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Summary. We present a new inexact nonsmooth Newton method for the solution
of convex minimization problems with piecewise smooth, pointwise nonlinearities.
The algorithm consists of a nonlinear smoothing step on the fine level and a linear
coarse correction. Suitable postprocessing guarantees global convergence even in the
case of a single multigrid step for each linear subproblem. Numerical examples show
that the overall efficiency is comparable to multigrid for similar linear problems.

1 Introduction

We consider the minimization problem

u ∈ R
n : J(u) ≤ J(v) ∀v ∈ R

n (1)

where J : R
n → R ∪ {∞} is given by

J(v) =
1

2
〈Av, v〉 − 〈b, v〉 + ϕ(v), ϕ(v) =

∑n

i=1
ϕi(vi) (2)

for a symmetric positive definite matrix A ∈ R
n×n and convex, lower semi-

continuous and proper functions ϕi : R → R∪{∞}. We will assume that each
ϕi is C2 on a finite number of disjoint intervals Ik

i ⊂ R having the property

domϕi = {x : ϕi(x) <∞} =
⋃mi

k=1
Ik
i .

Under the above assumptions J is strictly convex, lower semicontinuous,
proper, and coercive. Thus (1) has a unique solution [5].

For quadratic obstacle problems the ideas of active-set methods and mono-
tone multigrid have been combined recently to the Truncated Nonsmooth
Newton Multigrid (TNNMG) method [6]. Inspired by [7], we generalize this
method to nonquadratic nonsmooth energies (2) resulting in a novel globally
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convergent multigrid method. While our approach is more flexible and signif-
icantly easier to implement than the algorithm in [7] the numerical examples
indicate that it is comparable to linear multigrid for resonable initial iterates
which can be obtained, e.g., by nested iteration.

2 A Nonsmooth Newton Method

Problem (1) can be equivalently formulated as the following inclusion

(A+ ∂ϕ)(u) ∋ b, (3)

where the subdifferential ∂ϕ of ϕ is the set-valued diagonal operator given
by (∂ϕ(v))i = ∂ϕi(vi). Similar to the linear case ϕ = 0 the nonlinear Gauß-
Seidel method uk+1 = uk + Fuk defined by successive minimization of J in
the coordinate directions can be represented by the operator

F(v) = (D + L+ ∂ϕ)−1(b −Rv) − v,

where we have used the splitting A = D + L + R in the diagonal, left, and
right parts. Using a monotonicity argument it can be shown that the nonlin-
ear Gauß-Seidel method converges globally to the solution of (1) [7]. Unfor-
tunately, as in the linear case, the convergence rates deteriorate rapidly if A
is a differential operator discretized on finer and finer grids.

It follows from the global convergence of the Gauß-Seidel method that the
original problem (3) is equivalent to the fixed-point equation

F(u) = 0 (4)

for the operator F which is single-valued and Lipschitz continuous. This sug-
gests to use a nonsmooth Newton approach for (4) which leads to methods

uk+1 = uk −H(uk)−1F(uk) (5)

where H(uk) is a generalized linearization of F . In order to construct such
H(uk) we first derive a linearization of fi = (Aii + ∂ϕi)

−1 : R → R. Since fi

is strictly monotone and Lipschitz continuous it is differentiable almost every-
where by Rademacher’s theorem [9]. An element of the generalized Jacobian
in the sense of Clarke [3] is given by

∂fi(x) =

{
0 if ∂ϕi(fi(x)) is set-valued,

(aii + ϕ′′
i (fi(x)))

−1 else.
(6)

For ϕ′′
i we use either the derivative from the left or from the right and (aii +

ϕ′′
i (fi(x)))

−1 is set to zero if both one-sided derivatives tend to infinity.
Given an index set J ⊂ {1, . . . , n} and a matrix or vector (n× 1 matrix)

M we introduce the following notation for truncated versions of M
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(MJ )ij =

{
Mij for i ∈ J

0 else,
(MJ,J )ij =

{
Mij for i, j ∈ J

0 else.

