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Abstract. We consider the efficient and robust numerical solution of elliptic
problems with jumping coefficients occuring on a network of fractures. These
thin geometric structures are resolved by anisotropic trapezoidal elements. We
present an iterative solution concept based on a hierarchical separation of the
fractures and the surrounding rock matrix. Upper estimates for the conver-
gence rates are independent of the the jump of coefficients and of the width
of the fractures and depend only polynomially on the number of refinement
steps. The theoretical results are illustrated by numerical experiments.

1. Introduction

Saturated groundwater flow in fractured porous media can be described by linear
elliptic problems. Fractures on one, two or more small scales are represented by ef-
fective parameters of corresponding single, double or multi-porosity models that are
obtained by homogenization techniques. Large fractures directly enter the geometry
of the mathematical model. For lack of data, such fracture networks are typically
generated automatically based on stochastic reasoning [20]. Usually, the permeabil-
ity kF within the fractures is some orders of magnitude larger than the permeability
of the surrounding rock matrix, while the width εF of “large” fractures still might
be some orders of magnitude smaller than the overall computational domain. Sim-
ilar problems occur in other applications: The heat transfer in the human body is
dominated by the blood vessels which, depending on their size, are represented by
effective parameters [7, 8] or have to be incorporated directly. Another example
concerns diffusion induced drug permeation through stratum corneum [11, 16]. In
this case, the lipid “mortar” between the corneocytes plays the role of the fractures.

In order to avoid numerical troubles resulting from small width εF and large
permeability kF , fractures (or vessels) are often discretized by lower dimensional
elements [2, 12, 13] (or [18]). However, there are also some disadvantages of this
approach. For example, outward normal flow and mass conservation across the
interface are obviously excluded. Such kind of drawbacks motivated recent work
on equidimensional discretizations [9, 10, 14, 15].

On this background, we consider the efficient and robust numerical solution of
elliptic problems with jumping coefficients occuring on a network of fractures. Ro-
bustness means that the complexity should not depend on the crucial parameters
εF and kF . To this end the fracture network is discretized by anisotropic isopara-
metric bilinear finite elements while usual triangular elements are used elsewhere.
For the iterative solution of the resulting discrete problems we propose so-called
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hierarchical domain decomposition methods. The basic idea is to decompose the
discrete solution space into subspaces associated with the interior of the fractures,
the interface and a remaining matrix space. Functions from the matrix space are
essentially constant across the fractures. It turns out that the stability of this split-
ting and therefore the convergence speed of the resulting subspace correction only
depends on a certain shape regularity, essentially on the interior angles of the initial
mesh but does not depend on εF and kF . The exact solution of the subproblems
both on the fracture and on the matrix space can be replaced by suitable multigrid
methods. In this case, the number of refinement steps enters only polynomially
as long as the size of εF does not significantly exceed the size of the surrounding
refined mesh, i.e. as long as εF is small enough. In our numerical experiments, we
observe similar convergence speed as for classical multigrid methods applied to the
Laplace equation.

In a sense our approach is complementary to the algorithm presented by Heisig
et al. [11] which aims at compensating small εF by successive anisotropic refinement
and accounts for large kF by ILU -smoothing. Algebraic multigrid methods (see,
e.g., [4, 19] or [22] for an overview) usually work reasonably well but mostly suffer
from a certain lack of theory. Apel and Schöberl [1] consider an anisotropic problem
with a tensor product structure, where line (or plane) smoothers or semi-coarsening
can be applied.

The paper is organized as follows. We first present a model problem, its dis-
cretization and an a priori estimate of the discretization error measured in the
energy norm. Note that this error estimate is robust with respect to εF and kF .
The next two sections concentrate on the stable separation of the subspace associ-
ated with the interior of the fractures and the interface. An hierarchical splitting of
the remaining matrix space is considered afterwards. In section 6 we present a cor-
responding hierarchical domain decomposition algorithm and derive upper bounds
for the convergence rates. Numerical experiments confirm our theoretical findings.

For simplicity, our exposition concentrates on a simple model problem with two
straight fractures. Fractures ending inside of the computational domain could be
treated in a similar way. More advanced discretizations, e.g. finite volumes or dis-
continuous Galerkin, and possible extensions of our approach to transport equations
will be the subject of future research.

