
A generic grid interface for parallel and adaptive scientific

computing.

Part I: abstract framework

P. Bastian1 M. Blatt1 A. Dedner2 C. Engwer1 R. Klöfkorn2

M. Ohlberger3 O. Sander4

1Institut für Parallele und Verteilte Systeme, Universität Stuttgart, Germany
2Abteilung für Angewandte Mathematik, Universität Freiburg, Germany

3Institut für Numerische und Angewandte Mathematik, Universität Münster, Germany
4Institut für Mathematik, Freie Universität Berlin,

DFG Research Center Matheon, Berlin, Germany

Abstract

We give a mathematically rigorous definition of a grid for algorithms solving partial differential
equations. Unlike previous approaches [2, 3], our grids have a hierarchical structure. This makes them
suitable for geometric multigrid algorithms and hierarchical local grid refinement. The description is also
general enough to include geometrically nonconforming grids. The definitions in this article serve as the
basis for an implementation of an abstract grid interface as C++ classes in the DUNE framework [1].

AMS Subject Classifications: 65N30, 52C99, 65Y05
Key words: DUNE, hierarchical grids, interface, finite elements, finite volumes, entity complex, geometric
realization, father relation, index maps, parallelization

1 Introduction

The vast majority of methods used for the solution of partial differential equations (PDEs) are based on
some form of a grid. This has lead to the development of a large number of numerical analysis codes, each
containing a data structure representing such a computational grid. However, the requirements from such
data structures vary widely from application to application. The typical trade-off is efficiency vs. flexibility.
Hence each code will be more suitable in some areas of applications, and less so in others.

To overcome the limitations of existing grid-based PDE solvers we present the “Distributed and Unified
Numerics Environment” DUNE (see [5] for the current version of the software). DUNE has a component-
based software architecture where each component possesses an abstract interface and exists in several
implementations with different features. This concept is realized very efficiently using generic programming
techniques in C++, which essentially removes the interface overhead at compile-time. Moreover, existing
software can be used to implement the components.

Several authors have tried to formalize the notion of a grid mathematically [2, 3, 4], a task which has
proven to be surprisingly difficult. A concept that has been missing so far is the notion of a hierarchical
grid. It is nevertheless of prime importance today as it forms the basis of geometric multigrid methods and
many locally adaptive algorithms.

In this article we present the mathematical description of hierarchical grids which underlies and moti-
vates the design of the DUNE grid interface. Based on this mathematical description a companion paper
[1] describes the interface of DUNE’s grid component in the form of C++ classes and illustrates its func-
tionality and efficiency with some examples. When designing the classes for the grid interface we felt that
a mathematically rigorous description of the entities comprising a grid and their complicated relations is
required. We attempt to formally describe grids with the following features:

• Elements of various shapes and dimensions

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository: Freie Universität Berlin (FU), Math Department (fu_mi_publications)

https://core.ac.uk/display/267951545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• Grids embedded in higher-dimensional spaces (e. g., grids on manifolds)

• Hierarchical local grid refinement

• Nonconformity in and between levels of refinement

• Separation of grids and data

• Overlapping and nonoverlapping decompositions for parallel processing

An implementation of the grid interface may cover only a subset of these features.
The first formal definition of a grid for numerical computations was given by Berti [3]. He noted that

the productivity of people working in numerical analysis could be increased greatly by the employment of
reusable components. In particular this meant separating the algorithm from the implementation of the grid
by specifying a set of kernel concepts of a grid that algorithms should rely on exclusively. Berti used generic
programming extensively to reduce the interface overhead and also treated the problem of data-parallel grid
computations.

With applications in numerical relativity in mind, Benger [2] generalized the definition of a grid such
as to be able to handle grids of four-dimensional curved space-time. Inspired by differential geometry, he
introduced the fiber bundle data model. His grids include sets of local coordinate charts which allow the
description of curved spaces without a surrounding Euclidean space. Here as well generic programming is
used extensively.

