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Abstract

Stochastic evolutionary games often share a dynamic property called
punctuated equilibrium; this means that their sample paths exhibit long
periods of stasis near one population state which are infrequently inter-
rupted by switching events after which the sample paths stay close to a
different population state, again for a long period of time. This has been
described in the literature as a favorable property of stochastic evolu-
tionary games. The methods used so far in stochastic evolutionary game
theory, however, do not fully characterize these dynamics. We present an
approach that aims at exposing the punctuated equilibrium dynamics by
constructing Markov models on a reduced state space which approximate
well this dynamic behavior. Besides having good approximation proper-
ties, the approach allows a simulation-based algorithm, which is appealing
in the case of complex games.
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1 Introduction

Stochastic evolutionary games often share the punctuated equilibrium property;
this means that their sample paths exhibit long periods of stasis near one pop-
ulation state which are infrequently interrupted by switching events after which
the sample paths stay close to a different population state, again for a long
period of time. This punctuated equilibrium property has been characterized
in the literature as a favorable property of stochastic evolutionary games (e.g.,
Young, 1998, 2006), not least because it might lead to a different perspective
on modeling conventions and on the problem of equilibrium selection (Jaeger,
2008, 2012).

The methods used so far in stochastic evolutionary game theory, however,
do not characterize the dynamics of the evolutionary games with respect to this
property. More specifically, the analysis of evolutionary game models exclusively
focuses on equilibrium selection, equilibria of mean dynamics, or the determi-
nation of stochastically stable states (Benaim and Weibull, 2003; Ellison, 2000;
Foster and Young, 1990; Hofbauer and Sigmund, 2003; Kurtz, 1970; Sandholm,
2010, 2011; Weibull, 1995; Young, 1993, 1998, 2006). All of these approaches
are not able to thorougly describe punctuated equilibrium dynamic behavior of
the considered evolutionary processes.

This is in contrast to physics and chemistry where there has been much
research in the last century on the mathematical description and analysis of
this dynamic property1 (for a short historical overview see, e.g., the introductory
chapter of Bovier, 2009). We build on these existing approaches to present a
novel approach to the analysis of stochastic evolutionary games. In particular,
after introducing the necessary game theoretical notions (Section 2), we show
how to construct Markov models of reduced complexity that approximate their
essential dynamic behavior (Section 3). The basic idea behind these so-called
Markov state models is to approximate the original Markov process by a Markov
chain on a small finite state space. More specifically, a Markov state model is
defined as a Markov chain whose state space consists of sets of population states
near which the sample paths of the original Markov process reside for a long time
and whose transition rates between these macrostates are given by the aggregate
statistics of jumps between those sets of population states. An advantage of this
approach in the context of complex models with large state spaces is that the
transition probabilities between the macrostates can be estimated on the basis
of simulated short-term trajectory data. Moreover, it has been shown that it is
possible to construct Markov state models with good approximation properties
if punctuated equilibrium dynamics characterize the system of interest. Thus,
we can construct Markov state models that approximate the original stochastic
evolutionary game on the long time scales; the approach therefore complements
traditional approaches such as stochastic stability analysis, which studies infinite
horizon behavior, or deterministic approximation results, which are valid only
on short time intervals. In addition, the approach allows a simulation-based

1Called metastability in these fields.
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algorithmic strategy to the construction of Markov state models for stochastic
evolutionary games, which is of interest especially for complex games. One
limitation of the approach, however, is that the results on the approximation
quality of Markov state models depend on the original stochastic evolutionary
game to be reversible. We discuss this limitation and give an outlook for further
research in this direction (Section 4).

2 Definitions

A stochastic evolutionary game is defined by a population game and a revision
protocol, which specifies the strategy updating process of the players in the pop-
ulation game.