2. A discrete elliptic problem on a domain with fractures

Let Ω ⊂ R
2 be a polygonal domain, e.g. the unit square, with the two fractures

Ωi
F = {x ∈ Ω | x = bi

F + sdi
F + tni

F , s ∈ R, t ∈ (0, εF )}, i = 1, 2,

each of which is characterized by its position vector bi
F , direction di

F , normal ni
F

and width εF > 0. We assume that the fractures cross inside of Ω, i.e. that Ωc ⊂ Ω,
Ωc = Ω1

F ∩ Ω2
F . The network of fractures is denoted by ΩF = Ω1

F ∪ Ω2
F while

ΩM = Ω \ ΩF and Γ = ΩM ∩ ΩF represent the rock matrix and the interface,
respectively. This leads to the decomposition

(2.1) Ω = ΩF ∪ Γ ∪ ΩM .

We consider the elliptic variational problem

(2.2) u ∈ H : a(u, v) = �(v) ∀v ∈ H
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with the symmetric bilinear form a(v, w) = (K∇u,∇v)L2(Ω) and jumping perme-
ability K,

(2.3) K(x) =
{

kF ≥ 1, x ∈ ΩF

1, x ∈ ΩM
.

For simplicity, let H = H1
0 (Ω) and � ∈ H ′ is some right hand side. The energy

norm is denoted by ‖ · ‖ = a(·, ·)1/2.
Let P0 = T0 ∪Q0 be a subdivision of Ω = ΩM ∪ ΩF consisting of the partitions

ΩM =
⋃

T∈T0

T, ΩF =
⋃

Q∈Q0

Q

into triangles T and trapezoidals Q, respectively. We assume that the vertices of
each trapezoidal Q ∈ Q0 lie on Γ (see the left picture in Figure 2.1). In particular,

Qc := Ωc ∈ Q0

is a parallelogram. We further assume that P0 is conforming in the sense that the
intersection of two different elements is either a common edge, a common vertice
or empty. Finally, P0 is supposed to be shape regular in the sense that all P ∈ P0

have positive area and all Q ∈ Q0 have four different vertices. Equivalently, there
are positive constants s0, γ0 ∈ R such that

(2.4) s0hQ ≤ h′
Q, ∀Q ∈ Q0 \ {Qc}, γ0 ≤ γP ≤ π − γ0 ∀P ∈ P0

holds with hQ ≥ h′
Q denoting the lengths of the two parallel edges contained in

Γ and γP is an arbitrary interior angle. Note that all edges of Qc have the same
length hQc .

Though all results and algorithms to be presented can be directly extended to
locally refined grids, we assume for simplicity that the triangulation T1 is obtained
by uniform refinement of T0. More precisely, each triangle T ∈ T0 is subdivided
into four similar subtriangles. Connecting the resulting new midpoints of opposite
edges of each Q ∈ Q0 \ {Qc}, we get the set Q1 of refined trapezoidals. Reiteration
of this procedure leads to a sequence of refined partitions Pj = Tj∪Qj , j = 0, 1, . . . .
Observe that Pj is conforming and the shape regularity (2.4) is preserved uniformly
in j. In paricular, the angle condition in (2.4) implies

(2.5) hQ − h′
Q ≤ εF

(sin γ0)2
= O(εF ) ∀Q ∈ Qj

so that the elements of Qj tend to (highly anisotropic) parallelograms as εF tends
to zero. On the other hand, the width of the fractures is expected to be so small
that successive refinement is stopped before the mesh size of Tj reaches εF or even
becomes much smaller than εF . Hence, we impose the refinement bound

(2.6) εF ≤ C0hQ ∀Q ∈ Qj

relating the scales of the fractures and of the surrounding mesh by a fixed constant
C0 ∈ R. Anisotropic refinement of Qj in the other direction is performed by
bisecting and connecting the midpoints of all edges not contained in Γ. Application
of k steps of this procedure to Pj provides the partition Pjk = Tj∪Qjk (see the right
picture of Figure 2.1 for j = 1, k = 2). The refined partitions Pjk are conforming
and the shape regularity (2.4) holds uniformly in j, k ∈ N. Finally note that Pjk

does not depend on the order of the above two types of refinement steps.
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Figure 2.1. Initial partition P0 and refined partition P12

For given j, k, let Sjk ∈ H1
0 (Ω) be the subspace of functions v such that v|T is

linear and v|Q is isoparametric bilinear for all T ∈ Tj and Q ∈ Qjk, respectively.
Then the corresponding finite element discretization of the continuous problem (2.2)
reads as follows

(2.7) ujk ∈ Sjk : a(ujk, v) = �(v) ∀v ∈ Sjk.