Botta et al. [4] took abstraction into a different direction. They introduced the notion of relation-based
computations. This very general concept subsumes many different grid operations but also algorithms from
linear algebra such as matrix-vector multiplication. They propose a thin low-level software layer intended
to structure algorithm-oriented parallel computations on this very general concept.

All three approaches differ from DUNE in that they do not contain the concept of a grid hierarchy,
which is essential for many efficient algorithms such as adaptive local grid refinement or geometric multigrid
solvers. Also, neither of the implementations was designed with the idea in mind that it should be possible
to reuse legacy code and switch between grid implementations quickly. These, however, are central ideas of
DUNE.

In our view, a hierarchical grid consists of three key concepts. An entity complex describes the topolog-
ical information (connectivity) of a non-hierarchical grid (level grid). Such a complex is embedded into a
Euclidean space by means of a geometric realization. Several level grids are connected in a hierarchy by a
father relation.

In Sec. 2 we formalize these definitions. Sec. 3 will then show how the set of leafs in the hierarchical
structure can be seen as a non-hierarchical grid in its own right. Sec. 4 introduces intersections as another
relation between elements. Sec. 5 presents the necessary concepts for parallel computation on a general grid.
Finally, in Sec. 6 we show how data (e. g., degrees of freedom in the finite element context) can be associated
with entities of a grid in a general and efficient way.

2 Hierarchical grids

This section gives a precise meaning to the idea of a grid hierarchy. We separate the topological from the
geometrical aspects of the grid and define the father relation.

We begin by giving a few preliminary concepts. A more in-depth treatment can be found, e. g., in [3].

Definition 1 (Convex polytope) A subset θ ⊂ R
w, w ≥ 0, is a convex polytope if it is the convex hull

of a nonempty finite set of points X = {x0, . . . , xn}. The dimension dim θ of the convex polytope is the
maximal number of linearly independent vectors in the set {x1 − x0, . . . , xn − x0} if n ≥ 1 and 0 if n = 0.
Obviously, 0 ≤ dim θ ≤ w. Given a nonempty, finite set of points X we denote by θ(X) the convex polytope
generated by X.

Definition 2 (Faces of a polytope) If, for fixed c ∈ R
w, γ ∈ R, the inequality cT x ≤ γ is valid for all

x ∈ θ, then f = θ ∩ {x ∈ R
w | cT x = γ} is a face of θ. With this definition, ∅ is an (improper) face, and we

also add θ as an additional improper face. All other faces are called proper. The dimension of a face is the

2

dimension of its convex hull; by convention, the dimension of ∅ is set to −1. We write f � θ if f is a face
of θ.

Let θ be a convex polytope and F the set of its faces. The is-face-of relation � on F is antisymmetric
and transitive. Hence (F,�) has the structure of a partially ordered set (poset).

Definition 3 (Combinatorial isomorphism) Let X and Y be sets with binary relations S and R, respec-
tively. A (combinatorial) isomorphism is a bijective mapping ϕ : X → Y such that

ϕ(u)R ϕ(v) if and only if u S v.

If such a mapping exists between two sets X and Y then these sets are called (combinatorially) isomorphic.

Intuitively, two sets are isomorphic if they exhibit the same combinatorial structure. We use this to
define an equivalence relation ≃ on the set of all convex polytopes by saying that two convex polytopes θ
and θ′ are isomorphic, θ ≃ θ′, iff there exists a mapping ϕ from the set of faces of θ to the set of faces of θ′

such that ϕ(u) is a face of ϕ(v) if and only if u is a face of v.
Dividing the set of all convex polytopes by the equivalence relation ≃ we obtain a set of ‘prototype’

polytopes which the numerical analyst calls reference elements.

Definition 4 (Reference element) A d-dimensional reference element is an equivalence class of d-
dimensional convex polytopes in d-dimensional Euclidean space with respect to combinatorial isomorphism
≃. From each equivalence class we pick one representative. For any m ∈ N0 the set of representatives of
m-dimensional reference elements is called Rm, and we also define R =

⋃

m Rm. In an abuse of notation
we again speak of reference elements.

