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Abstract

We prove global convergence of an inexact polyhedral Gauß–Seidel
method for the minimization of strictly convex functionals that are con-
tinuously differentiable on each polyhedron of a polyhedral decomposition
of their domains of definition. While being known to be very slow by
themselves, such methods are a cornerstone for fast, globally convergent
multigrid methods. Our result generalizes the proof of Kornhuber and
Krause [7] for differentiable functionals on the Gibbs simplex. Example
applications are given that require the generality of our approach.

1 Polyhedral Gauß–Seidel

Consider the minimization problem

x∗ ∈ Rn : J(x∗) ≤ J(y) ∀y ∈ Rn (1)

for a functional
J : Rn → R ∪ {∞}.

We assume that J and its domain domJ := {x ∈ Rn | J(x) < ∞} have the
following properties:

(A1) J is strictly convex and domJ 6= ∅,

(A2) J is coercive, i.e., J(x) → ∞ if ‖x‖ → ∞,

(A3) J is lower semi-continuous on Rn.

By conditions (A1), (A2), and (A3) the minimization problem (1) has a unique
solution [4]. While (A1) already implies continuity of J on the relative interior
of domJ [8], we need a slightly stronger condition.

(A4) J is continuous on domJ and dom J is a polyhedron.

This continuity condition does only exclude certain functions that degenerate
on ∂(dom J), like the one in the following example. It will be convenient to use
the characteristic function χK : Rn → R ∪ {∞} of a set K ⊂ Rn given by

χK(x) :=

{
0 if x ∈ K,

∞ else.
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Example 1. The functional J : R2 → R ∪ {∞} given by

J(x) = ‖x‖2 + x22
x1

+ χK(x) ∀x 6= 0, J(0) = 0,

with K = {x ∈ R2 | x1 > 0 or x = 0} satisfies (A1)–(A3) but not (A4), since it
is not continuous at 0 ∈ K = dom J .

We now introduce the Polyhedral Gauß–Seidel Algorithm (PGS). Let

E = {v1, . . . , vm} ⊂ Rn

be a finite set of search directions, ν an iteration number, and let xν ∈ dom J .
Then one iteration of PGS consists of the following steps:

1. set xν0 = xν

2. for i = 1, . . . ,m set

xνi = xνi−1 + argmin
v∈span vi

J(xνi−1 + v)

3. set xν+1 = xνm.

Note that this is the standard Gauß–Seidel method if E is the set of Euclidean
coordinate vectors.

Remark. For simplicity we have stated here the exact version of PGS. Later
we will also consider an inexact variant, where the minimization in Step 2 only
has to be within a given fraction of the true result. Our analysis also covers this
more general case.

While the algorithm does not change if we replace v ∈ E by −v we will need
directions with the proper sign in many subsequent statements and results.
Thus we define

E± := E ∪ −E ,

and state assumptions on the set E±. We will prove convergence if the set of
search directions E provides descent directions at any point x ∈ dom J \ {x∗},
i.e., if E satisfies:

(A5) For all x ∈ dom J \ {x∗} there is a direction v ∈ E± and an ε > 0 such
that J(x+ εv) < J(x).

While this condition if sufficient for our convergence analysis it can be difficult
to verify in practice. We will therefore tighten our assumptions somewhat to
allow easier construction of search directions. More specifically, we will also
assume that J is piecewise smooth on a partition of dom J in polyhedra. In
the following, TC(x) is the tangent cone of a polyhedron C at x and coneM is
the cone generated by the set M . Both notions are properly defined in the next
section. Furthermore, Bε(x) denotes the open ball with radius ε around x ∈ Rn.
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(A6) There is a partitioning of dom J in a finite set of convex closed polyhedra
C1, . . . , CN . Also, there is a set S ⊂ dom J such that for all i = 1, . . . , N
and all x ∈ Ci ∩ S there is a subset Ex,i ⊆ E± with

TCi(x) = cone Ex,i, (2)

and there is an ε > 0 and a smooth extension J̄ ∈ C1(Bε(x)) with

J̄ |
Bε(x)∩Ci∩dom J

= J |
Bε(x)∩Ci∩dom J

.

Furthermore, for all x ∈ domJ \ (S ∪ {x∗}) there is a direction v ∈ E±

and an ε > 0 such that J(x+ εv) < J(x).

By this assumption J is allowed to be nonsmooth across the intersection of
two different Ci and on the set domJ \ S. Intuitively, S is the set where J is
“smooth enough”, and we will show that the existence of descent directions for
x ∈ S is guaranteed by the condition (2) on the tangent cones. If S = dom J
this implies that the search directions only need to depend on the partitioning
in polyhedra and not on values or derivatives of J . For all x /∈ S additional
search directions may have to be provided to ensure convergence.

Example 2. Let α ∈ [0, 1]. Then the functional J : R2 → R ∪ {∞},

J(x) = ‖x‖2 − (x1x2)
α + χ[0,1]2(x),

satisfies (A1)–(A4) with domJ = [0, 1]2. For α ∈ {0, 1} the set E = {e1, e2} of
the Euclidean coordinate vectors satisfies (A6) with N = 1, C1 = S = dom J . If
however α ∈ (0, 1), then S = (0, 1]2 and for x ∈ dom J \ (S ∪ {0}) we even have

lim
h↘0

J(x+ hei)− J(x)

h
= −∞.

However 0 /∈ S but neither e1 nor e2 is a descent direction there. Hence we need
to additionally use, e.g., e1 + e2 in order to satisfy (A6).

The main result of this article is that the polyhedral Gauß–Seidel algorithm
will converge to the unique solution of the minimization problem if the set of
search directions E contains sufficient information about the partitioning of the
domain in convex polyhedra Ci and about points of non-differentiability.

Theorem 1. Assume that J : Rn → R∪{∞} has the properties (A1)–(A4) and
that the set of search directions E = {v1, . . . , vm} ⊂ Rn satisfies (A5) or (A6).
Then for all x0 with J(x0) < ∞ the sequence generated by PGS converges to
the unique minimizer x∗ of J .

This article was inspired by a result of Kornhuber and Krause [7], where
they proved convergence for a particular J defined on a simplex. The energy
fulfilled (A1)–(A4) and was smooth in the interior of the simplex while E± was
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the set of simplex edges. Unfortunately, their arguments would not carry over
to the more general functionals J discussed here.