In preparation for an error estimate, we introduce the weighted Sobolev norms

(2.8) ‖v‖m,K =
∑

|α|≤m

∫
Ω

K(x)(Dαv(x))2 dx,

for m = 0, 1, . . . , using standard multi-index notation (cf., e.g. [6, Chapter 1]). The
obvious norm equivalence

‖v‖Hm(Ω) ≤ ‖v‖m,K ≤ kF ‖v‖Hm(Ω)

directly extends to the corresponding intermediate norms ‖v‖Hs(Ω) ‖v‖s,K , s ∈ R,
as obtained by interpolation (cf. Bergh and Löfström [3] or Brenner and Scott [6,
Chapter 12]).

Proposition 2.1. Assume that u ∈ H1+s(Ω) with 0 < s ≤ 1. Then the finite
element solution ujk satisfies the error estimate

(2.9) ‖u − ujk‖ ≤ Chs
jk‖u‖1+s,K , hjk = max

P∈Pjk

diam P,

with a constant C = C(s0, γ0) depending only on the shape regularity (2.4) of P0.

Proof. Utilizing the Lax-Milgram lemma together with standard estimates of the
interpolation error on isotropic triangles or trapezoidals and the results of Žeńı̌sek
and Vanmaele [21] for the anisotropic case, we obtain the estimate

‖u − ujk‖ ≤ chjk‖u‖2,K

provided that u ∈ H2(Ω). Here, the constant c depends only on the shape regularity
of P ∈ Pjk and therefore of P0. Now the desired estimate (2.9) follows from
standard results on interpolated Sobolev spaces [3],[6, Chapter 12]. �
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3. Separation of the fractures

We consider the direct splitting

(3.1) Sjk = SF
jk ⊕ SM

j

of the finite element space Sjk into the fracture space

(3.2) SF
jk =

{
v ∈ Sjk | v|ΩM

= 0
}

and its complement SM
j consisting of all v ∈ Sjk such that v|Q is isoparametric

bilinear for all Q ∈ Qj . The stability of the splitting (3.1) is equivalent to the
stability of the interpolation operator IM

jk : Sjk → SM
j defined by

IM
jk v(p) = v(p), p ∈ NM

j .

Here, NM
j denotes the set of all the vertices of P ∈ Pjk which lie in ΩM .

Local stability estimates on each Q = (p1, . . . , p4) ∈ Qj will be transfered from
the associated reference element Q̂ = [0, 1] × [0, ε] where ε = εF /hQ. The nodes
p1, . . . , p4 are ordered anti-clockwise such that for Q = Qc the lengths hQ, h′

Q of
the edges [p1, p2], [p3, p4] lying in Γ satisfy h′

Q ≤ hQ. All edges of Qc have the same
length hQ. In the case Q = Qc the associated reference element Q̂c is fixed, because
ε is a generic constant, independent of εF and j. Otherwise ε ≤ C0 by (2.6) but
ε → 0 for εF → 0. Let FQ : Q̂ → Q denote the bijective bilinear mapping such
that FQ(0, 0) = p1 and the orientation of the ordering of the vertices is preserved.

Throughout this paper, we write a � b for a ≤ Cb and a � b for cb ≤ a ≤ Cb
with some c, C depending only on the constants s0, γ0 and C0 from (2.4) and (2.6),
respectively.

Lemma 3.1. Each v ∈ H1(Q) and its transformation v̂,

v̂ = v(FQ(·)) : Q̂ → R,

satisfy the norm equivalence

(3.3) ‖∇v‖L2(Q) � ‖∇v̂‖L2(Q̂).

Proof. The chain rule yields
∇v̂ = ∇vBQ

denoting BQ = F ′
Q. Elementary calculations utilizing (2.4) and (2.5) provide

|BQ| � (1 + hQ−h′
Q

εF
)max{hQ,

εF

ε
} = hQ

where | · | is the spectral norm. Similarly, we get

|B−1
Q | � (1 +

hQ−h′
Q

εF
)max{h−1

Q ,
ε

εF
} � h−1

Q

and in addition

| detBQ| ≤ hQ
εF

ε
= h2

Q, | detB−1
Q | � h−1

Q

ε

εF
= h−2

Q

so that the assertion follows from the substitution rule for integrals. �
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In the isotropic case Q = Qc, the local stability estimate

(3.4) ‖∇IM
jk v‖2

L2(Qc) � (1 + k)‖∇v‖2
L2(Qc) ∀v ∈ Sjk

follows by well-known arguments from Yserentant [24]. More careful reasoning has
to be applied for Q = Qc, because, in this case, Q̂ may become arbitrary flat as
εF → 0.