Population game

We consider only games played by a single, finite population, in which each
player faces the same set of strategies. More specifically, let a population game
consist of a population of n players, a strategy set S = {1, · · · ,m}, and a a payoff
function F : ∆m−1

n → Rm, where ∆m−1
n = {x ∈ Rm≥0 :

∑
j∈S xj = 1 and nx ∈

Zm} is the set of population states. The j-th component of x ∈ ∆m−1
n represents

the proportion of players choosing the strategy j in the population and Fi(x)
represents the payoff to playing strategy i when the population state is x.

Revision Protocol

The basic idea of the strategy updating process of the players in a given pop-
ulation game is the following: at every moment in time, each agent has chosen
a strategy in the strategy set S. At times t = kδ, where δ = 1/n, k ∈ N,
exactly one agent is randomly drawn (with equal probability for all players)
to reconsider her strategy choice. We assume statistical independence between
successive draws.

In this context, a revision protocol2 formulates how players choose a strategy
given a revision opportunity. It is a function ρ : ∆m−1 × Rm → Rm×m≥0 with∑m
j=1 ρij(x, π) = 1 for each i ∈ S, all population states x ∈ ∆m−1, and all

possible payoffs π ∈ Rm. The revision protocol thus associates to each popula-
tion state x ∈ ∆m−1 and payoffs π ∈ Rm a matrix of transition probabilities3

ρ(x, π) = (ρij(x, π))i,j=1,...,m where ρij(x, π) represents the probability of the
agent to switch from strategy i to strategy j given the current population state
x and payoffs π. For simplicity, we assume that all players display the same
strategy-updating behavior, i.e., act according to the same revision protocol.

2The definition of a revision protocol given here differs from the one given, e.g., in Sandholm
(2010) in that we consider time-discrete updating processes instead of time-continuous ones.

3The revision protocol is not to be confused with the transition matrix of the aggregate
strategy updating process, see below.
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Aggregate Strategy Updating Process

Given a given population game with payoff function F and revision protocol
ρ, only one agent is drawn from the whole population (with uniform distribu-
tion) to reconsider its strategy choice. This means, on the aggregate level, that
transitions between population states are only possible, i.e., have a probability
greater 0, if they differ in at most one component by at most 1/n. Moreover,
the probability of drawing an agent that currently holds strategy i ∈ S corre-
sponds to the share xi of strategy i in the current population state x, and the
probability that an agent holding strategy i changes to strategy j when given
the chance to reconsider the strategy choice is given by ρij(x, F (x)). Assuming
statistical independence, the strategy updating process on the population level
is thus a time-discrete Markov chain X = (Xt)t∈T on the set of population
states Z = ∆m−1

n , where T = {kδ | k ∈ N, δ = 1/n}. Its transition matrix
P = (pxy)x,y∈∆m−1

n
is given by

pxy =


xiρij(x, F (x)) if y = x+ 1

n (ej − ei), i, j ∈ S, i 6= j,
1−

∑
i∈S
∑
j 6=i xiρij(x, F (x)) if x = y,

0 otherwise.

In the special case of games with only two strategies (i.e., m = 2), we can
identify the state x ∈ ∆1

n ⊂ R2 with χ = x1 (since x2 = 1 − x1). We can thus
restrict our analysis of the chain (Xt)t∈T to the state space Z = {0, 1

n , · · · , 1}
and we will write (with abuse of notation) F (χ) for F (x) (i.e., F : Z → R2) and
ρ(χ, F (χ)) for ρ(x, F (x)) (i.e., ρ : Z ×R2 → R2×2

≥0 ). Moreover, this implies that
stochastic evolutionary games with two strategies are birth-and-death chains
with transition matrix

P =


1− α0 α0 0 · · ·
β1 1− (β1 + α1) α1 0 · · ·
0 β2 1− (β2 + α2) α2 0 · · ·

...
0 · · · 0 βn 1− βn

 , (2.1)

where the parameters are

αj =
(

1− j

n

)
ρ21

( j
n
, F
( j
n

))
for j = 0, · · · , n− 1 (2.2)

βj =
j

n
ρ12

( j
n
, F
( j
n

))
for j = 1, · · · , n. (2.3)

If 0 < αi, βj < 1 for each i = 0, · · · , n − 1, j = 1, · · · , n, birth-and-death
chains are an example of reversible Markov chains, that is, they fulfill the so-
called detailed balance condition:

µ(x)pxy = µ(y)pyx, (2.4)
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where µ denotes the stationary distribution of the chain. Reversiblity consti-
tutes an important property for the analysis of the approximation quality of
Markov state models.

