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Abstract

We consider the mechanical coupling of a geometrically exact Cosserat
rod to a linear elastic continuum. The coupling conditions are formu-
lated in the nonlinear rod configuration space. We describe a Dirichlet–
Neumann algorithm for the coupled system, and use it to simulate the
static stresses in a human knee joint, where the Cosserat rods are models
for the ligaments.

1 Cosserat Rods and Linear Elasticity

Cosserat rods are models for long slender objects. Let SE(3) = R
3
⋊SO(3)

be the group of rigid body motions (the special Euclidean group). A
configuration of a Cosserat rod is a map ϕ : [0, 1] → SE(3). For each
s ∈ [0, 1], the value ϕ(s) = (ϕr(s), ϕq(s)) is interpreted as the position and
orientation of a rigid rod cross section. Strain measures (vϕ(s),uϕ(s)) ∈
Tϕ(s)SE(3) are defined by

vϕ(s) = ϕ′
r(s) and ϕ′

q(s) = u
×
ϕ (s)ϕq(s),

where u
×
ϕ is the skew-symmetric matrix corresponding to uϕ. On each

cross section s of the rod act a resultant force and torque. These are given
by a tuple (n(s),m(s)) ∈ T ∗

ϕ(s)SE(3). In the absence of external forces
and torques we have the equations of equilibrium [6]

m
′ + ϕ′

r × n = 0 on [0, 1],

n
′ = 0 on [0, 1].

We assume there to be an energy functional W such that n = ∂W/∂v
and m = ∂W/∂u. Existence of solutions for this model has been shown
in [12], but note that solutions may be nonunique.

We will couple the rod model to a linear elastic continuum. Let Ω
be a domain in R

3. Its boundary ∂Ω is supposed to be Lipschitz and to
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Figure 1: Left: Coupling between a two-dimensional domain and a rod. Right:
In the stress-free configuration the rod may meet the body at an arbitrary spatial
angle ϕ̂q(0).

consist of disjoint parts ΓN and ΓD such that ∂Ω = ΓN ∪ΓD and ΓD has
positive two-dimensional measure. We use νΩ to denote the outward unit
normal of Ω. For any displacement function u ∈ H

1(Ω) = (H1(Ω))3 we
set ε = 1

2
(∇u+∇u

T ) the linear strain tensor and the stress σ = Hε, with
the Hooke tensor H . The boundary value problem of elasticity is then

− divσ(u) = f in Ω,

u = 0 on ΓD,

σ(u)νΩ = t on ΓN ,

with volume forces f : Ω → R
3 and surface force t : ΓN → R

3.

2 Coupling Conditions

We will now derive conditions for the coupling of a Cosserat rod and a
linear elastic three-dimensional object. The two main difficulties are the
difference in dimensions between the rod and the continuum, and the
nonlinear nature of the rod configuration space.

Previous work has mainly focused on coupling linear models of different
dimensions. Lagnese et al. [7] have studied the coupling of beams to
plates extensively. Modeling of 3d–2d junctions between linear elastic
objects using a method of asymptotic expansion has been carried out by
Ciarlet et al. [4]. Monaghan et al. [8] describe a 3d–1d coupling between
linear elastic elements in the discrete setting. A general framework which
encompasses these cases is given in [3]. We are not aware of previous work
on the coupling of Cosserat rods.

Consider again a linear elastic continuum defined on a reference con-
figuration Ω. This time, the boundary ∂Ω is supposed to consist of three
disjoint parts ΓD, ΓN , and Γ such that ∂Ω = ΓD∪ΓN∪Γ. We assume that
ΓD and Γ have positive two-dimensional measure. The three-dimensional
object represented by Ω will couple with the rod across Γ, which we call
the coupling boundary. The boundary of the parameter domain [0, 1] of
a Cosserat rod consists only of the two points 0 and 1, and the respective
domain normals are νr,0 = −1 and νr,1 = 1. To be specific, we pick
0 as the coupling boundary. We assume a stress-free rod configuration
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ϕ̂ : [0, 1] → SE(3) such that ϕ̂r(0) = |Γ|−1
∫

Γ
x ds, i.e., the coupling in-

terface of the rod in its stress-free state is placed at the center of gravity
of the coupling interface of Ω. The orientation ϕ̂q(0) of the stress-free
state does not need to be in any relation with the shape of the coupling
boundary Γ (Fig. 1).