Lemma 3.2. Let w : Q̂ = [0, 1] × [0, ε] → R be such that w(ξ, ·) is absolutely
continuous for each fixed ξ ∈ [0, 1], w(·, η) is linear for each fixed η ∈ [0, ε], and
w(ξ, 0) = w(ξ, ε) = 0 holds for all ξ ∈ [0, 1]. Then

(3.5) ‖∇w‖2
L2(Q̂)

≤ (1 + 12ε2)‖ ∂
∂η w‖2

L2(Q̂)
.

Proof. The assertion will be proved in three steps. First, let f : [0, ε] → R be
absolutely continuous and f(0) = 0. Then the fundamental theorem of calculus
together with Cauchy’s inequality yields

(3.6)
∫ ε

0

(f(η))2 dη =
∫ ε

0

(∫ s

0

1 · f ′(s) ds

)2

dη ≤ ε2

∫ ε

0

(f ′(s))2 ds.

Next, let g : [0, 1] → R be linear. Then elementary calculation leads to

(3.7) (g(1) − g(0))2 ≤ 12
∫ 1

0

(g(ξ))2 dξ

where, in particular, the binomial estimate

(a − b)2 ≤ 4(a2 + ab + b2) ∀a, b ∈ R

has been used. Inserting f(η) = w(1, η) − w(0, η) and g(ξ) = ∂
∂η w(ξ, η) for fixed η,

in (3.6) and (3.7), respectively, the assertion follows from∫ ε

0

∫ 1

0

(
∂
∂ξ w(ξ, η)

)2

dξ dη =
∫ ε

0

(w(1, η) − w(0, η))2 dη

≤ ε2

∫ ε

0

(
∂
∂η (w(1, η) − w(0, η))

)2

dη ≤ 12ε2

∫ ε

0

∫ 1

0

(
∂
∂η w(ξ, η)

)2

dξ dη.

�

After these preparations, we can state a local estimate for Q = Qc.

Lemma 3.3. The estimate

(3.8) ‖∇IM
jk v‖L2(Q) � ‖∇v‖L2(Q)

holds for all v ∈ Sjk and Q ∈ Qj \ {Qc}.

Proof. Transformation of IM
jk v to the reference element Q̂ = [0, 1] × [0, ε] provides

Î v̂, where v̂ is the transformation of some v ∈ Sjk and Î denotes the bilinear
interpolation at the vertices of Q̂. It is easily checked that w = v̂ − Î v̂ satisfies the
assumptions of Lemma 3.2. Hence,

‖∇(v̂ − Î v̂)‖2
L2(Q̂)

≤ (1 + 12ε2)‖ ∂
∂η (v̂ − Î v̂)‖2

L2(Q̂)
.

Using the orthogonality ∫ ε

0

∂
∂η (v̂ − Î v̂) ∂

∂η Î v̂ dη = 0
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we get
‖ ∂

∂η (v̂ − Î v̂)‖2
L2(Q̂)

≤ ‖ ∂
∂η v̂‖2

L2(Q̂)

so that the assertion follows from Lemma 3.1. �
Now we are ready for the main result of this section.

Proposition 3.1. For each v ∈ Sjk the decomposition v = vF + vM into vF ∈ SF
jk

and vM ∈ SM
j satisfies

(3.9) ‖vF ‖2 + ‖vM‖2 � (1 + k)‖v‖2.

Proof. As a consequence of (3.4) and Lemma 3.3 we obtain

‖IM
jk v‖2 =

∑
T∈Tj

‖∇v‖2
L2(Q) +

∑
Q∈Qj

kF ‖∇IM
jk v‖2

L2(Q) � (1 + k)‖v‖2

so that the assertion follows with vM = IM
jk v and vF = v − IM

jk v. �

Note that k emerging in the stability estimate (3.9) is caused by the intersecting
element Qc and the corresponding isotropic estimate (3.4).