Remark 1 Reference elements used in numerical algorithms are, e.g., the unit square, the unit triangle,
and the unit hexahedron.

Based on these definitions we can define the codimension of a convex polytope relative to another convex
polytope.

Definition 5 (Codimension) Let θ, σ ⊂ R
w be two convex polytopes with σ a face of θ. Then codim(σ, θ) =

dim θ−dimσ is called the codimension of σ with respect to θ. Obviously, we have 0 ≤ codim(σ, θ) ≤ dim θ+1.

The next definition introduces a central part of a hierarchical grid. An entity complex contains all
topological information of a grid on a specific refinement level. The concept is a generalization of the
simplicial complexes known from combinatorial geometry, the main difference being that it allows for non-
simplex elements.

Definition 6 (General entity complex) A general d-dimensional entity complex E is a system of nested
subsets

E = {Ed, Ed−1, . . . , E0}

such that Ed is a finite set (called set of vertices) and for 0 ≤ c < d

Ec ⊆ P(Ec+1),

where P(Ec+1) denotes the power set of Ec+1. Each element of Ec is called an entity of codimension c and
of dimension d − c. We require that

⋃

e∈Ec

e = Ec+1,

which means that every codimension c+1 entity is contained in at least one codimension c entity. The union
of all entities in a complex is called

Ē =
⋃

0≤c≤d

Ec.

3

R
0

R
1

R
2

R
2

R
3

v0

v1

v2

v3
v4

v5

v6

E0
0

E0
1

E0
2

R(E0
0)

R(E0
2)

m(E0
0)

m(E0
1)

m(E0
2)

m(E1
0)

m(v0)

m(v2)

Figure 1: A 2-dimensional entity complex (left), the reference elements (center), and a geometric realization
in R

3 (right).

Hence, a codimension c entity is a set of codimension c + 1 entities. The codimension 0 entities will
sometimes be called elements.

To motivate this abstract definition consider the example in Fig. 1. On the left there is a two-dimensional
entity complex containing seven vertices

E2 = {v0, v1, . . . , v6}

represented by small black balls. The grey ellipses denote of entities of codimension 1 or ‘edges’, which are

E1 = {E1
0 , E1

1 , . . . , E1
9}

=
{

{v0, v1}, {v1, v2}, {v0, v2}, {v1, v3}, {v2, v3},

{v1, v4}, {v3, v5}, {v2, v6}, {v4, v5}, {v5, v6}
}

.

Finally, the sets of edges encircled in black are the three elements, or entities of codimension 0

E0 = {E0
0 , E0

1 , E0
2}

=
{

{

{v0, v1}, {v1, v2}, {v0, v2}
}

,
{

{v1, v3}, {v3, v5}, {v4, v5}, {v1, v4}
}

,
{

{v2, v3}, {v2, v6}, {v5, v6}, {v3, v5}
}

}

.

A d-dimensional general entity complex can contain entities which do not have a natural geometric real-
ization as a convex polytope. For example, it would be possible to add the ‘diagonal edge’ {v3, v6} to the
‘quadrilateral’ E0

2 . We therefore add on further restriction. Before we can state it we have to introduce the
subentity relation. It is the natural equivalent of the is-face-of relation for entity complexes.

Definition 7 (Subentity relation) Let E be a d-dimensional general entity complex. By S ⊂ Ē × Ē we
denote the reflexive and transitive closure of the inclusion relation of entities, i.e., we have eS e′ if and only
if e = e′ or there exists a sequence of entities {e0, e1, . . . , ek} with

e = e0, ek = e′, ei ∈ ei+1 ∀0 ≤ i < k.

By s(e) = {e′ ∈ Ē | e′ S e} we denote the set of all subentities of a given entity e ∈ Ē.

4

Now the last requirement for an entity complex states that for each entity there must be a corresponding
reference element. In other words, we allow only those entities for which a convex polytope with identical
combinatorial structure exists.