Example. Consider players in a population of size n are randomly matched to
play the 2x2 pure coordination game with payoff matrix A given by

1 2

1 a, a 0, 0

2 0, 0 b, b

where a, b > 0. Since there are only two strategies, we can represent the set
of population states by Z = {0, 1

n , · · · , 1}; χ ∈ Z represents the proportion of
players in the population playing strategy 1. For χ ∈ Z, the payoff function F is
thus given by F (χ) = (aχ, b(1− χ)). This game allows an interpretation of the
strategies in term of currencies, e.g., strategy 1 represents “silver” and strategy
2 “gold”. Because of this interpretation of the strategies in terms of currencies,
we will call this specific population game with parameters a and b the currency
game.

A prominent example of a revision protocol is the best response with mu-
tations (BRM) revision protocol at mutation rate ε > 0 (Kandori et al., 1993;
Young, 1993). A revising agent using the BRM revision protocol updates his
strategy choice as follows: with probability (1 − ε) he chooses a best response
b ∈ B(x) to the current population state, while with probability ε he chooses a
strategy s ∈ S at random (uniform distribution).

Now, let the birth-and-death chain (Xt)t∈T with state space Z = {0, 1
n , · · · , 1}

be the stochastic evolutionary game that results from the currency game under
the BRM revision protocol with noise parameter ε. Figure 1 gives an impres-
sion of characteristic sample paths for a resulting evolutionary process with
parameters a = b = 1, n = 11, ε = .3. It shows the characteristic punctuated
equilibrium behavior, i.e., the sample path usually stays either near the popu-
lation state χ = 0 or χ = 1 for a long time while it switches infrequently to the
other population state.

3 Markov State Models

Throughout what follows, let (Xk)k∈N be an irreducible, reversible discrete-time
Markov chain on a finite state space Z = {1, · · · , l} with transition matrix P
and let µ denote its unique stationary distribution.

The basic idea of a Markov state models is to approximate the original
Markov process by a Markov chain on a small finite state space. Thus, more
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Figure 1: Typical sample path of the number of players holding strategy 1 in the
evolutionary game defined by the currency game and the BRM revision protocol
(a = b = 1, n = 11, ε = .3).

formally, our goal is to construct a Markov chain (X̂k)k∈N on the state space
Ẑ = {1, · · · ,m} with m considerably smaller than l such that (X̂k) captures the
essential dynamics of the original Markov chain (Xk). In general, each of the
macrostates i ∈ Ẑ corresponds to a subset of states Ci ⊂ Z, called core sets,
where we assume that the Ci’s are pairwise disjoint. Roughly speaking, the idea
is cluster the dynamics into core sets that may or may not partition the state
space, but that represent the punctuated equilibrium dynamics in that

(i) the core sets carry most of the total statistical weight of the invariant
distribution µ of the original Markov chain and

(ii) the process resides inside each core set for a long time (relative to the
typical time scale of the original chain).

In Section 3.1, we first consider the special case in which the core sets
C1, · · · , Cm partition the state space Z, that is,

Ci ∩ Cj = ∅ for i 6= j and

m⋃
j=1

Cj = Z. (3.1)

Using this special case, we demonstrate formally the basic idea of the Markov
state modeling approach. Subsequently, in Section 3.2, we explain how to gener-
alize the special case. Finally, in Section 3.3, we discuss how to actually identify
suitable core sets.
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3.1 Full partition of state space and least-squares approx-
imation of Markov chains

In the special case in which these sets partition the state space Z, each macrostates
i directly represents the subset Ci and we can define the reduced chain (X̂k) on
Ẑ = {1, · · · ,m} with transition matrix P̂ = (p̂ij) by

p̂ij = P[X̃1 = j | X̃0 = i], (3.2)

where (X̃k)k∈N is the discrete-time process on Ẑ that describes the dynamics of
(Xk) between the sets C1, · · · , Cm, i.e.,

X̃k = i⇔ Xk ∈ Ci. (3.3)

Note that we have to differentiate between (X̂k) and (X̃k) because (X̃k) is
in general not Markovian.4 However, we still want to approximate (Xk) by a
Markov chain which is why we consider (X̂k).