Proposition 3.1 can be extended to the hierarchical splitting of the fracture space
SF

jk into subspaces of SF
jl , l = 0, . . . , k. Such a splitting gives rise to an hierarchical

basis preconditioner or multigrid method with line Gauß-Seidel smoother. As a
consequence of Lemma 3.2, the convergence rate of related hierarchical algorithms
for anisotropic Poisson problems is robust for ε → 0 and even independent of the
mesh size. For similar results we refer to Bramble and Zhang [5] and the references
cited therein.

Extensions to three space dimensions are possible but require special care at
isotropic intersections of fractures.

4. Separation of the interface

We decompose the interface Γ = Γ0 ∪ Γ1 into its ’lower’ and ’upper’ part con-
sisting of Γl = {xΩ | x = bi

F + sdi
F + lni

F , s ∈ R, i = 1, 2} with l = 0 and l = 1,
respectively. Let NΓ0

j = Nj ∩ Γ0 and EF
j = Ej ∩ Ω

F
with Nj and Ej denoting the

sets of interior vertices and edges of P ∈ Pj , respectively. We consider the direct
splitting

(4.1) SM
j = SΓ0

j ⊕ SM
j

into the interface space

(4.2) SΓ0
j =

{
v ∈ SM

j | v(p) = 0 ∀p /∈ NΓ0
j

}
,

and its complement SM
j consisting of all v ∈ SM

j such that v|E is constant for
all edges E ∈ EF

j . The splitting (4.1) is induced by the interpolation operator
IM
j : SM

j → SM
j defined by

IM
j v(p) = v(p) p ∈ Nj \ NΓ0

j .

If p ∈ NΓ0
j , then IM

j v(p) = v(p∗) where p∗ is the vertex of the edge E = (p, p∗) ∈ EF
j

or the vertex of Qc which is not contained in NΓ0
j . In particular, IM

j v is constant
on Qc.

We proceed with local stability estimates on T ∈ Tj and Q ∈ Qj , respectively.
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Lemma 4.1. The estimate

(4.3) ‖∇IM
j v‖2

L2(T ) � ‖∇v‖2
L2(T ) +

3∑
i=1

(
IM
j v(pi) − v(pi)

)2

holds for all v ∈ SM
j and all T = (p1, . . . , p3) ∈ Tj.

Proof. We set w = IM
j v and ŵ, v̂ denote the usual transformations of w, v to the

reference element T0 = ((0, 0), (1, 0), (0, 1)). Elementary calculations provide

‖∇ŵ‖2
L2(T0) = 1

2

(
(w2 − w1)2 + (w3 − w1)2

)
≤ 2‖∇v̂‖2

L2(T0)
+ 4

∑3
i=1 (wi − vi)

2

and the assertion follows from the well-known estimates ‖∇w‖L2(T ) � ‖∇ŵ‖L2(T0)

and ‖∇v̂‖L2(T0) � ‖∇v‖L2(T ). �
Lemma 4.2. The estimates

(4.4) ‖∇IM
j v‖L2(Q) � ‖∇v‖L2(Q), max

i=1,...,4

(
IM
j v(pi) − v(pi)

)2 � ‖∇v‖2
L2(Q)

hold for all v ∈ SM
j and all Q = (p1, . . . , p4) ∈ Qj.

Proof. We set w = IM
j v and ŵ, v̂ denote the transformed functions on the reference

element Q̂ = [0, 1]× [0, ε]. In the light of Lemma 3.1 it is sufficient to show

(4.5) ‖∇ŵ‖L2(Q̂) � ‖∇v̂‖L2(Q̂), max
i=1,...,4

(wi − vi)
2 � ‖∇v̂‖2

L2(Q̂)
,

respectively. Here, we have set wi = w(pi), vi = v(pi). As v̂ is bilinear on Q̂,
elementary calculation yields

(4.6)
‖∇v̂‖2

L2(Q̂)
= 1

3ε
(
(v2 − v1)2 + (v4 − v3)2 + (v2 − v1)(v4 − v3)

)
+ 1

3ε−1
(
(v4 − v1)2 + (v3 − v2)2 + (v4 − v1)(v3 − v2)

)
.