Definition 8 (Entity complex) Let E be a general entity complex. E is called entity complex if there is
a mapping R : Ē → R such that for each e ∈ Ē the entity e is combinatorially isomorphic to R(e) in the
sense that there exists a bijective mapping ϕ from the set s(e) of subentities of e to the set f of faces of R(e)
such that for all s1, s2 ∈ s(e) we have

s1 S s2 if and only if ϕ(s1) � ϕ(s2).

From the set of isomorphisms from e to R(e) we pick one and call it ϕe.

Note that this definition is consistent in the sense that

R(s) ≃ ϕe(s)

holds for all subentities s of an entity e.
The entity complex is a strictly topological object. We now give it a geometry by embedding it into a

Euclidean space R
w, w ≥ d. We call this space the world space and w the world dimension. Before, we need

the notion of relative interior.

Definition 9 (Relative interior) Let d, w ∈ N, d ≤ w, and let S ⊂ R
w be such that there is a home-

omorphism f : S̄ → B̄1, where S̄ denotes the closure of S and B1 is the open unit ball in R
d. Then we

call
intS = f−1(B1)

the relative interior of S. Accordingly, we define the relative boundary

∂S = S̄ \ intS.

To see how this differs from the usual notion of interior in R
w consider a line segment l in R

2. The interior l̊ is
the set of all points x ∈ l such that there exists a two-dimensional ball Bx(ǫ) with positive radius ǫ centered

at x and which is entirely contained in l. Hence l̊ is empty. The relative interior int l on the other hand
contains all of l except for the two endpoints. In particular, note that for any x ∈ R

w we have int{x} = {x}.

Definition 10 (Geometric realization) Let w ∈ N, w ≥ d. A geometric realization of an entity complex
E is a family of homeomorphisms m such that for each e ∈ Ē there is an me ∈ m with me : R(e) → R

w such
that the following conditions hold. Denote by θe = me(R(e)) ⊂ R

w the geometric object associated with e.

1. For e, e′ ∈ E0, e 6= e′ we have
int θe ∩ int θe′ = ∅.

2. For all e ∈ Ē, the set of all θs with s ∈ e covers the boundary of θe

⋃

s∈e

θs = ∂θe.

The geometric realization provides an entity complex with a geometric shape. The interplay between
entity complex, geometric realization, and the reference elements is illustrated in Fig. 1. Note that the
triangle, as a point set, does not have to be connected to the two quadrilaterals except at the two common
vertices.

Next we combine two level grids to a hierarchical structure. For this we first assign a father element to
each element on the higher level and then extend this mapping to the entities of lower dimensions, where
possible.

Definition 11 (Element father mapping) Let E and E′ be two entity complexes of equal dimension
with corresponding geometric realizations m and m′, respectively. An element father mapping is a mapping
F 0 : E′,0 → E0 such that

5

Figure 2: Father relation between two level grids.

eS e′f S f ′

R(e′)

R(f ′)

ϕe′ (e)ϕf ′(f)

φe′

φe′ (ϕe′(e))

Figure 3: Father relation for positive codimension: f is the father of e because φe′(ϕe′ (e)) is a subset of
ϕf ′(f).

1. the children c(e) = {e′ ∈ E′,0 | e = F 0(e′)} of e form a logical refinement of e, that is there are smooth
injective mappings φe′ : R(e′) → R(F 0(e′)) such that the images of the φe′ partition R(F 0(e′)),

2. if e0, e1 ∈ E′,0 such that F 0(e0) 6= F 0(e1) and θe0
∩ θe1

has positive d − 1-dimensional measure then
θF 0(e0) ∩ θF 0(e1) has positive d − 1-dimensional measure, which means that adjacent elements have
adjacent fathers.

The element father mapping is extended to a relation between entities of all codimensions. The extended
structure is a relation rather than a mapping because not every entity of positive codimension has a father.

Definition 12 (Father relation) Set F ⊆ Ē × Ē′ with f F e if and only if dim e = dim f and one of the
following conditions holds:

1. f = F 0(e)

2. Let f ′ ∈ E0, e′ ∈ E0′ such that f ′ = F 0(e′) and f S f ′ and eS e′. Then

φe′ (ϕe′ (e)) ⊆ ϕf ′(f)

(see Fig. 3), with ϕ and φ from Def. 8 and Def. 11.