Example. In our example of the currency game under BRM dynamics with
parameters a = b = 1, n = 11, ε = .3, a reasonable partition of the set of
population states into subsets such that there are only rare switches between
them (see Figure 1) is A = {0, · · · , 5/11}, B = {6/11, · · · , 1}. The resulting
matrix P̂ is given by (rounded to four digits)

P̂ =

(
.9989 .0011
.0011 .9989

)
. (3.4)

In order to appreciate the approximation properties of the reduced chain
(X̂k) it is helpful to analyse the relation between the transition probabilities
pij and p̂ij . To this end, suppose that the original chain starts in equilibrium,
X0 ∼ µ, with µ = PTµ being the unique stationary distribution of (Xk). Now,
the transition probability p̂ij = Pµ[X1 ∈ Cj | X0 ∈ Ci] in (3.2) can be recast as

p̂ij =

∑
k,j pklχCi(l)χCj (k)µ(k)∑

k χCi(k)µ(k)
, (3.5)

where χC : Z → {0, 1} denotes the indicator function of a set C ⊂ Z, and the
notation Pµ indicates that X0 is distributed according to µ.

Let us assume that the indicator functions χC1 , . . . , χCm form a partition
of unity, i.e.,

∑
i χCi

(x) = 1, which is the case if the C1, . . . , Cm partition our
state space Z. The last equation can then be interpreted as the orthogonal
projection onto the span of the functions χC1

, . . . , χCm
with respect to the µ-

weighted scalar product

〈f, g〉µ =
∑
k∈Z

f(k)g(k)µ(k) (3.6)

4The reason why (X̃k) is not Markovian is called the recrossing problem. This name refers
to the issue that transitions between the subsets of state space are much more likely at the
boundaries of the sets. This is, however, not such a big issue if the original process shows a
strongly punctuated equilibrium dynamic behavior since the probability to be at the boundary
is in this case negligible.
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on Rl. A compact way to write (3.5) thus is

p̂ij =
〈PχCi

, χCj
〉µ

〈χCi , χCi〉µ
, (3.7)

which shows that the corresponding transition matrix P̂ = (p̂ij)i,j∈Ẑ is in fact

the orthogonal projection of P = (pij)i,j∈Z onto span{χC1 , . . . , χCm}, under-
stood as a linear subspace of Rl endowed with the weighted scalar product µ.

By being an orthogonal projection, P̂ is the best approximation of P onto
the space spanned by the indicator functions of the core sets C1, . . . , Cm in the
sense of least squares where the weighting with the invariant measure µ arises
naturally as a consequence of the fact that the Markov chain is initialized in its
stationary distribution so as to make the macroscopic transition probabilities
time-independent. Further notice that, since the χCi

are non-negative and form
a partition of unity, the projected transition matrix P̂ is a stochastic matrix
and inherits many important properties of the original transition matrix P :

1. If P is irreducible and aperiodic, then so is P̂ .

2. P̂ has a unique invariant distribution µ̂ = (µ̂(i))i∈Ẑ that equals the
marginal distribution of the core sets C1, . . . , Cm:

µ̂(i) = 〈χCi , χCi〉µ = µ(Ci) , i ∈ Ẑ. (3.8)

3. If P is reversible with respect to µ, then P̂ is reversible with respect to µ̂.

A further advantage of (3.7) is that it tells us that, given a long realization
of the original Markov chain (Xt) of length T , the expression

p̂
(T )
ij =

∑T
t=1 χCi(Xt)χCj (Xt+1)∑T

t=1(χCi(Xt))2
(3.9)

is an unbiased estimator of the macroscopic transition probabilities p̂ij . By the
assumption that µ is unique and Z is finite, the law of large numbers implies

that p̂
(T )
ij converges almost surely to p̂ij as T →∞ for every initial value X0 = 0.