We first consider the case Q = Q̂. By applying the binomial estimate

(4.7) 0 ≤ a2 ≤ 4
3 (a2 + b2 + ab) ∀a, b ∈ R

to (4.6), we obtain

4ε‖∇v̂‖2
L2(Q̂)

≥ max{(v4 − v1)2, (v3 − v2)2} = max
i=1,...,4

{(wi − vi)2}

and therefore the right estimate in (4.4). Note that

‖∇ŵ‖2
L2(Q̂)

= ε(w2 − w1)2 ≤ ε max
i,l=1,...,4

(vi − vl)2 ≤ 4ε max
l=1,...,4

(vl+1 − vl)2,

where we have set v5 = v1. On the other hand, using (4.7) and (2.6) to estimate
(4.6) from below, we get with c = min{1, C−2

0 }
‖∇v̂‖2

L2(Q̂)
≥ c

4ε max
l=1,...,4

(vl+1 − vl)2.

This proves the assertion for Q = Qc. In the case Q = Qc the left estimate in (4.4)
is trivial and the right one follows by similar arguments as used above. �

Now we are ready to prove stability of the splitting (4.1).

Proposition 4.1. For each v ∈ SM
j the decomposition v = vM +vΓ0 into vM ∈ SM

j

and vΓ0 ∈ SΓ0
j satisfies

(4.8) ‖vM‖2 + ‖vΓ0‖2 � ‖v‖2.
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Proof. Let v ∈ SM
j . We set vM = IM

j v and vΓ
0 = v − IM

j v. Utilizing Lemma 4.1
and Lemma 4.2 we get

‖∇vM‖2
L2(T ) � ‖∇v‖2

L2(T ) +
∑

Q∈Qj(T )

‖∇v‖2
L2(Q) ∀T ∈ Tj

denoting Qj(T ) = {Q ∈ Qj | Q ∩ T = ∅}. As a consequence of the minimal angle
condition (2.4) we have∑

T∈Tj

∑
Q∈Qj(T )

‖∇v‖2
L2(Q) �

∑
Q∈Qj

‖∇v‖2
L2(Q).

Together with kF ≥ 1 and Lemma 4.2 these estimates provide

‖vM‖2 =
∑

T∈Tj

‖∇vM‖2
L2(T ) +

∑
T∈Qj

kF ‖∇vM‖2
L2(Q) � ‖v‖2.

The assertion now follows from the triangle inequality. �

Proposition 4.1 implies stability of the overlapping splitting

(4.9) SM
j = SΓ

j + SM
j

replacing SΓ0
j by the larger space

(4.10) SΓ
j =

{
v ∈ SM

j | v(p) = 0 ∀p ∈ Nj ∩ ΩM

}
.

For ease of implementation, the decomposition (4.9) will be used in the resulting
subspace correction method to be discussed later on.

Utilizing Proposition 3.1, we immediately get stability of the decomposition

Sjk = SF
jk + SM

j

denoting SF
jk = SF

jk + SΓ
j . The stability of the hierarchical splitting of SF

jk into the
subspaces SF

jl , l = 0, . . . , k, SΓ0
j , and SΓ1

j allows to use an hierarchical preconditioner
or an hierarchical multigrid method with line Gauß-Seidel smoother instead of exact
solutions of subproblems on SF

jk.

5. Hierarchical splitting of the matrix space

Successive refinement in the rock matrix gives rise to the following sequence of
nested subspaces

(5.1) SM
0 ⊂ · · · ⊂ SM

j−1 ⊂ SM
j ,

where SM
l consists of all functions v ∈ H1

0 (Ω) such that v|T is linear for all T ∈ Tl,
v|Q is isoparametric bilinear for all Q ∈ Ql, and v|E is constant for all edges E ∈ El.
Recall that El and Nl are denoting the sets of interior edges and vertices of P ∈ Pl,
respectively. The nodal interpolation Il : Sj → Sl defined by

(5.2) Ilv(p) = v(p), p ∈ Nl,

gives rise to the direct splitting

(5.3) SM
j = V0 ⊕ V1 ⊕ · · · ⊕ Vj

into the subspaces

(5.4) V0 = SM
0 , Vl = (Il − Il−1)SM

j , l = 1, . . . , j.
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We state a variant of the well-known stability result of Yserentant [24]. Recall the
weighted L2-norm ‖ · ‖0,K defined in (2.8).

Proposition 5.1. For each v ∈ SM
j the decomposition v =

∑j
l=0 vl into vl ∈ Vl

satisfies

(5.5) ‖v0‖2 +
j∑

l=1

4l‖vl‖2
0,K � (1 + j)2‖v‖2.

