ii. However, Dk+Lk may be singular because the diagonal entries
(Dk)ii are in general only positive semi-definite. One way to avoid this is to formally
replace (Dk)ii by (Dk)ii+Pker(Dk)ii . The resulting correction is the unique solution

of (Dk + Lk)vk = rk with vk ⊥ ker(Dk + Lk).
In practice computing ker(Dk)ii can be avoided by using a kernel-invariant local

solver like, e.g., the CG method for (Dk)ii directly. To avoid numerical difficul-
ties due to the infinite condition number of (Dk)ii we suggest the following cheap
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modification for a small parameter 0 < α� 1:

(
(D̃k)ii

)
lm

:=


(
(Dk)ii

)
lm

if l 6= m,

α if l = m and
(
(Dk)ii

)
lm

= 0,(
(1 + α)(Dk)ii

)
lm

if l = m and
(
(Dk)ii

)
lm
6= 0.

(6)

Then (D̃k)ii is symmetric positive definite and the resulting correction can be
viewed as a damped version of the one obtained for (Dk)ii +Pker(Dk)ii . Numerical
experiments for the example problem presented below showed that the CG method
was robust for α ≥ 10−14, and the overall convergence rates were hardly influenced
as long as α ≤ 10−4. By Theorem 2.1, the overall algorithm remains globally
convergent irrespectively of the choice of α.

Remark 4.1. We have presented the multigrid method here for a sequence of nested
function spaces, but these are not actually required. A correction step based on a
purely algebraic multigrid hierarchy is easily possible as well.

5. Numerical Example: The Allen–Cahn Equation

In order to investigate the efficiency and robustness of the TNNMG method
introduced above we apply it to a multicomponent Allen–Cahn equation with log-
arithmic and obstacle type potentials [8]. This equation is an L2-gradient flow of
the Ginzburg–Landau energy

E(u) =
ε

2

∫
Ω

N∑
i=1

|∇ui|2 dx+
1

ε

∫
Ω

Ψ(u) dx,

where Ψ : RN → R ∪ {∞} is a multi-well potential which can typically be split as
Ψ(u) = Φ(u) − 1

2 〈Cu, u〉 for a convex, lower semi-continuous functional Φ : RN →
R ∪ {∞} and a symmetric interaction matrix C ∈ RN×N . We will concentrate on
C = I and the prototypic case of a logarithmic potential

Φθ(u) = θ

N∑
i=1

ui ln(ui) + χG(u),

where θ > 0 is a scalar parameter which is interpreted as a temperature. In the
limiting case θ → 0, the obstacle potential Φ0 = χG is obtained. Figure 2 depicts
the level sets of Ψ for N = 3 and different values of θ. Notice that, for θ → 0, the
local minima (marked by dots) tend to the corners of G where Ψ′ is singular. A
weak formulation of the Allen–Cahn equation reads

ε〈ut, v − u〉+ ε(∇u,∇(v − u)) +
1

ε

∫
Ω

(Φ(v)− Φ(u))dx− 1

ε
(u, v − u) ≥ 0.

It is well-posed in W (0, T ;H1(Ω)) if an initial value u(0) = u0 is provided.
Time discretization using an implicit Euler scheme leads to stationary variational

inequalities

uk ∈ H1(Ω) : a(uk, v − uk) +
1

ε

∫
Ω

(Φ(v)− Φ(uk))dx ≥ l(v − uk) ∀v ∈ H1(Ω)

for the bilinear form a(u, v) = ( ετ −
1
ε )(u, v) + ε(∇u,∇v) and right hand side

l(v) = ε
τ (uk−1, v). We note that, due to the concave term −ε−1(u, v), the bi-

linear form a(·, ·) is elliptic only under the time step restriction τ < ε2. While
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Figure 2. Level sets and local minima of the logarithmic potential
Ψ for N = 3 and θ = 0.35, 0.3, 0.25, 0.2, 0.1, 0. Note how the
minimizers (black dots) tend to the corners of G as θ goes to zero.
The derivative of Ψ at ∂G is singular for all θ.

semi-implicit discretizations have been proposed to overcome this [5], they typi-
cally lack accuracy [4, 10]. Since the structure of the stationary problems is the
same for both discretizations, we concentrate on the fully implicit case here, and
assume τ < ε2 from now on.

Spatial discretization by first-order finite elements using a lumped approxima-
tion of

∫
Ω

Φ(u)dx then leads to discrete minimization problems as introduced in
Chapter 1 for J taking the form (2) with

J0(v) =
1

2
〈Av, v〉 − 〈b, v〉, φi,j(z) =

θ

ε
z ln(z)ωi.