Assuming a chain rule elementary computations lead to a linearization of F
given by

∂F(v) = −
(
D + L+ ϕ′′(v + Fv)I(v+Fv)

)−1
RI(v+Fv) − I (7)

with the index set of inactive components

I(v) = {i : ∂ϕi(vi) is single-valued and ϕ′′
i (vi) is finite} .

Theorem 1. If H(uk) = ∂F(uk) is used in a nonsmooth Newton step (5)
the resulting iteration can be equivalently rewritten as the following two-step

method

uk+ 1

2 = uk + F(uk), (8)

uk+1 = uk+ 1

2 + C(uk+ 1

2 ), (9)

with the linear correction

C(v) = −
(
J ′′(v)I(v),I(v)

)−1
J ′(v)I(v). (10)

The proof of Theorem 1 is straightforward using the fact that C(uk+ 1

2 )i = 0

for i /∈ I(uk+ 1

2 ). For obstacle problems it can be found in [6].

Remark 1. By restriction to the i ∈ I(v) each ϕi in (9) has a classical first
derivative. The second derivatives of ϕi are meant in the sense explained
after (6).

Even though linearization of ∂J in (9) is restricted to locally smooth com-
ponents the derivatives of ϕi might get very large leading to ill-conditioned
linear systems and slow multigrid convergence. Therefore we may restrict the
linearization further, e.g., to

I(v) =
{
i ∈ I(v) : |ϕ′′

i (x) − ϕ′′
i (y)| ≤ C|x− y| ∀x, y ∈ [vi − δ, vi + δ]

}

for a large constant C and a small δ.

Remark 2. Replacing I by some I ⊂ I leads to a truncated linearization ∂F
defined analogously to (7). Theorem 1 remains true for H(uk) = ∂F(uk) if I
is replaced by I.

Due to the leading nonlinear Gauß-Seidel step (8) global convergence

can be shown if J(uk+1) ≤ J(uk+ 1

2 ) [7]. Thus the introduction of suit-
able damping parameters in (9) leads to global convergence. However, very
small damping parameters slowing down the convergence may be necessary if
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uk+ 1

2 + C(uk+ 1

2 ) /∈ dom(J) = {v : J(v) < ∞}. To overcome this problem we
apply damping to a projected correction. If, additionally, we introduce inexact
evaluation of C represented by the error εk the algorithm reads

uk+ 1

2 = uk + F(uk), (11)

uk+1 = uk+ 1

2 + ρkP k(C(uk+ 1

2 ) + εk), (12)

where P k is the projection onto dom(J) − uk+ 1

2 and ρk is computed by the
line search

ρk = argmin
ρ∈R

J(uk+ 1

2 + ρP k(C(uk+ 1

2 ) + εk)).

Since this algorithm satisfies J(uk+1) ≤ J(uk+ 1

2 ) for arbitrary εk the following
convergence result holds [7].

Theorem 2. For every u0, εk ∈ R
n the uk converge to the solution u of (3).

3 Multigrid

Now we consider the fast and inexact solution of the system (10) by multigrid
methods. Since the matrix is symmetric and positive definite on the subspace

V k = {v ∈ R
n : vi = 0 ∀i /∈ I(uk+ 1

2 )} (13)

standard linear multigrid methods like successive or parallel subspace correc-
tion with standard transfer operators for problems in R

n can be applied if the
following two modifications are introduced:

• If a diagonal element in a matrix is zero the subspace correction for the
corresponding subspace should be zero as well. This may happen on all
levels since the fine matrix has zero rows and columns.

• After the sum of all coarse corrections is prolongated to the fine space R
n

all components i /∈ I(uk+ 1

2 ) should be set to zero.

With these two modifications each correction in a subspace U of R
n is now

naturally a correction in the Euclidean projection Uk of U onto V k. Hence the
subspace correction method automatically minimizes in suitable subspaces of
V k without explicit construction of these subspaces or their basis functions.