Proof. Let v ∈ SM
j . First note that

4l‖(Il − Il−1)v‖2
0,K � ‖Ilv‖2, l = 1, . . . , j,

can be shown by transformation to reference elements T̂ or Q̂ and exploiting the
equivalence of norms on finite (i.e. 5 or 2) dimensional quotient spaces. Now the
assertion follows from the stability

(5.6) ‖Ilv‖2 � (1 + j − l)‖v‖2, l = 0, . . . , j.

Of course, (5.6) is a consequence of the local estimate

‖∇Ilv‖2
L2(P ) � (1 + j − l)‖∇v‖2

L2(P ) ∀P ∈ Pl = Tl ∪ Ql

which is well-known for T ∈ Tl (cf. Yserentant [24]). In order to show

(5.7) ‖∇Ilv‖2
L2(Q) � ‖∇v‖2

L2(Q), ∀Q ∈ Ql

we set w = Ilv and let ŵ, v̂ denote the transformed functions on the reference
element Q̂ = [0, 1]× [0, ε]. As ∂

∂η ŵ = ∂
∂η v̂ = 0 the orthogonality

∫ 1

0

∂
∂ξ ŵ ∂

∂ξ (v̂ − ŵ) dξ

implies
‖∇v̂‖2

L2(Q̂)
= ‖∇ŵ‖2

L2(Q̂)
+ ‖∇(v̂ − ŵ)‖2

L2(Q̂)
≥ ‖∇ŵ‖2

L2(Q̂)

so that (5.7) follows from Lemma 3.1. This proves (5.6) and therefore the assertion.
�

6. Hierarchical domain decomposition methods

The successive subspace correction method (cf. Xu [23] or Yserentant [25]) re-
sulting from a decomposition

Sjk = W0 + W1 + · · · + WJ , Wl ⊂ Sjk,

and symmetric, positive definite bilinear forms bl(·, ·) on Wl reads as follows: Start-
ing with some given iterate w−1 = uν

jk ∈ Sjk, a sequence of intermediate iterates
wl, l = 0, . . . , J , is computed according to

(6.1)
vl ∈ Wl : bl(vl, v) = �(v) − a(wl−1, v) ∀v ∈ Wl

wl+1 = wl + vl

and uν+1
jk = wJ is the subsequent iterate. Hierarchical domain decomposition meth-

ods are obtained from decompositions as presented in the preceding sections.
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Theorem 6.1. Let

Wl = SM
l , l = 0, . . . , j, Wj+1 = SΓ

j , Wj+2 = SF
j

with SM
l , SΓ

j and SF
j defined in (5.1), (4.10) and (3.2), respectively. Let bl(·, ·), be

generated by symmetric Gauß-Seidel smoothers for l = 1, . . . , j and bl(·, ·) = a(·, ·)
for l = 0, j + 1, j + 2.

Then the iterates uν
jk of the resulting hierarchical domain decomposition method

(6.1) converge to the exact solution ujk of (2.7) and satisfy the error estimate

‖ujk − uν+1
jk ‖2 ≤

(
1 − C(1 + k)−1(1 + j)−4

)
‖ujk − uν

jk‖2, ν = 0, . . . ,

with C depending only on the constants s0, γ0 and C0 from (2.4) and (2.6), respec-
tively.

Proof. The proof follows from general convergence results for subspace correction
methods (cf. Xu [23] or Yserentant [25]). We select the direct splitting

(6.2) Sjk = V0 ⊕ V1 ⊕ · · · ⊕ VJ , J = j + 2,

into the subspaces Vl ⊂ Wl, l = 0, . . . , j, defined in (5.4), Vj+1 = SΓ0
j ⊂ Wj+1,

and Vj+2 = SF
jk = Wj+2, defined in (4.2) and (3.2), respectively. The smoothers

Bl : Wl → Wl are L2-representations of the bilinear forms bl(·, ·). Condition (2.31)
in [25] with ω = 1 is well-known for the Gauß-Seidel smoothers bl(·, ·), l = 1, . . . , j,
and trivial otherwise. The stability (5.2) in [25] of the decomposition (6.2) with
K1 � (1 + k)(1 + j)2 follows from Propositions 3.1, 4.1, and 5.1 using the norm
equivalence

(6.3) bl(v, v) � 4l‖v‖2
0,K ∀v ∈ SM

l , l = 1, . . . , j.