3.2 General core sets and sparse least-squares approxima-
tion

The case of a full partition of state space demonstrates the basic idea of Markov
state models as a coarse-grained Markov chain that can be obtained by pro-
jection onto suitable ansatz functions. In the general case, however, the sets
C1, · · · , Cm do not necessarily partition the state space Z; thus, the approach
has to be modified since already the definition of the process X̃ in Eq. (3.3) is
not well defined anymore.

In order to construct a reduced Markov chain that best approximates our
original Markov chain in this case, the idea is to replace the set of indictator
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functions by a clever “mollification”, forming a partition of unity and having
support outside the sets C1, . . . , Cm. One such choice is the set of probabilistic
ansatz functions {q1, . . . , qm}, so-called committor functions, defined by

qi(x) = Pδx(τ0
Ci
< τ0

C\Ci
), (3.10)

where C = ∪iCi, δx is the point mass on x, and τkA = inf{k′ ≥ k|Xk′ ∈ A}
denotes the k-th hitting time for k ≥ 0. In words, the committor function
qi : Z → [0, 1] is the function that gives for a state x ∈ Z the probability
that the Markov chain (Xk) will visit the set Ci first rather than C \ Ci. By
construction, each qi is equal to one on Ci, equal to zero on the other sets
Cj , j 6= i, and interpolates between these values outside the sets C1, . . . , Cm.
Moreover, since (Xt) is irreducible and positive recurrent (by Z being finite),
the process terminates after finite time with probability one by hitting one of
the sets Ci, independently of the initial condition X0 = x, and as a consequence
the qi sum up to one and form a partition of unity.

The analysis of the microscopic dynamics that is carried out in Sarich (2011)
shows that the reduced Markov chain on Ẑ can be defined in terms of the quasi -
transition matrix P̂W−1, where the matrices P̂ and W are given by

P̂ (i, j) = P(τk+1
Cj

< τk+1
C\Cj

| X̃k = i), (3.11)

W (i, j) = P(τkCj
< τkC\Cj

| X̃k = i), (3.12)

where (X̃k) is the milestoning process defined by

X̃k = i⇔ Xσ(k) = i, where σ(k) = max{t ≤ k | Xt ∈ C}. (3.13)

Equation (3.13) means that the milestoning process remains in state i as long
as the original Markov chain (Xk) last visited core set i (see Figure 2). Thus, in
words, W (i, j) for j 6= i gives the probability that the Markov chain next hits
Cj while being in a state in Z \C at some time k and last came from core set Ci,

where C = ∪mj=1Cj . Similarly, P̂ (i, j) gives the probability that the next core set
hit is Cj conditional on having hit the core set Ci last at some time k. Moreover,

each macrostate i ∈ Ẑ is associated with the respective committor function qi
on the core set Ci and can thus be interpreted as representing the affiliation
with set Ci. Note that while the definition of the quasi-transition matrix of our
Markov state model by P̂W−1 might not seem intuitively obvious, it reduces to
the matrix P̂ defined in Eq. (3.2) in the case of a full partition of state space.

We call P̂W−1 a quasi-transition matrix since P̂W−1 is not always a stochas-
tic matrix (even though P and W are). We only know that its rows sum up to
one since this is the case for both P̂ and W , and thus also for W−1 as well as
P̂W−1. In the example given here as well as in the examples studied in Hallier
(2015) the entries of P̂W−1 are also non-negative, but in general the entries can
be negative as has been pointed out in Sarich (2011).

It is possible to show, however, that µ̂ defined by

µ̂(j) =
∑
i∈Z

µ(i)qj(i) (3.14)
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Figure 2: Illustration of the milestoning process for two core sets C1 and C2.

is the unique ergodic stationary distribution of (X̂k). Unlike in the case of a full
state space partition, the matrix P̂W−1 does not trivially inherit all properties
of the original chain, such as irreducibility, aperiodicity and reversibility; but
(X̂k) is reversible with respect to µ̂ if P̂ and W−1 commute.