Here A is a positive definite matrix and ωi > 0 is the integral over the i-th scalar
nodal basis function.

All numerical tests are carried out for the parameters ε = 0.05, Ω = [0, 1]2, and
τ = 0.002 < ε2 on a mesh hierarchy obtained by uniform refinements of an initial
mesh with two triangles. The evolution of the phase field is depicted in Figure 3.

The TNNMG-method was applied with 3 polyhedral Gauß–Seidel pre- and post-
smoothing steps on the fine mesh. For the coarse correction we used one linear
multigrid V-cycle with 3 block-Gauß–Seidel pre- and post-smoothing steps. The
diagonal blocks were regularized according to (6) and the obtained (N−1)×(N−1)
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Figure 3. Solution for θ = 10−5 and N = 4 at time steps 1, 10,
20, 50, 100, and 200
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Figure 4. Average convergence rate over refinement level J (left)
and over temperature θ (right)

local linear systems were solved up to machine accuracy using a CG method. A
reasonable initial value was computed by nested iteration. All presented rates are
averaged convergence rates computed for a reference solution obtained by solving
to a higher accuracy.

We present the averaged convergence rates for the solution of the first time
step. If not stated otherwise the experiments are for θ = 10−5, N = 4, and the 8th
refinement level. We solve the problem until the energy norm of the correction drops
below 10−11. First, we investigate the mesh dependence of the solver. Figure 4
(left) shows that the convergence rates is hardy influenced by the mesh size and
goes up to only ≈ 0.04 on the finest mesh. Next we investigate the dependence
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Figure 5. Average convergence rate (left) and relative computa-
tional time/N2 over number of components N (right)

on θ ≥ 0. Figure 4 (right) shows that the rate is bounded by ≈ 0.06 for θ in the
range between 10−10 and 1. In the limiting case θ = 0 (not depicted in the figure)
the rate was ≈ 0.04. Finally we investigate the dependence of the convergence rate
on the number of components. Figure 5 (left) shows that the rate is bounded by
≈ 0.05 for N = 2, . . . , 18 components.

Notice that, in contrast to, e.g., the heat equation, the good convergence rates
cannot be explained by the small time step size because the resulting discrete flow
is still far from the identity due to the concave term in the Ψ.

6. Complexity

It remains to discuss the complexity of the proposed method. Assume that J0

is quadratic with a sparse matrix A and each Aii being diagonal as given in the
example problem. Then one nonlinear PGS step has O(nN2) complexity given
that each scalar minimization problem can be solved in constant time. For the
coarse grid correction we assume that a multigrid step for the related hierarchy of
scalar valued function spaces has optimal complexity O(n). In view of the dense
(N −1)× (N −1) blocks in the linearization the complexity of the coarse correction
then ranges from O(nN2) to O(nN3) depending on the local linear solver.

To also assess the implementation and cache effects we measured the compu-
tational time needed to solve the example problem for N = 2, . . . , 18 components
using a CG method as local linear solver. In order to visualize the dependence on
N , Figure 5 (right) depicts the time needed to solve the minimization problem,
scaled by N−2. The plot reveals that the overall effort (solid line) as well as the
share of the nonlinear fine grid smoother PGS (dotted line) scale by N2, and that
the latter dominates the overall effort.

7. Conclusions

We introduced the TNNMG method for simplex-constrained minimization prob-
lems by augmenting the polyhedral Gauß–Seidel (PGS) method with a coarse grid
correction based on a linearization in a suitable subspace. Global convergence fol-
lows from a convergence result for PGS in [13]. Numerical examples illustrate that
the TNNMG method exhibits mesh independent convergence rates comparable to
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those of linear multigrid for elliptic problems. Furthermore the rates are inde-
pendent on the local simplex dimension N and robust for degenerating singular
nonlinearities.

In the light of these properties the presented method is a significant improvement
over the truncated monotone multigrid (MMG) method proposed in [16] where mesh
independence and robustness with respect to the nonlinearity were only achieved
for a variant without convergence proof. While robustness with respect to N was
not discussed systematically for MMG, it seems that the rate deteriorates when
going from N = 3 to N = 5 which is in accordance with the overly pessimistic
damping parameter approaching zero as N → ∞. Regarding the implementation
we note that TNNMG has O(nN2) complexity whereas this is a lower bound for
MMG. However we are not aware of any possible MMG implementation better
than O(nN3). Furthermore the coarse grid correction in TNNMG is much easier
to implement than MMG as only a linear multigrid step is required.
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