An early result on constrained Gauß–Seidel methods can be found in the
book by Glowinski et al. [5]. There it is shown that the constrained Gauß–
Seidel method converges if the functional is strictly convex, differentiable, and
if the admissible set is the product of intervals. Tseng [10] generalized this for
convex differentiable functionals defined also on products of intervals. By a
duality approach the method could also solve strongly convex, not necessarily
differentiable minimization problems on polyhedral domains.

Minimization problems on polyhedral domains have also been studied in-
tensively in the field of linear programming, where unfortunately it is always
assumed that J is linear. We refer the reader to Schrijver [9] for an introduction.

The article proceeds as follows. In Section 2 we briefly review polyhedral sets
and list a few basic properties. Section 3 is dedicated to the proof of Theorem 1.
In Section 4 we show how sets of search directions can be constructed for actual
polyhedral decompositions. Finally, in Section 5 we present a few applications
that result in minimization problems of the type considered here.

2 Polyhedral Sets and Their Tangent Cones

Although non-convex polyhedra are sometimes allowed in the literature we stick
to the convention that polyhedra are always convex as implied by the following
definition.

Definition 1. A polyhedron is a set

C = {w ∈ Rn | 〈ai, w〉 ≥ bi, i = 1, . . . ,m},

where ai ∈ Rn and bi ∈ R for i = 1, . . . ,m.

It is easy to see that polyhedra are closed and convex, but not necessarily
bounded. The dimension of a polyhedron C is the dimension of its affine hull. A
face of C is a set F such that there exist a ∈ Rn, b ∈ R with 〈a, x〉 ≥ b, ∀x ∈ C
and F = {x ∈ C | 〈a, x〉 = b}. Faces are again polyhedra. Zero- and one-
dimensional faces are called vertices, and edges, respectively [11].

For a polyhedron C we define its recession cone

rec(C) = {y ∈ Rn | x+ ty ∈ C for all x ∈ C, t ≥ 0}.

By this definition it is obvious that for any subset M ⊂ C we have

M + rec(C) ⊂ C

with ‘=’ at least for M = C. The question if there are smaller sets such that
equality holds is answered by the following central result about polyhedra, usu-
ally named after Minkowski and Weyl.

Theorem 2. Let C be a polyhedron.
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1. There is a representation

C =

{ k∑
i=1

λipi +

l∑
j=1

µjdj

∣∣∣∣ λi ≥ 0,

k∑
i=1

λi = 1, µj ≥ 0

}
with points p1, . . . , pk ∈ Rn and directions d1, . . . , dl ∈ Rn.

2. If C has at least one vertex, then there is a unique minimal such represen-
tation, where the pi are the vertices of C and the dj are the infinite edges
of C.

Proof. Schrijver [9, Thm. 8.5]

Next, we define tangent cones of convex sets.

Definition 2. Let K ⊂ Rn be convex set. The tangent cone TK(x) of K at x
is the set

TK(x) = {v ∈ Rn | x+ εv ∈ K for ε > 0 small enough}.

Tangent cones are cones, i.e., from v ∈ TC(x) follows λv ∈ TC(x) for all λ ≥ 0.
Also, we have always C ⊂ TC(x) + x. Finally, tangent cones of polyhedra are
polyhedra themselves [8, Thm. 6.46]. The cone generated by a set Y is defined
as

coneY :=

{
x ∈ Rn

∣∣∣∣ ∃k > 0, λj ≥ 0, yj ∈ Y such that x =

k∑
j=1

λjyj

}
.

For polyhedral cones with a vertex we get the following corollary of Theo-
rem 2.

Corollary 1. Let T be a polyhedral cone with a vertex. Then T is generated by
its edges with proper orientation.

Tangent cones of polyhedra exhibit several useful local properties. As a
fundamental tool we find that C and its tangent cone at x coincide in a neigh-
borhood around x.

Lemma 1. Let C be a polyhedron and x ∈ C. Then there exists an ε > 0 such
that

(x+ TC(x)) ∩Bε(x) = C ∩Bε(x).

Proof. Rockafellar and Wets [8]

As direct consequence of Lemma 1 we may drop the closure in the definition
of TK(x) if K is a polyhedron.

In general it is not true that the ε in Lemma 1 can be chosen uniformly in
a neighborhood around some x0 ∈ C. As a simple counterexample consider x0
to be a vertex of C. However for the case of a fixed tangent cone whose apex is
moved we get the following local stability result.
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Lemma 2. Let C be a polyhedron and x0 ∈ C. Then there exists an ε > 0 such
that

(x+ TC(x0)) ∩Bε(x) ⊆ C ∩Bε(x) ∀x ∈ C ∩Bε(x0).

Proof. Let x0 ∈ C and select 2ε > 0 according to Lemma 1 such that

(TC(x0) + x0) ∩B2ε(x0) = C ∩B2ε(x0). (3)

Then for any x ∈ C ∩Bε(x0) and y ∈ (x+ TC(x0)) ∩Bε(x) we have

y − x, x− x0 ∈ TC(x0) ∩Bε(0),

and thus, using the triangle inequality,

y − x0 ∈ TC(x0) ∩B2ε(0).

Adding x0 and using (3) gives

y ∈ C ∩B2ε(x0).

Since y was chosen such that y ∈ Bε(x) this particularly gives

y ∈ C ∩Bε(x),

which proves the assertion.

As a direct corollary of Lemma 2 we find that tangent cones of neighboring
points are always bigger if the neighborhood is small enough.

Corollary 2. Let C be a polyhedron and x0 ∈ C. Then there exists an ε > 0
such that

TC(x0) ⊆ TC(x) ∀x ∈ C ∩Bε(x0).

In general for closed convex sets C that are not polyhedral neither the asser-
tions of Lemma 1 and Lemma 2 nor the one in Corollary 2 are true. This can
easily be checked, e.g., for C = B1(0) ⊂ R2 where TC(x) = {y ∈ R2 | 〈y, x〉 ≥ 0}
for all x ∈ ∂C.

The Minkowski–Weyl representation of polyhedra given by Theorem 2 can
also be used to characterize the tangent cones in a nice way. This is the key
result to constructively describing sets E of search directions.