We now have all the ingredients to introduce hierarchical grids, which are the centerpiece of this section.

6

Definition 13 (Hierarchical grid) A d-dimensional grid in a w-dimensional world is a triple (E ,M,F)
consisting of a finite set of d-dimensional entity complexes

E = {E0, . . . , Ek},

a set of geometric realizations
M = {m0, . . . , mk},

where each mi is a geometric realization of Ei into R
w, and with a set of father relations

F = {F0, . . . , Fk−1},

such that Fi connects Ei with Ei+1 for all 0 ≤ i < k.

We will use Ec =
⋃k

i=0 Ec
i for the union of all entities of codimension c in a hierarchical grid. In an abuse of

notation we will also sometimes write E =
⋃

c E
c for the union of all entities. Finally we write

F =
⋃

i

Fi ⊂ E × E

for the set of all father relations in a hierarchical grid.
We call each pair (Ei, mi) a level grid. It is natural to assign a level number to each entity in the

hierarchical grid.

Definition 14 (Level of an entity) Let E = {E0, . . . , Ek} be the entity complexes of a grid. The function

l :
⋃

i

Ēi → N0

l(e) = i if and only if e ∈ Ei

is called the entity level function.

3 Leaf grids

This section introduces the concept of a leaf grid. While each pair (Ei, mi) constitutes a non-hierarchical
grid suitable for, say, finite element computations, so does the set of all leaf elements together with an entity
complex structure it induces and its corresponding geometric realization. In fact, it is the natural grid to
choose for non-hierarchical numerical methods on locally adaptive grids. We begin by introducing a new
relation, this time on all entities of a hierarchical grid.

Definition 15 (Copies) If an entity has exactly one child we call this child a copy of its father. We define
the reflexive and symmetric binary relation C ⊆ E × E by

e C e′ ⇔ e = e′ or c(e) = {e′} or c(e′) = {e}.

The transitive closure ∼ of C is an equivalence relation.

Note that the set of elements on the lowest level together with the father mapping forms a forest. Next we
define the leaf entities, which are the elements without children and their subentities.

Definition 16 (Leaf entities) The set of codimension c leaf entities Lc ⊂ Ec is defined for 0 ≤ c ≤ d by

1. e ∈ L0 if and only if e ∈ E0 and c(e) = ∅.

2. e ∈ Lc if and only if there exists an e′ ∈ L0 and eS e′.

Further we set L =
⋃

0≤c≤d Lc the set of all leaf entities.

The sets Lc contain copies. Factoring those out we obtain the leaf entity complex.

7

E0

E1

e

L̃

Figure 4: Copy relation between two entity complexes E0 and E1 (left), and corresponding leaf entity
complex (right). Note that the edge e in E0 is contained in L̃.

Definition 17 (Leaf entity complex) By [e] = {e′ ∈ L | e′ ∼ e} we denote the equivalence class of e in L
and L̃ = L/ ∼= {[e] | e ∈ L} denotes the quotient set. The subentity relation S can be defined naturally on
the quotient set as S̃ ⊆ L̃× L̃ with [e] S̃ [e′] if and only if there exist class representatives e ∈ [e] and e′ ∈ [e′]
with eS e′.

For a complete leaf grid we need a geometric realization which corresponds to the leaf entity complex.
This geometric realization can be inherited from the level grid realizations.

Definition 18 (Leaf geometric realization) Assume that the geometric realizations of the Ei are such
that θe = θe′ whenever e ∼ e′. Then the geometric realizations of the Ei induce a geometric realization m̃ of
the leaf entity complex L̃ by setting m̃[e] = me for all [e] ∈ L̃.

In the following we will assume the assumption stated in this definition to hold. The construction of the leaf
grid is illustrated with an example in Fig. 4.

4 Intersections

Many numerical methods require information about intersections of neighboring elements. For example
finite volume methods need to evaluate integrals over such intersections. As grids may be nonconforming an
intersection does not necessarily correspond to a subentity.