Since there is no need to solve the systems (10) to a certain accuracy
applying a single multigrid step is enough to achieve global convergence. The
resulting overall algorithm consists of nonlinear smoothing on the fine level
and linear multigrid for a reduced linearization. As a generalization of the
algorithm in [6] we call it Truncated Nonsmooth Newton Multigrid (TNNMG).
The algorithm is open to various modifications, e.g.:

• Additional nonlinear smoothing before the linear correction
• Linear smoothing on the fine level can be omitted.
• Alternative smoothers can be applied to the linear correction.
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4 Example I: Two-Body Contact in Linear Elasticity
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Fig. 1. Two-body contact problem. a) Schematic view; b) solution; c) vertical cut
through the von-Mises stress field; d) error per number of iterations.

We will now show how the algorithm can be used to efficiently solve multi-
body contact problems in linear elasticity. Consider two disjoint domains Ω1,
Ω2 in R

d, d ∈ {2, 3}, discretized by simplicial grids. The boundary Γi = ∂Ωi,
i ∈ {1, 2}, of each domain is decomposed in three disjoint parts Γi = Γi,D ∪
Γi,N ∪ Γi,C . Let fi ∈ (L2(Ωi))

d, i ∈ {1, 2}, be body force density fields, and
ti ∈ (H−1/2(Γi,N ))d be fields of surface traction. The two contact boundaries
Γi,C are identified using a homeomorphism Φ : Γ1,C → Γ2,C and the initial
distance function g : Γ1,C → R, g(x) = ‖Φ(x) − x‖ is defined.

Let Vh be the space of first-order d-valued Lagrangian finite element func-
tions on Ω1∪Ω2 and {λ} the nodal basis in Vh. We denote the basis functions
belonging to the ni

C nodes of the contact boundaries Γi,C , i ∈ {1, 2} by {λi
C},

the corresponding coefficients in a vector v by vi
C and the basis functions for

the remaining nI nodes by {λI}. The two-body contact problem can then
be written as a minimization problem with a quadratic part as in (1) and
n = d(nI +n1

C +n2
C). Here A and b are the stiffness matrix and right-hand-side

vector of linear elasticity, respectively. The nonlinearity is the characteristic
functional ϕ = χK of the mortar discretized admissible set

K = {v ∈ R
dn | NDv1

C −NMv2
C ≤ g} (14)

with a sparse mass matrix M, a diagonal mass matrix D, a matrix N which
contains the domain normals, and the weak obstacle g. Contrary to (1) χK

does not have pointwise structure. To overcome this we introduce the trans-
formed basis [11]

{λ̃} = OB{λ} =



I 0 0
0 OC 0
0 0 I






I 0 0
0 I 0
0 (D−1M)T I







λI

λ
1
C

λ
2
C


 .

In this basis, we get a minimization problem of the form (1) with a matrix

Ã = OBABTOT , a right-hand side b̃ = OBb and
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ϕ̃p,0(vp,0) =

{
0 vp,0 ≤ (D−1g)p, p is vertex on Γ1,C

∞ else.
(15)

The matrix OC is block-diagonal. For each vertex p on Γ1,C , the d × d diag-
onal entry (OC)pp contains the Householder reflection which maps the first
canonical basis vector of R

d onto the domain normal at p. Due to the point-
wise structure (15), a projected block Gauß-Seidel scheme converges. For the
coarse grid correction (10) we compute

J ′′(v)I(v),I(v) = ÃI(v),I(v) and J ′(v)I(v) =
[
Ãv − b̃

]
I(v)

,

and apply one linear multigrid step to this.

Remark 3. For the transition from the finest to the second finest grid level
the standard multigrid prolongation operator P is replaced by P̃ = OB−1P .
That way, discretization on the coarser levels is with respect to the nodal
basis. Truncation and the transforming prolongation P̃ can be combined in a
single operator. This avoids having to store two fine-grid matrices.

As an example geometry we use the Visible Human data set [1]. We assume
bone to be an isotropic, homogeneous, linear elastic material with E = 17 GPa
and ν = 0.3. The bottom section of the proximal tibia is clamped and a
downward displacement of 6 mm is prescribed on the upper section of the
femur (see Fig. 1, left). The implementation is based on the Dune library [2].

We compare the numerical efficiencies of our solver and a monotone multi-
grid method (MMG), which is currently the fastest known globally convergent
solver for two-body contact problems [8, 11]. It is well known that the MMG
degenerates to a linear multigrid method once the active set has been found
and hence shows linear multigrid convergence asymptotically.