We define our coupling using a set of conditions for the primal vari-
ables. These variables are the configuration ϕ of the rod and the displace-
ment field u of the continuum. It is well known that when coupling two
continuum models of the same type, the solution has to be continuous [9].
Since the position ϕr(0) ∈ R

3 of the coupling cross-section can be seen as
an averaged position it is natural to couple it to the averaged position of
Γ

ϕr(0)
!
=

1

|Γ|

∫

Γ

(u(x) + x) ds. (1)

To obtain a complete set of primal conditions we also need to relate
the orientations at the interface. This requires some technical prepa-
rations. Using the deformation gradient F (u) = ∇(u + Id) we first
define the average deformation of the interface boundary Γ as F(u) =
|Γ|−1

∫

Γ
∇(u(x)+x)ds. If u stays within the limits of linear elasticity the

matrix F(u) has a positive determinant. Using the polar decomposition it
can then be split into a rotation polar(F(u)) and a stretching. We define
the average orientation of Γ induced by a deformation u as the rotational
part of F(u). This corresponds to the definition of the continuum rota-
tion used in the theory of Cosserat continua. In particular, if u ≡ 0 then
polar(F(u)) = Id.

The average orientation polar(F(u)) can now be set in relation to
ϕq(0), the orientation of the rod cross-section at s = 0. We require the
coupling condition to be fulfilled by the stress-free configuration u = 0,
ϕ = ϕ̂. This leads to the condition

ϕq(0)
!
= polar(F(u))ϕ̂q(0), (2)

which is an equation in the nonlinear three-dimensional space SO(3).
For ease of writing we will introduce the averaging operator Av :

H
1(Ω) → SE(3) by setting

Av(u) =
( 1

|Γ|

∫

Γ

(u(x) + x) ds, polar(F(u))ϕ̂q(0)
)

, (3)

where we have used (·, ·) to denote elements of the product space SE(3) =
R

3
⋊ SO(3). It is a nonlinear generalization of the restriction operator

used in [3]. Then (1) and (2) can be written concisely as

ϕ(0)
!
= Av(u). (4)

Note that we do not assume that Γ has the same shape or area as the
rod cross-section at s = 0. Also, since the coupling conditions relate only
finite-dimensional quantities they remain the same when the subdomain
problems are replaced by finite element approximations.

The coupling problem is made complete by conditions for the dual
variables. For the continuum these variables are the normal stresses at the
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boundary Γ. For the rod the dual variables are the total force n(0)νr,0 and
the total moment m(0)νr,0 about ϕr(0) transmitted in normal direction
across the cross-section at s = 0. We expect these to match the total force
and torque exerted by the continuum across the coupling boundary Γ in
the direction of −νΩ

∫

Γ

σ(u)νΩ ds = −n(0)νr,0 (5)

∫

Γ

(x− ϕr(0))× (σ(u)νΩ) ds = −m(0)νr,0. (6)

Together, these equations relate quantities in the six-dimensional space
T ∗
ϕ(0)SE(3).

Remark 2.1. A variational formulation suggests that (5) and (6) are not
the dual conditions of (4) (cf. to [3] for the linear case). Together with
(10), however, they are sufficient to construct a working solution algo-
rithm.

3 A Dirichlet–Neumann Algorithm

In this section we present a Dirichlet–Neumann algorithm for the coupled
problem. It can be interpreted as a fixed-point iteration for an equation
on the trace space of the rod configuration space at s = 0, i.e. on SE(3).
Each iteration consists of three steps: a Dirichlet problem for the rod, a
Neumann problem for the body, and a damped update along geodesics
on SE(3). Let λ0 ∈ SE(3) be the initial interface value and k ≥ 0 the
iteration number. In more detail, the steps are as follows.

1. Dirichlet problem for the Cosserat rod

Let λk, ϕD ∈ SE(3) be the current interface value and a Dirichlet
boundary value, respectively. Find a solution ϕk+1 of the Dirichlet
rod problem

(mk+1)′ + (ϕk+1
r )′ × n

k+1 = 0 on [0, 1]

(nk+1)′ = 0 on [0, 1]

ϕk+1(0) = λk

ϕk+1(1) = ϕD.

2. Neumann problem for the continuum

The new rod iterate ϕk+1 exerts a resultant force n
k+1(0)νr,0 and

moment m
k+1(0)νr,0 across its cross-section at s = 0. Construct a

Neumann data field τ
k+1 : Γ → R

3 such that
∫

Γ

τ
k+1(x) ds = −n

k+1(0)νr,0 (7)

and

∫

Γ

(x− ϕk+1
r (0)) × τ

k+1(x) ds = −m
k+1(0)νr,0. (8)
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Then solve the three-dimensional linear elasticity problem with Neu-
mann data τ

k+1 on Γ

− divσ(uk+1) = f in Ω

σ(uk+1)ν = τ
k+1 on Γ (9)

u
k+1 = 0 on ΓD

σ(uk+1)ν = t on ΓN .

3. Damped geodesic update

From the solution u
k+1 compute the average interface displacement

and orientation Av(uk+1) as defined in (3). With a damping pa-
rameter θ > 0, the new interface value λk+1 is then computed as a
geodesic combination in SE(3) of the old value λk and Av(uk+1),

λk+1 = expλk θ
[

exp−1

λk Av(uk+1)
]

.