Despite the apparent lack of structure preservation of the sparse core set
approximation shows excellent spectral approximation properties, in that the
dominant eigenvalues of the original chain are generally well approximated. The
latter implies that the projected transition matrix can be used to accurately
estimate transition rates between the core sets as well as mean residence times,
and hence residence times and rates for the punctuated equilibria. Moreover,
both matrices W and P̂ can be estimated from trajectory data in the following
way: given a realization (x0, · · · , xK) of (Xk) of length K, we can estimate

W ∗,K(i, j) =

{
RK

ij

rKi
if j 6= i,

1−
∑
j 6=iW

∗,K(i, j) otherwise,
(3.15)

P̂ ∗,K(i, j) =
R+,K
ij

rKi
, (3.16)

where RKij denotes the number of times where the chain came from core set Ci,

is in a state in Z \ C and hits Cj next, rKi is the total number of time steps

the trajectory was in i; that is, X̃k = i, and R+,K
ij denotes the number of times

where the chain came from core set Ci and hit Cj next.

Example. Consider again the stochastic evolutionary game given in the last sec-
tion. Let (Xt)t∈T be the birth-and-death chain with state space z = {0, 1

11 , · · · , 1}.
We simulated the Markov chain with a = 1, b = 1, ε = .3, n = 11 to get a trajec-
tory of population states (xt) for t = 1/11, . . . , 50000 and thus of length 5.5 ·105.
If we consider, for instance, the core sets C1 = {0, 1/11} and C2 = {10/11, 1},
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the estimated transition matrix P̂ ∗W ∗,−1 is given by

P̂ ∗W ∗,−1 =

(
.9993 .0007
.0007 .9993

)
. (3.17)

An analysis of the approximation error made (Hallier, 2015) shows that this
is a better approximation of the underlying stochastic evolutionary game than
the full partition Markov state model we considered above. In the example
given, it shows that the approximation error is considerably smaller for the core
set model, especially in the case of smaller population sizes and larger values of
the noise parameter ε. This is precisely the case where the other approximation
approaches of stochastic evolutionary games cannot be applied. This example
thus demonstrates that core set Markov state models fill a gap and constitute
an important complement to existing approximation approaches.

Remark 3.1. Adopting a slightly more abstract point of the described clustering
framework proves useful in deriving systematic error bounds for the Markov
chain approximation. The idea is to view the clustering of the original Markov
chain as a projection onto a linear subspace of the Hilbert space

H =

{
f : Z → R :

∑
k∈Z

(f(k))2µ(k) <∞

}
(3.18)

of square summable functions endowed with the weighted scalar product 〈·, ·〉µ.
For example, in the first mentioned case, the µ-orthogonal projection of a func-
tion f ∈ H onto span{χC1

, . . . , χCm
} can be understood as the best approx-

imation of f by functions that are measurable with respect to the partition
{Ci : i = 1, . . .m}, measured in the natural norm on H that is induced by
〈·, ·〉µ. In other words, the macroscopic transition probabilities p̂ij are the con-
ditional expectation, and hence least squares approximation, of the microscopic
transition probabilities pij , given only information about the macrostates Ci.

In the Markov state modelling approach due to Schütte and co-workers (Deu-
flhard and Weber, 2005; Huisinga and Schmidt, 2006; Schütte and Sarich, 2013),
the object of interest that is amenable to systematic approximations is the trans-
fer operator, a family of linear operators Pt : M+

f →M
+
f that map any finite

non-negative Borel measure to a finite non-negative Borel measures. For our
purposes, the transfer operator can be defined by

Ptν =
(
PT
)t
ν , t ∈ N0 , (3.19)

where P is the transition matrix of the original Markov chain (Xt) and ν is a
counting density, understood as a non-negative column vector in Rl. Note that
Pt preserves the L1 norm, i.e., if ν is a probability density, then so is Ptν for
all t. Given an initial distribution of Xt at t = 0, the transfer operator can be
used to determine the probability distribution of Xt at a later time t > 0, i.e., it
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transfers probability distributions in time and thus encodes information about
the law of the process (Xt). Within the finite-state Markov chain framework
considered in this paper, approximating the transfer operator amounts to finding
a suitable low-rank approximation of the transition matrix P .