Definition 19 (Level intersections) Let (E, m) be an entity complex with a geometric realization, and
denote by Θ =

⋃

e∈E0 θe the domain it covers. For any e ∈ E0 we define its set Ie of intersections as a set
of subsets of R

w,
Ie = {I0

e , . . . , Ik
e }.

Each set Ii
e must have positive d − 1-dimensional measure, and there must either exist an e′ ∈ E0 such that

e′ 6= e and
Ii
e = θe ∩ θe′

(intersection with another element), or there is a d − 1-dimensional subentity s ∈ e such that

Ii
e = θs ∩ ∂Θ

(intersection with the grid boundary).

Let (L̃, m̃) be the leaf entity complex of a hierarchical grid with its induced geometric realization m̃. In
complete analogy to Def. 19 we also define the set of leaf intersections Ĩ[e] for each [e] ∈ L̃0.

Remark 2 Many numerical algorithms need to integrate over intersections of elements. This may be difficult
as intersections in nonconforming grids may have shapes for which quadrature rules are not available. The
DUNE system therefore allows grid implementations to return triangulations or similar partitions of a single
intersection.

8

5 Parallelization

This section introduces grid features needed for parallel computations. We assume that parallel computations
on a hierarchical grid follow the ‘single program multiple data’ (SPMD) programming paradigm based on a
suitable decomposition of the grid entities.

The decomposition is carried out in a two-step process. First, elements are assigned to processes (master
decomposition). In a second step the decomposition for the remaining entities is determined from this master
decomposition. We assume that n ≥ 1 processes are available for the parallel computation and that each
process is identified by a number p ∈ P = {0, . . . , n − 1}.

The master decomposition is defined as follows:

Definition 20 (Master decomposition) The mapping of entities to processes is described by the master
decomposition relation

D0 ⊆ E0 × P.

If eD0 p then entity e is known to process p.

The elements of a process are assigned to different classes.

Definition 21 (Partition type) The map

t0 : D0 → {i, o, g}

assigns a partition type t0(e, p) to entity e in process p. The three partition types are called interior (i),
overlap (o), and ghost (g).

Remark 3 Each entity has the partition type interior in exactly one process, thus providing a nonover-
lapping decomposition of the entity set. In contrast, overlap elements exist in several processes because the
numerical algorithm demands it explicitly (for example, overlapping Schwarz methods). Additional ghost
elements may be necessary to ensure data consistency (see (1) below).

Using these definitions we introduce the following notation:

E0|p = {e ∈ E0 | eD0 p}, E0|πp =
{

e ∈ E0|p
∣

∣ t0(e, p) = π, π ∈ {i, o, g}
}

,

and require that the interior elements E0|ip form a partition of the entity set:

⋃

p∈P

E0|ip = E0, E0|ip ∩ E0|iq = ∅ for all p 6= q.

Analogously, we define the level-wise element partitions

E0
j |p = {e ∈ E0

j | eD
0 p}, E0

j |
π
p =

{

e ∈ E0
j |p

∣

∣ t0(e, p) = π, π ∈ {i, o, g}
}

,

for each grid level j.
Set F0|p = F ∩ (E0|p × E0|p). We require that the father relation F can be represented in a distributed

way. This means that
⋃

p∈P F0|p = F0. In order to ensure this we demand that if father and child are in
different processes, the father must be introduced as a ghost entity in the child’s process. In formulas

eD0 p ∧ t0(e, p) ∈ {i, o} ∧ f F0 e ⇒ f D0 p. (1)

A similar requirement is needed in order to represent each intersection in at least one process. Therefore we
require for each element e which is interior on process p that any other element e′ is also known to process
p if there is a set Ie = θe ∩ θe′ in either Ie or Ĩ[e]. This means that the interior entities are surrounded by
at least one layer of entities which are either overlap or ghost.

The purpose of the partition type is to define subdomains for each process p and refinement level j via

Ij,p =
⋃

e∈E0

j |
i
p

θe, Oj,p =
⋃

e∈E0

j |
o
p

θe, Gj,p =
⋃

e∈E0

j
|gp

θe.