Theorem 3. Let C be a polyhedron and x ∈ C. Further let pj ∈ C, j = 1, . . . , k
be points and dj ∈ rec(C), j = 1, . . . , l be directions such that

x =
k∑
j=1

λjpj +
l∑

j=1

µjdj , λj ≥ 0,
k∑
j=1

λj = 1, µj ≥ 0. (4)

Then

TC(x) =
k∑
j=1

λjTC(pj) +
l∑

j=1

µj cone{−dj}. (5)
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Proof. Let w ∈ TC(x). By Lemma 1 we get x+ εw ∈ C for ε > 0 small enough.
From C ⊂ pj + TC(pj) we know that there are wj ∈ TC(pj) with

x+ εw = pj + wj

for all 1 ≤ j ≤ k. We can now get a representation of εw in terms of the wj by
noting that

εw =
( k∑
j=1

λj

)
(x+ εw)− x =

k∑
j=1

(
λj(x+ εw)

)
− x

=
k∑
j=1

(
λj(pj + wj)

)
−
( k∑
j=1

λjpj +
l∑

j=1

µjdj

)

=

k∑
j=1

λjwj −
l∑

j=1

µjdj .

Thus we have shown that εw, and thus w, is contained in the cone on the right
hand side of (5).

To show that also ‘⊃’ holds in (5), let first w ∈ λjTC(pj) for some j. Using
Lemma 1 we find pj + εw ∈ C for ε > 0 small enough. Hence x + λjεw can be
represented similarly to x in (4) with pj replaced by pj + εw, i.e.,

x+ λjεw ∈ C + rec(C) = C.

This implies that both λjεw and w are contained in TC(x) and thus λjTC(pj) ⊂
TC(x). Now consider −µjdj for some j. Then we have

x− µj
2
dj ∈ C + rec(C) = C,

which implies −(µj/2)dj ∈ TC(x). Hence the cone spanned by all such w and
−µjdj is also contained in TC(x).

Note that (5) is equivalent to

TC(x) =
∑
j:λj>0

TC(pj) +
∑
j:µj>0

cone{−dj}.

Combining Theorems 2 and 3 we see that any tangent cone TC(x) is spanned
by a selection from a finite number of cones, namely

TC(p1), . . . TC(pk), and cone{−d1}, . . . , cone{−dl},

with fixed pj , dj selected according to Theorem 2.
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3 Convergence of Polyhedral Gauß–Seidel

The convergence proof for the PGS algorithm and its inexact version uses the
same building blocks as the proof for the special case in [7]:

1. monotonicity of intermediate iterates with respect to J ,

2. continuity of the minimization operator, x 7→ argminα∈R J(x+ αd)
(in [7] this was only assumed),

3. the fact that fixed points of the PGS method are minimizers.

While the monotonicity is obvious since the algorithm is based on successive
minimization Properties 2 and 3 are not trivial in the presented general setting.
We will prove them in the following two subsections.

3.1 Continuity of the Minimization Operator

In contrast to the case where the nonsmooth part of J decomposes into search
directions, i.e.,

J(x) = J0(x) +
n∑
i=1

Ji(xi) (6)

with continuously differentiable J0 and scalar functions Ji (as in, e.g., [6]), the
proof of the continuity of x 7→ argminα∈R J(x + αd) can no longer be based
on standard arguments for the Lipschitz continuity of the solution operator to
scalar variational inequalities. Instead, we give a direct proof.

Lemma 3. Let J : Rn → R ∪ {∞} satisfy (A1)–(A4). Then the set dom J \
dom J is closed.

Proof. Assume that A := domJ \domJ is not closed. Then there is a sequence
xν ∈ A such that xν → x ∈ A \A ⊂ (domJ ∩ dom J) = domJ .

For each xν there must then also be a sequence xνk ∈ dom J with xνk → xν

for k → ∞. Using lower semi-continuity of J we find that

lim
k→∞

J(xνk) ≥ J(xν) = ∞.

Hence for each ν there must be a kν such that ‖xν − xνkν‖ ≤ ‖x − xν‖ and

J(xνkν ) ≥
1
ν which implies

lim
ν→∞

J(xνkν ) = ∞.

On the other hand from ‖x − xνkν‖ ≤ 2‖x − xν‖ we get xνkν → x and thus by
continuity J(xνkν ) → J(x) 6= ∞.

8



Lemma 4. Let J : Rn → R ∪ {∞} satisfy (A1)–(A4). Then, for any fixed
subspace V of Rn the mapping

α(·, V ) : domJ → V

α(x, V ) = argmin
v∈V

J(x+ v)

is continuous.

Proof. Since the assertion is obvious for V = {0} we only consider V 6= {0}.
Assume that α(·, V ) is not continuous at some x ∈ dom J and set y = x +
α(x, V ) ∈ dom J . Then there is a sequence

xν ∈ dom J, xν → x

such that yν = xν + α(xν , V ) ∈ dom J satisfies ‖yν − y‖ ≥ δ for some δ > 0.
Since J is continuous, J(xν) is bounded and by definition of α we have

J(yν) ≤ J(xν) ≤ C (7)

for some constant C. Hence the sequence yν is bounded and there exists a
subsequence of yν converging to some ȳ. Lower semi-continuity of J and (7)
directly imply J(ȳ) ≤ C and thus ȳ ∈ dom J . For simplicity we relabel and call
this convergent subsequence yν from now on.

By Lemma 2 applied to C := domJ there is an ε > 0 such that

(z + TC(ȳ)) ∩Bε(z) ⊂ C ∀z ∈ C ∩Bε(ȳ).

Using this and convergence of yν we find that there is a ν0 ∈ N such that

(yν + TC(ȳ)) ∩Bε(yν) ⊂ C ν > ν0. (8)

Now consider λ(y − ȳ) with

λ := min

{
ε

2‖y − ȳ‖
,
1

2

}
∈ (0, 1).

With this we have yν + λ(y − ȳ) ∈ Bε(y
ν) and by y, ȳ ∈ C we also have y − ȳ ∈

TC(ȳ). Using (8) this implies

yν + λ(y − ȳ) ∈ C = dom J.