Understanding the approximation of the original dynamics as a projection of
the associated transfer operator, it is possible to show that the approximation
error made with respect to the propagation of probability distributions as well
as in terms of the dominant eigenvalues, which directly relate to the longest
timescales of the original Markov chain, crucially depends on the projection
error made; a small projection error implies a good approximation quality of
our Markov state models (Hallier, 2015; Sarich, 2011).

3.3 Identification of core sets

While we outlined above how to construct Markov state models given core sets
C1, · · · , Cm, the question remains of how to actually identify suitable core sets.
One approach is to use the results on the relationship between the approximation
quality and the projection error. For full partition models, the projection error
is as small as possible if the dominant right eigenvectors of the transfer matrix
P are as constant as possible on the sets of the partition. This relationship has
been exploited by approaches that partition state space by clustering algorithms
(as has, for example, been done in the molecular dynamics context by Krivov
and Karplus, 2004; Noé et al., 2007; Rao and Caflisch, 2004). Similarly, in
terms of core set Markov state models, finding core sets C1, · · · , Cm so that the
projection error is as small as possible can be interpreted as a fuzzy clustering
problem (Djurdjevac, 2012; Sarich, 2011).

In the case of stochastic evolutionary games with a noise parameter that
determines the punctuated equilibrium behavior, we might also use the infor-
mation given by its stationary distribution to identify possible core sets. More
specifically, if the system under investigation depends on a noise parameter
ε > 0 in such a way that for smaller ε the punctuated equilibrium behavior
increases, that is, for smaller ε the sample paths of the process stay even longer
in certain subsets of the population state space and the switches between such
subsets get more rare – just as in our example. In such a case, we can identify
the set C = ∪mi=1Ci by comparing the stationary distribution µ∗ of the system
with noise level ε∗ with its propagated distribution Pθµ∗ = (PT )θµ∗ under a
decreased noise level ε < ε∗ for a chosen timescale θ > 0 (see Remark 3.1). Note
that the Ptµ∗ of µ∗ converges to the stationary distribution µ associated with
the stochastic evolutionary game at the lower noise level ε. Moreover, both sta-
tionary distributions µ and µ∗ have the same form in the sense of local minima
and maxima, but the stationary distribution µ∗ with increased noise intensity
is less peaked. Now, the basic idea of the identification strategy is that a pop-
ulation state x belongs to the core set region C if it gets more attractive in the
stochastic evolutionary game with the decreased noise parameter ε, i.e., if

µ∗(x) < (Pθµ∗) (x). (3.20)
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Example. In our example with parameters a = 1, b = 1, ε∗ = .3, ε = .15,
n = 11, this identification approach leads to the set C = {0, 1/11, 10/11, 1} for
all θ ∈ T, which suggests the core sets C1 = {0, 1/11} and C2 = {10/11, 1}, see
also Figure 3.

As in this example, the clustering of C into core sets is usually straight-
forward as the core sets are dynamically well separated. An advantage of the
just sketched approach is that the necessary quantities can be estimated from
trajectory data as well. Thus, it allows for a simulation-based approach to the
construction of Markov state models. For more details, see Hallier (2015).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Population states x ∈ Z

a=1, b=1, ε = 0.15, ε
*
 = 0.3, n=11

 

 

µ
*

µ
*
 P

t

Figure 3: Weights of the stationary distribution µ∗ for the stochastic evolutionary
game of our running example with parameters a = 1, b = 1, ε∗ = .3, n = 11 and
its propagation Pt(µ∗) under the stochastic evolutionary game with parameters
a = 1, b = 1, ε = .15, n = 11, t = 10/11.