We use nested iteration on two adaptive grids with 44777 vertices in total.
Errors are computed by comparing with a precomputed reference solution
u
∗. The error ei = ‖ui − u

∗‖A is plotted in Fig. 1. As expected, both the
TNNMG and the MMG asymptotically show a linear multigrid convergence
speed. However, the MMG needs more than 80 iterations to reach the asymp-
totic phase (see [10] for an explanation), whereas the TNNMG enters the
asymptotic phase immediately. Note that iteration counts can be compared
directly because both methods do a similar amount of work per iteration.

Remark 4. For two-body contact problems, the TNNMG is considerably easier
to implement than the monotone multigrid method. See [10] for details.

5 Example II: The Allen-Cahn Equation

The Allen-Cahn equation is a well established diffuse interface model for phase
transition phenomena as, e.g., solidification or crystallographic transforma-
tions. It can alternatively be interpreted as a regularization of the sharp in-
terface geometric PDE for mean curvature flow (cf. [4]). The model considers
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an order parameter u : R
d ⊃ Ω → [−1, 1] where the interval boundaries

correspond to the pure phases, and is based on the Ginzburg-Landau energy

E(u) =

∫

Ω

(
ε

2
|∇u|2 +

1

ε
ψ(u)

)
dx. (16)

In the following, the potential ψ is taken to be

ψ(u) =
1

2
θ

(
(1 + u) ln

(
1 + u

2

)
+ (1 − u) ln

(
1 − u

2

))

︸ ︷︷ ︸
=: φθ(u)

+
1

2
θc

(
1 − u2

)

which for θ < θc takes on the characteristic double-well shape. The Allen-Cahn
equation

εut = ε∆u− ε−1ψ′(u) (17)

results as the L2-gradient flow of (16). For a given triangulation T of the
domain Ω, which for simplicity we will assume to be a polygonal domain in
R

2, let VT denote the space of continuous piecewise linear finite elements, N
the set of nodes and {λp| p ∈ N} ⊂ VT the nodal basis. Time discretization
by a semi-implicit Euler scheme and subsequent finite element discretization
of (17) yields the variational problem

uk ∈ VT : a (uk, v) − ℓk(v) +
τ

ε2
(φ′θ(uk), v)T = 0 ∀v ∈ VT (18)

to be solved in the kth time step. Here (·, ·)T denotes the lumped L2-product
on VT . Furthermore

ℓk(v) =

(
1 +

θcτ

ε2

)
(uk−1, v)T , a (v, w) = τ(∇v,∇w) + (v, w)T

are a linear functional and a symmetric, positive definite bilinear form, re-
spectively. Thus (18) is equivalent to the minimization problem in VT for

J(v) = a(v, v) − ℓk(v) +
τ

ε2

∑

p∈N

φθ(v(p))

∫

Ω

λp(x) dx.

Identifying VT with R
n we are now in the setting described in Section 1.

For the numerical example we choose Ω = [−1, 1]2, ε = 10−2, θc = 1, τ =
10−4, and an initial value as shown in Fig. 2. We use one nonlinear smoothing
step and a V(3,3)-cycle for the linearized system with nested iteration and
compare the averaged convergence rates versus the temperature θ. Further-
more the error ej = ‖uj

1 − u∗1‖a in the jth TNNMG-step of the first time step
is considered where u∗1 is a precomputed reference solution.

As Figs. 2c+d indicate, the TNNMG-method exhibits very fast conver-
gence and robustness wrt. θ which is remarkable as φθ is singular for θ → 0.
Note that the convergence rates here never exceed 0.1. Experiments have
shown that introducing additional nonlinear smoothing steps does not signif-
icantly accelerate convergence any further in this testcase whereas using less
linear smoothing results in a considerable slowdown.
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Fig. 2. a) Initial value; b) solution at time step 200; c) averaged convergence rates
vs. temperature for TNNMG in the first time step; d) error vs. number of TNNMG
iterations at θ = 0.15 (∼ 200.000 nodes).
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