Strict convexity of J , λ ∈ (0, 1), and the minimality of y also give

J(ȳ + λ(y − ȳ)) < (1− λ)J(ȳ) + λJ(y)

< (1− λ)J(ȳ) + λJ(ȳ) = J(ȳ) <∞,
(9)

and hence ȳ + λ(y − ȳ) ∈ dom J . Thus for large enough ν we even have

yν + λ(y − ȳ) ∈ dom J,
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otherwise Lemma 3 would imply ȳ+λ(y− ȳ) ∈ dom J \domJ . Now we can use
the continuity of J on dom J and the inequality

J(yν) ≤ J(yν + λ(y − ȳ))

which, together with (9), gives the contradiction

J(ȳ) ≤ J(ȳ + λ(y − ȳ)) < J(ȳ).

For the case dimV = 1, Lemma 4 reduces to the following result, where, in
an abuse of notation, α(·, ·) now returns a scalar instead of a vector.

Corollary 3. Let J : Rn → R ∪ {∞} satisfy (A1)–(A4). Then, for any fixed
direction v ∈ Rn \ {0} the mapping

α(·, v) : domJ → R
α(x, v) = argmin

α̂∈R
J(x+ α̂v)

is continuous.

Note that the assumption that dom J is a polyhedron is not only needed in
order to allow for a partitioning of dom J in polyhedra. Indeed, α(·, v) need not
be continuous if domJ has a curved boundary.

Example 3. Let K ⊂ R3 be the cone K := {x ∈ R3 | x21 + x22 ≤ x3}. Then the
functional J : R3 → R ∪ {∞},

J(x) = ‖x‖2 + χK(x),

satisfies (A1)–(A4) except that dom J = K is not a polyhedron. For x = (1, 0, 1)
and α(·, x) as defined in Corollary 3 we have α(x, x) = −1 but for any y 6= x
with y21 + y22 = y3 = 1 we get α(y, x) = 0, since

J(y + εx) > J(y) and y − εx /∈ K ∀ε > 0.

Thus α(·, x) is not continuous in x.

3.2 Fixed Points are Minimizers

The second essential ingredient for the convergence proof of the Polyhedral
Gauß–Seidel method is the fact that fixed points of the algorithm are solutions.
If J decomposes according to (6) and the search directions form a basis, this
can be shown by suitably combining the one-dimensional variational inequal-
ities that determine the fixed point property. The result is an n-dimensional
variational inequality which shows that the fixed point is indeed a minimum of
the functional [7]. In our more general case this is not possible.

While (A5) directly implies that fixed points are minimizers showing this for
(A6) is more complicated. The proof of the following lemma circumvents the
non-smoothness by localizing near the fixed point such that the problem looks
like a smooth problem there.
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Lemma 5. Assume that J : Rn → R ∪ {∞} has the properties (A1)–(A4) and
that the set of search directions E = {v1, . . . , vm} ⊂ Rn satisfies (A6). Then E
satisfies (A5), i.e., for all x ∈ dom J \ {x∗} there is a direction v ∈ E± and an
ε > 0 such that J(x+ εv) < J(x).

Proof. Consider x ∈ S \ {x∗}. Then there is a Ci such that

x ∈ Ci and (x, x∗) ∩ Ci 6= ∅,

where we have used (x, x∗) to denote the open line segment from x to x∗. By
(A6) there is Ex,i ⊂ E± such that TCi(x) = cone Ex,i. For w := x∗ − x ∈ TCi(x)
this guarantees that there are d1, . . . , dk ∈ Ex,i and λ1, . . . , λk ≥ 0 such that

w =
k∑
j=1

λjdj . (10)

Now let J̄ ∈ C1(Bε(x)) be the smooth extension of J on Bε(x) for some ε > 0
provided by (A6). Then w is a descent direction for J̄ and we can use the
representation (10) to get

0 >
∂J̄

∂w
(x) =

〈
∇J̄(x), w

〉
=

k∑
j=1

λj
〈
∇J̄(x), dj

〉
=

k∑
j=1

λj
∂J̄

∂dj
(x).

Since all λj are nonnegative there must be one descent direction dj satisfying

lim
h↘0

J̄(x+ hdj)− J̄(x)

h
=

∂J̄

∂dj
(x) < 0

and hence J̄(x+ hdj) < J̄(x) = J(x) for small enough h > 0. In order to show
J(x+ hdj) < J(x) note that by Lemma 1 we have

x+ hdj ∈ Ci ⊂ dom J

for small enough h > 0. Now Lemma 3 implies x + hdj ∈ domJ for small
enough h > 0 (otherwise we would have x ∈ dom J \ dom J).

Lemma 6. Assume that J : Rn → R ∪ {∞} has the properties (A1)–(A4),
that the set of search directions E = {v1, . . . , vm} ⊂ Rn satisfies (A5), and let
x ∈ dom J such that

α(x, vi) = 0 ∀i = 1, . . . ,m.

Then x is the unique minimizer x∗ of J .

Proof. If x 6= x∗ assumption (A5) provides J(x + εvi) < J(x) for some ε > 0
and vi ∈ E± and thus α(x, vi) 6= 0.
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3.3 Convergence

We are now ready to prove the convergence of the Polyhedral Gauß–Seidel
Algorithm. Since in practical applications the exact minimizers in the search
directions are in general not easily available we prove convergence for an inexact
version that only requires to have at least a fixed portion of the exact correction.
Convergence of the exact PGS method is then a special case of this result.

Additionally to the prerequisites of the PGS algorithm let ε ∈ [0, 1] be ar-
bitrary but fixed. Then using α(·, ·) as defined in Corollary 3 one iteration of
inexact PGS(ε) consists of the following steps:

1. set xν0 = xν

2. for i = 1, . . . ,m select

xνi ∈ xνi−1 + [ε, 1]α(xνi−1, vi)vi

3. set xν+1 = xνm.

Theorem 4. Assume that J : Rn → R∪{∞} has the properties (A1)–(A4) and
that the set of search directions E = {v1, . . . , vm} ⊂ Rn satisfies (A5) or (A6).
Furthermore let ε ∈ (0, 1] be arbitrary but fixed. Then for all x0 with J(x0) <∞
the sequence generated by PGS(ε) converges to the unique minimizer x∗ of J .

Proof. By definition the iterates satisfy J(xν+1) ≤ J(xν). Since J is coercive
this implies that xν is bounded and has a convergent subsequence.