4 Discussion and Outlook

We presented the Markov state modeling approach to extract the aggregated
long term dynamics of stochastic evolutionary games. The approach is especially
interesting for large, complex games in order to see the wood for the trees.
In essence, Markov state models approximate the original Markov chain on a
reduced state space. The transition probabilities between the macrostates can
be estimated on the basis of short-term trajectory data. While this basic idea
behind Markov state models has informally been used before (e.g., Kandori
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et al., 1993), it is for the first time that the approach is formally considered and
its approximation quality can be assessed.

Apparent advantages of a reduced state space are that it is easier to com-
pute eigenvalues and eigenvectors as well as other properties such as waiting
times. In addition, as our example demonstrates, the approximation of stochas-
tic evolutionary games with punctuated equilibrium dynamics by Markov state
models is especially interesting for small population sizes and larger mistake
probabilities as traditional approximation techniques such as deterministic ap-
proximation or stochastic stability analysis are not applicable or are of limited
informative value.

One limitation is, however, that the approach and its analysis depends on
the original Markov chain that captures the aggregated dynamics of the stochas-
tic evolutionary game to be reversible. This is the case for the example we
presented. More generally, stochastic evolutionary games that result from pop-
ulation game with two strategies and full support revision protocols as well
as those that result from finite-population games with clever agents under a
logit choice revision protocol can be shown to have reversible dynamics (see
Sandholm, 2010, Chapter 11.5.3, in addition, provides more general conditions
on revision protocols under which finite-population potential games with clever
agents result in reversible dynamics).

In general, it will be difficult to say whether it is reasonable to assume that
a stochastic evolutionary game results in a reversible Markov chain. One reason
for this difficulty is that, if we estimate the transition matrix from simulated
trajectory data, it does not need to fulfill the detailed balance equation, even if
the underlying Markov chain is reversible (Noé, 2008; Prinz et al., 2011). In the
context of molecular dynamics, however, it was possible to derive approxima-
tive models that can be proven to be reversible although the original model is
not. An example is the diffusion model, which represents an approximation to
the Langevin model in the limit of high friction (see, e.g., Schütte and Sarich,
2013, Chapter 2 and references therein). As a future research question, it seems
worthwhile to explore whether similar results can be obtained for stochastic evo-
lutionary games; that is, whether there are approximations of certain stochastic
evolutionary games that can be shown to be reversible.

Beyond that, we would like an approach that applies also to non-reversible
Markov dynamics. Notice that it is not difficult to derive a construction of
a matrix representation of the core set Markov state models for given core
sets in the case of non-reversible Markov chains (see, e.g., Djurdjevac, 2012;
Djurdjevac et al., 2010). However, we neither have results with respect to their
approximation quality nor an approach to the identification of core sets for non-
reversible Markov chains. One fundamental problem is that the eigenvalues and
eigenvectors of the transfer matrices corresponding to non-reversible Markov
chains need not be real anymore. In this case, the interpretation of the spectral
information is unclear. Up to now, there are few approaches that apply also
to non-reversible Markov chains (Eckhoff, 2002; Gaudillière and Landim, 2011;
Horenko, 2011; Sarich and Schütte, 2014). A graph-theoretical framework for
constructing reversible surrogates of non-reversible dynamics, based on a cycle
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decomposition of the underlying Markov chain, has been suggested in Banisch
(2015), however the applicability to evolutionary games is yet open.

The identification of Markov state models for general stochastic evolutionary
games is therefore an open problem and will be a topic of future research.
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porary Mathematical Statistical Physics, Lecture Notes in Mathematics 1970.
Springer-Verlag Berlin Heidelberg.

Deuflhard, P. and Weber, M. (2005). Robust perron cluster analysis in confor-
mation dynamics. Linear Algebra and its Applications, 398:161184.

Djurdjevac, N. (2012). Methods for analyzing complex networks using random
walker approaches. PhD thesis, Fachbereich Mathematikund Informatik, FU
Berlin.
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