9

Ij,p

Oj,p

Gj,p

Bj,p

Fj,p

Figure 5: Data decomposition based on domain decomposition ideas.

We also define
Θj =

⋃

e∈E0

j

θe.

These subdomains are illustrated in Figure 5. The Ij,p are nonoverlapping by definition. Then Oj,p is
intended to “surround” Ij,p, and Gj,p in turn “surrounds” Oj,p. Note here that overlap entities may not
exist at all. In this case the corresponding subdomains are empty.

Up to now, only the decomposition of elements has been handled. The next definition extends the
decomposition relation to positive codimensions. We begin by introducing the border and front boundaries.
We define the border boundary as a part of the boundary of the domain of interior elements ∂Ij,p

Bj,p = ∂Ij,p \ ∂Θj.

Here · denotes the closure of a point set. The front boundary is defined as the boundary between overlap

and ghost elements.

Fj,p =
(

∂Oj,p \ ∂Θj

)

\ Bj,p.

These boundaries are also illustrated in Figure 5. Note that due to this construction the points “�” and
“◦” are part of border Bj,p and point “�” is part of front Fj,p. Note also that these definitions work
when overlap entities are missing (then the front boundary is empty) or ghost entities are missing.

Definition 22 (Extended decomposition) The extended decomposition relation D ⊆ E × P is defined
using the subentity relation. For all e ∈ E0, s ∈ E, such that sS e the equivalence

sD p ⇔ eD0 p (2)

must hold for all p ∈ P , i.e., an entity and all its subentities are always present together in a process.

Due to the reflexivity of S we have D0 ⊆ D. Another consequence of (2) is that the subentity relation
can be represented in the distributed model, i.e.,

S|p := S ∩ (E|p × E|p),
⋃

p∈P

S|p = S.

10

Partition types are generalized to higher codimensions with the map

t : D → {i, b, o, f, g}.

Two more partition types, border (b) and front (f), are introduced which correspond to the boundaries
Bj,p and Fj,p of the subdomains, respectively. For codimension 0 entities we have t(e, p) = t0(e, p). For
any (e, p) ∈ D, dim e < d the partition type is defined geometrically using the subdomains and boundaries
defined above:

t(e, p) =

i if int θe ⊆ IL(e),p \ BL(e),p

b if θe ⊆ BL(e),p

o if int θe ⊆ OL(e),p \ (BL(e),p ∪ FL(e),p)

f if θe ⊆ FL(e),p

g if int θe ⊆ GL(e),p \ (BL(e),p ∪ FL(e),p).

Note that in case θe is a single point θe = {x} we use the definition int{x} = {x}.

Remark 4 (Data exchange) Besides the decomposition the data exchange is an important part of any
parallel algorithm. In our concept this means that data associated with the same entity in different processes
is to be exchanged, and any parallel grid implementation has to support this. Formally this can be described
as follows. In each process p ∈ P select a set of source entities

Σp ⊆ E|p

and a set of destination entities
∆p ⊆ E|p.

Then a general communication operation moves data for each e ∈ Σp ∩ ∆q from process p to process q 6= p
or vice versa. In the implementation predefined subsets Σp, ∆p are available, see [1].

6 Index maps

An important part of our concept is that grids are completely separated from any numerical data associated
with them. However, in order to access the data of a grid some link is needed between grid entities and the
data. This link is provided by the index maps introduced in this section.

Since we like to consider adaptive grid refinement a computation actually uses a sequence of different
grids rather than a single grid. We assume that a computation consists of alternating phases of work to be
done on a fixed grid and grid modification (refinement, coarsening, or load-balancing). This is reflected by
the following definition.

Definition 23 (Grid sequence) An adaptive computation produces a sequence of entity sets

0E , 1E , . . . , kE ,

Given a grid kE, the next grid in the sequence is created by the following two half-steps:

• Choose a set E0,− ⊆ kE0. Remove all elements in E0,− from kE0. Also remove all subentities of E0,−

which are not also a subentity of kE0 \ E0,−. Call the result k+ 1

2 E. The set E0,− contains elements
which have been explicitly marked for removal, as well as elements which are removed automatically,
such as green closure elements.