Now consider any such convergent subsequence xνk → x0. Then by mono-
tonicity and continuity of J we have x0 ∈ dom J . Note that by convexity
J(x+ tα(x, v)v) is monotonically decreasing for all x, v and for t↗ 1. For

Mi(x) := x+ εα(x, vi)vi

this implies

J(xνk+1) ≤ J(xνki ) ≤ J(Mi(x
νk
i−1)) ≤ J(xνki−1) ≤ J(xνk) (11)

and guarantees that all intermediate iterates also stay in domJ .
Obviously we have xνk0 = xνk → x0. Now assume that xνki−1 → x0 holds true

for some i ∈ {1, . . . ,m}. Then taking the limit in (11) gives

J(Mi(x
νk
i−1)) → J(x0)

while continuity of Mi (following from Corollary 3) gives

J(Mi(x
νk
i−1)) → J(Mi(x0)).

Hence we have J(x0) = J(Mi(x0)) which, by strict convexity, implies Mi(x0) =
x0 and α(x0, vi) = 0. Thus

xνki−1 + ρνki α(x
νk
i−1, vi)vi → x0

12



holds true for any bounded sequence ρνki which in particular provides xνki → x0.
By induction we have especially shown that α(x0, vi) = 0 for all i = {1, . . . ,m}.

Thus Lemma 6 and Lemma 5 provide x0 = x∗. Since this is true for any con-
vergent subsequence and there is at least one convergent subsequence we have
shown xν → x∗.

Our main result Theorem 1 directly follows from Theorem 4 with ε = 1.

Remark 1. Note that the result still holds if Step 3 is replaced by

3’. select xν+1 such that J(xν+1) ≤ J(xνm).

Hence an additional minimization step can be inserted after each Gauß–Seidel
sweep. This is important for the convergence of multigrid algorithms, where this
minimization step is the coarse grid correction.

4 Construction of Search Directions

In the previous section we have proved that the PGS algorithm converges if any
tangent cone TCi(x) of the partition domJ = C1 ∪ · · · ∪ CN for x ∈ dom J is
generated by a subset of the set E of search directions and if E contains descent
directions for all points x ∈ dom J \ S where J is not piecewise smooth. While
the construction of descent directions for x ∈ dom J \ S is in general dependent
on the values and derivatives of J we will show in this section how to construct
sets E generating the tangent cones in a systematic way.

In the following we will restrict our attention to a single polyhedron C and
construct a set of search directions EC for C. The set E of search directions
for an entire polyhedral decomposition can then be constructed by taking the
union of all sets of search directions ECi for Ci. Note that in many cases this
union will eliminate many redundant directions. This is important because
the time-complexity of a single Gauß–Seidel iteration is O(|E|). One particular
noteworthy case is when the Ci form the cells of a hyperplane arrangement (cf.
Section 5.3).

4.1 Spanning Sets for Polyhedra

For any polyhedron C the first part of Theorem 2 provides a decomposition of C
into points and directions. If such a decomposition can be found in practice, then
Theorem 3 can be evoked to construct search directions from a finite number of
tangent cones.

Lemma 7. Let

C =

{ k∑
i=1

λipi +

l∑
j=1

µjdj

∣∣∣∣ λi ≥ 0,

k∑
i=1

λi = 1, µj ≥ 0

}

13



be a representation of C with points p1, . . . , pk ∈ Rn and directions d1, . . . , dl ∈
Rn, and for each i = 1, . . . , k let ETC(pi) be a finite set such that TC(pi) =
cone ETC(pi). Then for all x ∈ C there is a subset Ex ⊂ E of

E :=
k∪
i=1

ETC(pi) ∪
l∪

j=1

{−dj}

such that TC(x) = cone Ex.
Proof. Let x ∈ C be given by (4). Then Theorem 3 proves the assertion since

TC(x) =
k∑
j=1

λjTC(pj) +
l∑

j=1

µj cone{−dj}

= cone

( ∪
i:λi>0

ETC(pi) ∪ {−dj | µj > 0}︸ ︷︷ ︸
=:Ex

)
.

In order to give an explicit construction for the search directions let

lineal(C) := {y ∈ Rn | x+ ty ∈ C for all x ∈ C, t ∈ R}

be the lineality space of C. Picking a complementary subspace U to lineal(C)
we can decompose C as the Minkowski sum

C = lineal(C) + (C ∩ U), (12)

where C ∩ U is pointed, i.e., it has lineality space {0} [11].

Lemma 8. Let C be a polyhedron, Elineal(C) a basis of lineal(C), and EC∩U the set
of edge vectors of C ∩U for a subspace U complementary to lineal(C). Then for
all x ∈ C there is a subset Ex ⊂ (Elineal(C) ∪ EC∩U )± such that TC(x) = cone Ex.
Proof. Since C ∩ U is pointed it has at least one vertex (see [9]). Thus the
second part of Theorem 2 gives a representation of C ∩ U where p1, . . . , pk are
the vertices of C ∩ U . Then each TC∩U (pj) is a cone with a vertex and by
Corollary 1 generated by the edge vectors adjacent to pj with proper orientation.
Hence Lemma 7 implies that for each z ∈ C ∩ U there is Ez ⊂ EC∩U with
TC∩U (z) = cone Ez.

Now let x ∈ C. Then there are y ∈ lineal(C) and z ∈ C ∩ U with x = y + z.
For this representation Exercise 6.44 in [8] implies

TC(x) = Tlineal(C)(y) + TC∩U (z)

and hence for some Ez ⊂ EC∩U
TC(x) = lineal(C) + cone Ez

= cone
(
E±
lineal(C) ∪ Ez

)
= cone

(
E±
lineal(C) ∪ Ez

)
.

14



For the special case that C is a polyhedron with at least one vertex we have
lineal(C) = {0} and U = Rn. Then Lemma 8 reduces to:

Corollary 4. Let C be a polyhedron with at least one vertex and E be the set
of edge vectors of C. Then for all x ∈ C there is a subset Ex ⊂ E± such that
TC(x) = cone Ex.

Corollary 4 covers the main assumption on search directions in (A6). If
S = domJ it implies that the set of edge vectors satisfies (A6). Otherwise
further directions for x /∈ S mav be necessary.

4.2 Energies with a Block Structure

Many problems obtained by discretized partial differential equations exhibit a
block structure where the nonsmooth part of the energy decouples into local
blocks that are only coupled globally by a smooth energy.