As a consequence of the Cauchy-Schwarz inequality the spectral radius of the matrix
(γlk) bounded by K2 ≤ J + 1 = j + 3 Now the assertion follows from Theorem 5.1
in [25]. �

We emphasize that Theorem 6.1 implies robust convergence with respect to
arbitrary large permeability kF and arbitrary small width εF of the fractures. Note
that the sharpened Cauchy-Schwarz inequality

a(v, w) �
(

1√
2

)l−k

bl(v, v)bk(w, w)

holds for all v ∈ Wl, w ∈ Wk and l > k = 0, . . . , J with the exception of l = j + 1.
This exception is responsible for the additional factor (1 + j)−2 as compared to
usual estimates for hierarchical bases. It can be removed on the (quite restrictive)
condition that all elements of Q0 are rectangles. The degeneracy with respect to
j could be also reduced by using L2-type projections instead of the interpolation
operators (5.2) at the expense of robustness with respect to kF .

The algorithm presented in Theorem 6.1 is open to various modifications. For
example, the symmetric Gauß- Seidel method could be replaced by other smoothers
satisfying (6.3). Even suitable non-symmetric smoothers like, e.g., the Gauß-Seidel
method are allowed (cf. Neuss [17]). Furthermore, the exact solution on the fracture
space SF

jk could be replaced by a multigrid method with line Gauß-Seidel smoother
for SF

j (we refer to the remarks at the end of section 3). Finally note that the
“robust” smoothers proposed by Gebauer et al. [10] for the multigrid solution of
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Figure 7.1. Robustness with respect to increasing kF and van-
ishing εF

problems on SM
j = SΓ

j + SM
j can be interpreted in terms of a suitable multilevel

splitting of SΓ.

7. Numerical results

We consider the model problem

(7.1) ∇ · (K∇u) = 0 on Ω = (0, 6)× (0, 6)

with K defined in (2.3), u(0, y) = 2, u(6, y) = 1 for y ∈ [0, 6] and homogeneous
Neumann data elsewhere. Obviously, (7.1) can be written in weak form (2.2) with
suitable H and �. The fracture network ΩF together with the initial partition P0

is shown in the left picture of Figure 2.1 for a comparatively large width εF = 0.2.
Corresponding partions for smaller εF are obtained by shifting the nodes lying on
the interface Γ towards the centerlines of the fractures. In the limit case εF = 0
the fractures disappear and the problem reduces to the Laplace equation.

In order to illustrate the robustness of the hierarchical domain decomposition
method presented in Theorem 6.1, we consider the corresponding discretized prob-
lem (2.7) for j = 6 and k = 2. In the left picture of Figure 7.1 we depict the
convergence rates for fixed εF = 10−5 and increasing permeability kF . More pre-
cisely, the convergence rates are approximated by

ρ =
‖uν0+1

jk − uν0
jk‖

‖uν0
jk − uν0−1

jk ‖

where ν0 is chosen such that ‖uν0+1
jk − uν0

jk‖ ≤ 10−12. As expected from the theo-
retical findings, the convergence speed is hardly influenced by the size of the jump.
The right picture shows (approximate) convergence rates for fixed kF = 1 and de-
creasing εF . The convergence rates are almost the same for 10−9 ≤ εF ≤ 10−2.
They scarcely differ from the convergence rates of classical multigrid for the re-
duced Laplace problem which are indicated by the horizontal line. Note that we
have C0 ≈ 40 in condition (2.6) for εF = 10−1 which explains the unsatisfying
convergence speed for this value.

We now compare the convergence rates for fixed kF = 106 and increasing number
of refinement steps j. The left picture in Figure 7.2 shows that the convergence
speed rapidly deteriorates for “large” εF = 10−1 (upper curve) and is hardly af-
fected for “small” εF = 10−5 (lower curve). Note that C0 ≈ 2 · 10−3 in the latter
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Figure 7.2. Influence of large εF /hQ and small interior angles γ

case. The right picture illustrates the influence of decreasing interior angles. The
length of an edge E ∈ Γ of an element Q ∈ Q0 is shifted by a fixed factor s (inde-
pendent of εF ). This leads to an interior angle γ ≈ arctan(εF /s) which obviously
tends to zero for increasing s and small εF . It is interesting to see how convergence
rates branch off for increasing s or, equivalently, for γ becoming too small. These
two experiments complement our analysis in the sense that moderate constants in
the conditions (2.4) and (2.6) also seem to be necessary for fast convergence.

Let us remark in closing that comparisons with the algebraic multigrid method
by Ruge and Stüben [19] in Gebauer [9] confirm the superiority of hierarchical
domain decomposition not only from a theoretical but also from a numerical point
of view.
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