• Add new elements to k+ 1

2 E along with their subentities, as long as they are not already present. The
result is k+1E. We expect the new elements to be chosen such that k+1E is a valid grid in the sense of
our definition.

Note that by definition the dimension of the grid is the same for all k. For each k ∈ N0 the corresponding
relations kS, kF , kD, and the map kt are defined accordingly.

11

The connection of entities to arbitrary user data is achieved by associating several indices with each
entity. These indices can then be used to locate the data in an appropriate data structure, e.g., an array or
a map (associative array). We now introduce three different index maps.

Definition 24 (Level index maps) For a given sequence index k, codimension c, level j, reference ele-
ment r, and process number p the level index is a map

kκc,r
j |p : kEc,r

j |p → N0.

The level index map is consecutive, which means that it is injective and

0 ≤ kκc,r
j |p(e) <

∣

∣

kEc,r
j |p

∣

∣ for all e ∈ kEc,r
j |p.

The level index maps are used to store data in arrays for efficient processing. From the individual maps
kκc,r

j |p one can easily construct consecutive maps for more general sets of entities. Entities are distinguished
by reference element because two entities with the same reference element will usually carry the same number
of degrees of freedom and hence array offsets are easier to compute.

Definition 25 (Leaf index map) For a given sequence index k, codimension c, reference element r, and
process number p the leaf index map

kλc,r|p : kLc,r|p → N0

maps leaf entities to consecutive numbers, i. e., for all k ∈ N0 we require:

1. (range restricted to number of equivalence classes)

∀e ∈ kLc,r|p : 0 ≤ kλc,r|p(e) <
∣

∣

k
L̃c,r|p

∣

∣,

2. (equality only on entity copies)

∀e, e′ ∈ kLc,r|p : kλc,r|p(e) = kλc,r|p(e
′) ⇔ e ∼ e′.

Level and leaf indices are consecutive on their domains of definition. Hence a fortiori they have to change
during grid modifications. In order not to lose data when going from one grid in the sequence to the next
we need a form of indexing that does not change. This is provided by the persistent index map.

Definition 26 (Persistent index map) For any sequence index k and any codimension c we define the
persistent index map

kµc : kEc → I,

where I is a set of indices. The persistent index maps are required to fulfill the following two conditions.

1. (persistence)
e ∈ kEc, e ∈ k+1Ec ⇔ kµc(e) = k+1µc(e),

2. (equality only on entity copies)

∀e, e′ ∈ kEc : kµc(e) = kµc(e′) ⇔ e ∼ e′.

These properties imply that if an entity is contained in two subsequent grids the persistent index does not
change. If, however, e ∈ kE and e ∈ k+2E but not e ∈ k+1E then the entity may have a different persistent
index in kE and k+2E.

Remark 5 (Use of the index maps) Computations on grid sequences are assumed to be structured into
alternating phases of work on a fixed grid and modifications of the grid to obtain the next grid in the sequence.
While working on a fixed grid the level and leaf indices are used to access data in arrays with constant time
complexity for each access. In the modification phase the persistent index is used to transfer data from
one grid to the next grid. During that phase data is typically stored in an intermediate data structure with
logarithmic time complexity for each access.

12

References

[1] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, and O. Sander.
A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests
in DUNE. in preparation, 2007.

[2] W. Benger. Visualization of General Relativistic Tensor Fields via a Fiber Bundle Data Model. PhD
thesis, Freie Universität Berlin, 2005.

[3] G. Berti. Generic Software Components for Scientific Computing. PhD thesis, BTU Cottbus, 2000.

[4] N. Botta, C. Ionescu, C. Linstead, and R. Klein. Structuring distributed relation-based computations
with SCDRC. Technical report, PIK Report No. 103, Potsdam Institute for Climate Impact Research,
2006.

[5] DUNE – Distributed and Unified Numerics Environment. http://dune-project.org/.

13