In the following we assume n = n1 + · · · + nk and identify Rn with Rn1 ×
· · · × Rnk as well as (x1, . . . , xn) ∈ Rn with (x(1), . . . , x(k)) ∈ Πki=1Rni , where
x(i) ∈ Rni denotes the i-th block of x ∈ Rn. Introducing the restriction operator

Ri : Rn → Rni , Rix := x(i)

we find that RTi : Rni → Rn is the extension of vectors in Rni to Rn by zero.
We consider functionals J : Rn = Πki=1Rni → R ∪ {∞} of the form

J(x) = J0(x) +
k∑
i=1

Ji(x(i)).

The topic of this section is the construction of search directions v for J from
search directions v(i) for the Ji. For i > 0 a descent direction v(i) of Ji satisfies
∂Ji/∂v(i) < 0. However this does in general not imply ∂J/∂v < 0 for v = RTi v(i).
In order to exclude this problem we introduce the following general assumption
which is stronger then (A6). Lemma 9 then shows that if the individual block
functionals Ji satisfy (A6’), so does the entire functional J .

(A6’) J and E satisfy (A6) and for all x ∈ dom J \ (S ∪{x∗}) there is a direction
v ∈ E± such that

lim
h↘0

J(x+ hv)− J(x)

h
= −∞.

Lemma 9. Assume that J : Rn = Πki=1Rni → R ∪ {∞} has the properties
(A1)–(A4) and that it is given by

J(x) = J0(x) +
k∑
i=1

Ji(x(i))
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for a continuously differentiable convex function J0 : Rn → R and convex func-
tions Ji : Rni → R ∪ {∞}. Let the search directions Ei ⊂ Rni for Ji satisfy
(A6’) for all i = 1, . . . , k. Then (A6’) is also satisfied by the search directions
E for J given by

E :=
k∪
i=1

RTi Ei.

Proof. First we note that domJ = Πki=1(domJi). A partitioning of domJ in
the sense of (A6) is given by

{C1, . . . , CN} = {C ⊂ Rn | C = Πki=1C(i),ji for 1 ≤ ji ≤ Ni}

where C(i),1, . . . , C(i),Ni
is the partitioning of dom Ji from (A6). Analogously

define S = Πki=1Si using the smoothness domains Si of Ji.
Let x ∈ Cj ∩ S for some j ∈ {1, . . . , N}. Then for each i ∈ {1, . . . , k} we

have x(i) ∈ C(i),ji ∩ Si for some ji ∈ {1, . . . , Ni}. Hence there are εi > 0 and

smooth extensions J̄i ∈ C1(Bεi(x(i))) such that

J̄(x) := J0(x) +
k∑
i=1

J̄i(x(i))

is continuously differentiable on Πki=1Bεi(x(i)) which contains Bε(x) for some
ε > 0. By Theorem 6.9, Corollary 6.29, and Proposition 6.41 in [8]; and (A6)
for Ji we have

TCj
(x) = Πki=1TC(i),ji

(x(i))

= Πki=1 cone Ex(i),ji = cone
k∪
i=1

RTi Ex(i),ji︸ ︷︷ ︸
=:Ex,j⊂E

.

Now let x ∈ domJ \ (S ∪ {x∗}). Then there is at least one i such that
x(i) /∈ Si. Hence there is v ∈ Ei with

lim
h↘0

J(x+ hRTi v)− J(x)

h
=
∂J0(x)

∂RTi v
+ lim
h↘0

Ji(x(i) + hv)− Ji(x(i))

h
= −∞.

Lemma 9 allows to construct search directions E for the PGS method for J
from local directions for the separate blocks. If directions in RTi Ei are processed
before directions in RTj Ej , i < j, one global PGS step is equivalent to subsequent
local PGS steps for all blocks of J keeping all other blocks fixed at a time.
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5 Applications

In this last section we give three example applications that all lead to mini-
mization problems of the type considered in this article. All three of them arise
as discretizations of certain partial differential equations. We do not present
actual numerical experiments, because Gauß–Seidel methods for PDE problems
are known to converge only slowly anyways. We see their purpose primarily as
being the basis for fast nonlinear multigrid methods for polyhedral minimization
problems, which we will cover in a subsequent paper.

5.1 Bound Constraints

Let A ∈ Rn×n by symmetric and positive definite, f ∈ Rn and consider the
minimization problem (1) for the functional

J(x) =
1

2
〈Ax, x〉 − 〈f, x〉+ χK(x) with K =

n∏
i=1

[ai, bi], (13)

where ai, bi ∈ R for all 1 ≤ i ≤ n.

Remark. This problem arises for example from the discretization of an obstacle
problem obtained if the Laplace equation −∆u = f is complemented by inequality
constraints

ψ(x) ≤ u(x) ≤ ψ(x) a.e.

for given continuous functions ψ,ψ : Ω → R, ψ ≤ ψ pointwise. Using the scalar
projection P[a,b] : R → [a, b] such an obstacle problem can be written as

P[ψ−u,ψ−u]
(
−∆u− f

)
= 0 on Ω, u|∂Ω = 0.

The functional J is C∞ on domJ = K, strictly convex and coercive—in
other words it fulfills (A1)–(A3). The admissible set K is a polyhedron, because
it can be described as the intersection of the half-spaces

K =
{
x ∈ Rn

∣∣ 〈ei, x〉 ≥ ai, 〈−ei, x〉 ≥ −bi, i = 1, . . . , n
}
,

the ei being the Euclidean coordinate directions. Hence (A4) is also fulfilled.
By Theorems 1 and Corollary 4 the Polyhedral Gauß–Seidel method converges
for the functional (13) if each edge of K is parallel to a search direction. The
edges of K are the closed segments[

(s1, . . . , si−1, ai, si+1, . . . , sn), (s1, . . . , si−1, bi, si+1, . . . , sn)
]
⊂ Rn,

for i = 1, . . . , n and sj ∈ {aj , bj}. These edges are parallel to the Euclidean coor-
dinate vectors ei. Hence we recover the well-known result that the Gauß–Seidel
method converges for a convex quadratic functional with bound constraints only
if the search directions include the coordinate vectors [5].
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5.2 Vector-Valued Allen–Cahn Equations with a Logarith-
mic Potential