It remains to say how to construct suitable fields of Neumann data
τ

k+1 that satisfy the conditions (7) and (8). Let us drop the index k for
simplicity. In principle, any function τ : Γ → R

3 of sufficient regularity
fulfilling (7) and (8) can be used as Neumann data in (9). It has been
shown in [10] that such functions exist.

The theory of Cosserat rods assumes that forces and moments are
transmitted evenly across cross-sections. We therefore construct τ to be
‘as constant as possible’. More formally, we introduce the functional

T : L2(Γ)× R
3 → R, T (h, c) =

∫

Γ

‖h(x)− c‖2 ds,

and construct τ as the solution of the minimization problem

(τ , cτ ) = argmin
h∈L2(Γ), c∈R3

T (h, c) (10)

under the constraints that
∫

Γ

τ ds = −n(0)νr,0 and

∫

Γ

(x−ϕr(0))×τ ds = −m(0)νr,0. (11)

Problem (10)–(11) is a convex minimization problem with linear in-
equality constraints. In [10, Lemma 5.3.4] it was shown that there exists
a unique solution. In a finite element setting the problem size is given by
the number of grid vertices on Γ times 3. A minimization problem of this
type can be solved, e.g., with an interior-point method.

4 Numerical Results

We close with a simulation result for a knee model which combines femur,
tibia, and fibula bones modeled as three-dimensional linear elastic objects,
and the cruciate and collateral ligaments, modeled as Cosserat rods. The
model additionally includes the contact between femur and tibia. To
obtain a test case where the contact stresses do not entirely predominate
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Figure 2: Left: Problem setting. Tibia and fibula are rotated 15◦ in valgus
direction to put additional stress on the MCL. Center: Deformed grids after
two adaptive refinement steps. Right: Two sagittal cuts through the von Mises
stress field.

the stresses created in the bone by pulling ligaments, we applied a valgus
rotation of 15◦ to tibia and fibula. This leads to a high strain in the
medial collateral ligament (MCL) and can be interpreted as an imminent
MCL rupture (Fig. 2).

The geometry was obtained from the Visible Human data set. We used
first-order finite elements for the discretization of the linear elasticity prob-
lem. Dune [2] was used for the implementation. We modeled bone with
an isotropic, homogeneous, linear elastic material with E = 17GPa and
ν = 0.3. The distal horizontal sections of tibia and fibula were clamped,
and a prescribed downward displacement of 2mm was applied to the up-
per section of the femur.

The four ligaments were each modeled by a single Cosserat rod with a
circular cross-section of radius 5mm. The rod equations were discretized
using geodesic finite elements [11]. We chose a linear material law (see,
e.g., [6]) with parameters E = 330MPa and ν = 0.3. On the bones, the
coupling boundaries were set manually. For simplicity we chose them to
be resolved by the coarsest grids. We modeled all ligaments to be straight
in their stress-free configurations and to have 8% in situ strain.

We solved the combined problem using the Dirichlet–Neumann algo-
rithm described in Section 3. At each iteration, a pure Dirichlet problem
had to be solved for each of the rods and a contact problem with mixed
Dirichlet–Neumann boundary conditions had to be solved for the bones.
The contact problem was solved using the Truncated Nonsmooth Newton
Multigrid algorithm [5]. For the ligaments we used a Riemannian trust-
region solver [1, 11], and we used IPOpt [13] to solve the minimization
problems (10)–(11). Fig. 2 shows the deformed configuration on a grid
obtained by two steps of adaptive refinement and cuts through the von
Mises stress field. In Fig. 3, left, a caudal view onto the tibial plateau can
be seen, which is colored according to the von Mises stress. The peaks due
to contact and the pull of the cruciate ligaments can be clearly observed.

We measured the Dirichlet–Neumann convergence rates with grids con-
taining up to four levels. Bone grids were refined adaptively using the error
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Figure 3: Left: Stress plot on the tibial plateau. Right: Convergence rates of
the Dirichlet–Neumann method as a function of the damping parameter for up
to four grid levels.

estimator presented in [10]. Rod grids in turn were refined uniformly. On
each new level we started the computation from the reference configura-
tion. That way identical initial iterates for all grid refinement levels were
obtained. Details on the measuring setup can be found in [10]. Fig. 3,
right, shows the Dirichlet–Neumann convergence rates plotted as a func-
tion of the damping parameter θ for up to four levels of refinement. For
each further level of refinement, the optimal convergence rate is slightly
worse than for the previous, and obtained for a slightly lower damping
parameter. This behavior seems typical for Dirichlet–Neumann methods.
Nevertheless the optimal convergence rates stay around 0.4. This makes
the algorithm well usable in practice.
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[13] A. Wächter and L. T. Biegler. On the implementation of a primal–
dual interior point filter line search algorithm for large-scale nonlinear
programming. Math. Progr., 106(1):25–57, 2006.

8


	Cosserat Rods and Linear Elasticity
	Coupling Conditions
	A Dirichlet–Neumann Algorithm
	Numerical Results