In this section we consider the vector-valued Allen–Cahn equation [2, 6] as a
model for phase transitions in a mixture of p phases. Let

G =
{
λ ∈ Rp

∣∣ λi ≥ 0, i = 1, . . . , p,

p∑
i=1

λi = 1
}

be the p − 1-dimensional Gibbs simplex. It is a p − 1-dimensional bounded
polyhedron embedded in Rp. For a domain Ω ⊂ Rd we are looking for a time-
dependent field of order parameters

u(·, ·) : Ω× [0, T ) → G

solving

εut = ε∆u− 1

ε
P (∇Ψθ)(u), u(0) = u0, (14)

and subject to natural boundary conditions. In (14), ε is a parameter, P is
the orthogonal projection onto G0 := {v ∈ Rp |

∑
i vi = 0}, and the potential

Ψθ : G→ R is given by

Ψθ(u) = Φθ(u) + θc
N

2

p∑
i=1

ui(Cu)i, Φθ(u) = θ

p∑
i=1

ui ln(ui),

where θ > 0 is the temperature, θc > 0 is a critical temperature, and C is a
symmetric matrix. The potential Φθ and thus Ψθ can be naturally extended to
the limiting case θ = 0, which is the obstacle potential

Φ0(u) = χG(u).

For θ = 0 the derivative ∇Ψθ in (14) becomes the subdifferential ∂Ψθ and the
equation (14) becomes an inclusion.

We discretize (14) in space using finite elements and in time using the semi-
implicit scheme also used by Kornhuber and Krause [7] and obtain discrete
problems

uk ∈ ShG a(uk, v−uk)+ τ

ε2
(Φθ(v), 1)h−

τ

ε2
(Φθ(u

k), 1)h ≥ lk(v−uk) ∀v ∈ ShG

in the constraint linear finite element space

ShG := {v ∈ (Sh)p | v(x) ∈ G ∀x ∈ Ω},

with the (H1(Ω))p-elliptic bilinear form

a(v, w) := (v, w)h + τ(∇v,∇w),
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(·, ·)h the lumped scalar product, and

lk(v) :=
(
(I − θcN

τ

ε2
C)uk−1, v

)
h
.

For each time k this is equivalent to a minimization problem for the functional

J : (Rp)n → R ∪ {∞}

J(x) =
1

2
〈Ax, x〉 − 〈b, x〉+

n∑
i=1

(
ωiΦθ(x(i)) + χG(x(i))

)
. (15)

Here x is the coefficient vector of uk for the nodal basis λ1, . . . , λn of Sh, x(i) =
Rix ∈ Rp is the i-th block of x as introduced in Section 4, and ωi is the weight
ωi = (λi, 1)h.

Lemma 10. The functional J fulfills the assumptions (A1)–(A4).

Proof. The quadratic part of J is obviously strictly convex, coercive, and con-
tinuous. Noting that ψ(t) := t ln(t), ψ(0) := 0 has the properties

lim
t↘0

ψ(t) = 0, ψ′′(t) = t−1 > 0 ∀t ∈ (0, 1),

we find that ψ is continuous and convex on [0, 1] and thus the nonlinear part of
J is continuous and convex on the polyhedron domJ = (G)n.

Lemma 11. Let EG be the set of edge vectors of G and θ ≥ 0. Then for each
i = 1, . . . , n the set EG satisfies (A6’) for Ji : Rp → R ∪ {∞} with

Ji(y) = ωiΦθ(y) + χG(y).

Proof. First we note that since Φθ is finite on G we have dom J = dom J = G
and the trivial partitioning N = 1, C1 = G. Then for all y ∈ G Corollary 4
guarantees the existence of a subset Ey ⊂ E±

G with TC1(y) = cone Ey.
Now we examine the smoothness of Ji on the partitioning. For θ = 0 we

have Ji ≡ 0 on G. Hence we can select S = G and extend Ji trivially to a
smooth function on any Bε(y) for y ∈ S and ε > 0. Since dom J \ S = ∅ we
have shown (A6’) for θ = 0.

For θ > 0 we select the relative interior S := G ∩ (R+)p. Then we have
Ji = ωiΦθ on S. Hence for any y ∈ S a smooth extension of Ji to Bε(y) is given
by ωiΦθ if ε > 0 is small enough. Now let y ∈ G \ S. Then there is an index j1
with yj1 = 0 and an index j2 with yj2 > 0. Consider the edge v = ej1 −ej2 ∈ E±

G

from vertex j2 to vertex j1 of G. The directional derivative of Ji at y in the
direction of v is

lim
h↘0

Ji(y + hv)− Ji(u)

h
= θ lim

h↘0
ln(h)− θ(1 + ln(yj2)) = −∞.

Thus we have shown (A6’) for Ji.
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Now Lemma 10 and Lemma 11 together with Lemma 9 allow to invoke
Theorem 1 and to obtain the following convergence result.

Corollary 5. Let EG be the set of edge vectors of G. Then for all θ ≥ 0 the
polyhedral Gauß–Seidel method with E =

∪n
i=1R

T
i EG converges to the unique

minimum of the Allen–Cahn functional (15).

Hence Theorem 4.1 from Kornhuber and Krause [7] turns out to be a special
case of our convergence theory.

5.3 Discontinuous Galerkin Methods

Let Ω be a domain in Rd and H1(Ω) the space of scalar first-order Sobolev
functions on Ω. We consider a minimization problem for the functional

J (v) =
1

2
a(v, v)− b(v) +

∫
Ω

Φ(v(ξ)) dξ

in H1(Ω) and subject to suitable boundary conditions. Here, a(·, ·) is a sym-
metric, coercive, and continuous bilinear form, b(·) is a linear form, and Φ : R →
R ∪ {∞} is convex, coercive, lower semi-continuous, proper, and once continu-
ously differentiable everywhere in its domain except at a finite number of points
κ1, . . . , κm. If, additionally, Φ satisfies certain growth conditions, it follows that
the overall functional J is strictly convex, coercive, and lower semi-continuous
[6], and hence there exists a unique minimizer.

We discretize the problem with a Discontinuous Galerkin (DG) method. For
this we introduce a grid G on Ω consisting of n elements and define the finite
element space

V rDG =
{
vh ∈ L2(Ω)

∣∣∣ vh|T is a polynomial of order r for all elements T ∈ G
}
.

Since we want to obtain a discrete convex minimization problem we have to use
a DG method that preserves the symmetry of a(·, ·). Discretization of the forms
a(·, ·) and b(·) by such DG methods is well known from the literature [1]. Here
we concentrate on the nonlinear term

φ(v) :=

∫
Ω

Φ(v(ξ)) dξ.

Let
Λ :=

{
λ(j),i ∈ V rDG

∣∣ λ(j),i = λ̃i ◦ Fj
}

be a basis of V rDG, where the λ̃i, i = 1, . . . , p are a set of shape functions on
the reference element and Fj , j = 1, . . . , n is the affine mapping from element j
onto the reference element. We obtain an algebraic functional

J : Rpn → R ∪ {∞}

J(x) =
1

2
〈Ax, x〉 − 〈b, x〉+ IΩ Φ

( n∑
j=1

p∑
i=1

x(j),iλ(j),i(ξ)
)
dξ,
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where A is a symmetric positive-definite matrix, x(j),i is the coefficient corre-
sponding to basis function λ(j),i, and IΩ . . . dξ is an approximation of

∫
Ω
. . . dξ

by numerical quadrature.
Since the support of each basis function from Λ is restricted to a single

element we can write J as a sum

J(x) = J0(x) +

n∑
j=1

Jj(x(j))

with J0 := 1
2 〈Ax, x〉 − 〈b, x〉 and

Jj(x(j)) := ITjΦ
( p∑
i=1

x(j),iλ(j),i(ξ)
)
dξ.

Choosing a quadrature rule consisting of K points qk in the reference element
and corresponding weights wk we get

Jj(x(j)) =
K∑
k=1

wk|detF−1
j (qk)|Φ

( p∑
i=1

x(j),iλ(j),i(F
−1
j (qk))

)
.

We simplify the notation by defining ŵj,k := wk|detF−1
j (qk)| and introducing

B ∈ RK×p with rows Bk and Bk,i = λ̃i(qk) = λ(j),i(F
−1
j (qk)) such that

Jj(x(j)) =
K∑
k=1

ŵj,kΦ(Bkx(j)).

Minimization problems for the discrete functional J can now be treated by
the Polyhedral Gauß–Seidel method.

Lemma 12. The DG functional J has the properties (A1)–(A4).

Proof. Since A is symmetric and positive definite the functional J0 has the
properties (A1)–(A4). For each j = 1, . . . , n, Jj is convex and hence J =
J0 +

∑n
i=1 Jj is strictly convex and coercive. This shows (A1) and (A2).

To see (A3) and (A4), we define for every quadrature point qk and every
element Tj the function

Φj,k : Rpn → R ∪ {∞}, Φj,k(x) := Φ(BkRjx)

using the restriction operator Rj from Section 4.2. Since Φ is lower semi-
continuous it must also be continuous on its (one-dimensional) domain. Hence
the same it true for Φj,k and the weighted sum Jj . The set domΦj,k is a
polyhedron and so is

dom J =

n∩
j=1

K∩
k=1

domΦj,k.
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It remains to be shown that search directions having the property (A6)
can be found. We again concentrate on a single element. The corresponding
property for the entire problem can then be established by Lemma 9.

Consider an element j. The set of all y ∈ Rp where Φk(·) := Φ(Bk·) is not
continuously differentiable forms a finite set of parallel hyperplanes given by

Hk,l := {y ∈ Rp | 〈Bk, y〉 = κl}, l = 1, . . . ,m,

where we now write 〈Bk, y〉 instead of Bky to be consistent with the notation
introduced in Section 2. As a sum of functions is differentiable if all addends are,
the regions of differentiability of Jj are the cells of a hyperplane arrangement Aj

in Rp, generated by the Hk,l. These cells form a decomposition of dom Jj into
convex polyhedra. From the smoothness of Φ it follows that Jj will be smooth
on each cell of the arrangement and piecewise smooth on the lower-dimensional
faces. Hence the arrangement Aj is a decomposition of dom Jj as mandated by
(A6).

Finally, to obtain a convergent polyhedral Gauß–Seidel method we need a
set of search directions E such that subsets of E± span all tangent cones of
all polyhedra Ci ∈ A at all x ∈ Ci. To compute such directions from the Bk,
k = 1, . . . ,K and κl, l = 1, . . . ,m, note that it is possible to compute the entire
arrangement structure in O((mK)p) time using an algorithm of Edelsbrunner
et al. [3]. This may seem like a lot; it is, however, optimal. Also the arrangement
structure depends only on the element type, the DG basis, the quadrature rule
and the non-differentiability of Φ. Hence for a given Φ and a given global DG
space it can be computed once and for all. On the other hand, in most cases the
entire arrangement structure is more information than necessary, because many
faces in an arrangement are parallel and hence spanned by the same directions.
More efficient algorithms may possibly be found exploiting the special structure
of the problem. We leave this task for a future publication and close with an
example showing the easiest possible case.

Example 4. Let λ̃i, i = 1, 2, 3 be the first-order Lagrangian shape functions on
a triangle, the quadrature rule consisting of a single point ( 13 ,

1
3 ) and Φ : R → R

continuous everywhere and C∞ everywhere except at κ1 = 1. Then Jj : R3 7→ R
and dom Jj = R3. The arrangement A consists of the single hyperplane

〈B1, x〉 = κ1 = 1, B1 =
(1
3
,
1

3
,
1

3

)
and the two open half-spaces 〈B1, x〉 < 1 and 〈B1, x〉 > 1. Define the two closed
polyhedra C1 := {x ∈ R3 | 〈B1, x〉 ≤ 1} and C2 := {x ∈ R3 | 〈B1, x〉 ≥ 1}.
There are four tangent cones, namely TC1(x), TC2(x) with 〈B1, x〉 = 1; TC1(x)
for 〈B1, x〉 < 1, and TC2(x) for 〈B1, x〉 > 1. The ones for C1 are spanned by

v1 =
(1
3
,
1

3
,
1

3

)
, v2 = (1,−1, 0), v3 = (0, 1,−1),

and the ones for C2 by −v1, v2, and v3. Hence E = {v1, v2, v3} is a suitable set
of search directions.
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