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NUMERICAL HOMOGENIZATION OF ELLIPTIC MULTISCALE
PROBLEMS BY SUBSPACE DECOMPOSITION∗

RALF KORNHUBER† AND HARRY YSERENTANT‡

Abstract. Numerical homogenization tries to approximate solutions of elliptic partial differen-
tial equations with strongly oscillating coefficients by the solution of localized problems over small
subregions. We develop and analyze a rapidly convergent iterative method for numerical homoge-
nization that shares this feature with existing approaches and is modeled after the Schwarz method.
The method is highly parallelizable and of lower computational complexity than comparable methods
that as ours do not make explicit or implicit use of a scale separation.
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1. Introduction. Classical homogenization is an established, powerful tech-
nique to approximate partial differential equations with highly oscillatory, periodic co-
efficient functions by computationally feasible problems with homogenized coefficient
functions obtained from auxiliary local problems over a periodicity cell [4, 5, 7, 20].
It can also be used to make standard numerical methods like multigrid robust with
respect to the period length without direct recourse to the modified coefficient func-
tions [16]. To overcome the restrictive and often unrealistic periodicity assumption,
a variety of different strategies to numerical homogenization has been derived over
the last two decades. Using periodic homogenization as a guideline, numerical ho-
mogenization aims at a modification of standard finite element discretizations that
preserve the accuracy known from smooth coefficients functions in the highly oscilla-
tory case. These modifications are derived from auxiliary local problems. A numerical
homogenization method is in this way characterized by a decomposition of the given
multiscale problem into a global problem associated with a finite element grid and a
number of fully decoupled local subproblems. Examples include the variational multi-
scale method by Hughes et al. [14], the finite element heterogeneous multiscale method
by E and Engquist [10], [2, section 4], and the multiscale finite element method by
Hou and Wu [11, 12], a list that is by far not complete or exhaustive. Error estimates
for this kind of methods, like that in [1] or [2] for the finite element heterogeneous
multiscale method or that in [13] for the multiscale finite element method, are, how-
ever, typically restricted to the case of equations with separated scales, not only due
to our lack of understanding but partly also for fundamental reasons.

The variant that has recently been presented by Målqvist and Peterseim [15]
constitutes in this respect an important exception. It is founded on a comprehensive
convergence theory and utilizes no separation of scales at all. The price to be paid
is a comparably large computational effort. As with other methods of this type,
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1018 RALF KORNHUBER AND HARRY YSERENTANT

Målqvist and Peterseim calculate approximate solutions that are linked to a finite
element grid. The choice of this grid determines the accuracy, which is the same as
with smooth coefficient functions. They assign to each vertex of the finite elements
a basis function, namely, the difference of the corresponding piecewise linear finite
element basis function of usual kind and its orthogonal projection to a space of rapidly
oscillating functions. In the basic version of their method, these basis functions possess
a global support but decay exponentially from one shell of elements surrounding the
assigned vertex to the next. Målqvist and Peterseim are therefore able to replace them
by local counterparts without sacrificing the accuracy, at first still on the continuous
level and later in discretized form. These modified basis functions can be calculated
solving local fine grid saddle point problems. Their support consists of a fixed number
of shells of elements surrounding the associated node. The number of these shells
increases logarithmically with increasing accuracy, that is, decreasing gridsize.

In the approach that we propose and analyze in this work as well as in related
methods like [17], a similar logarithmic effect shows up. Like usual numerical ho-
mogenization methods, our method is based on a decomposition of the original multi-
scale problem into a comparatively small global problem and a set of decoupled local
subproblems. We calculate approximations of the solutions by a rapidly convergent
iterative procedure switching a few times back and forth between the global problem
and the local subproblems. Like Målqvist and Peterseim, we start from a finite ele-
ment triangulation of the domain under consideration, which is, however, not linked
to the accuracy and can therefore be flexibly adapted to other needs, ranging from
parallelization issues to the adaption to coefficient inhomogeneities. The assigned fi-
nite element space serves only for the stabilization of the iterative method. A new
approximation is composed in a conjugate-gradient-like manner of the old approxima-
tions and a sum of Ritz projections of the current error onto certain subspaces of the
solution space. One of these subspaces is the standard piecewise linear finite element
space associated with the triangulation, that provides for the global exchange of infor-
mation. The other subspaces are of a very local nature and consist of functions that
vanish outside the finite elements surrounding a given vertex. The logarithm comes
in here via the number of iterations. We show that logarithmically many iteration
steps suffice to reach a given accuracy. The fine structure of the solution can thus
with few local corrections be captured with high accuracy. As that of Målqvist and
Peterseim, our approach utilizes no separation of scales at all.

In the first step of our analysis, we attack the continuous original problem directly.
The solution space is in this basic version the continuous solution space H1

0 (Ω), and
the local subspaces are the Sobolev spaces H1

0 (ωi) over the patches surrounding the
vertices of the finite elements. The iterates tend then with a speed that does not
deteriorate with decreasing size of the finite elements to the solution of the original
problem. This observation is of its own interest and underlines the conceptual sim-
plicity and general nature of our approach. In a second stage, the infinite dimensional
solution space is replaced by a finite element space of arbitrary order associated with
a uniform or nonuniform refinement of the original triangulation.

The resulting numerical method requires the storage and handling of information
on the fine grid, but only coarse grid information needs to be exchanged globally.
It resembles in this respect common methods for numerical homogenization but is
based on an entirely different paradigm, on the approximate, iterative solution of the
original problem, rather than on the identification and calculation of a low-dimensional
subspace of the fine grid reference space with good approximation properties. It
is instructive to compare the computational complexity of the method with that of
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NUMERICAL HOMOGENIZATION BY SUBSPACE DECOMPOSITION 1019

Målqvist and Peterseim. That we need several iteration sweeps intertwining the coarse
and the fine grid is in general more than counterbalanced by the larger number of
local degrees of freedom in their approach, that increases roughly with the second
or third power of the number of the involved shells for plane and spatial problems,
respectively, the saddle point structure of the local equations, and the high number of
basis functions whose supports overlap each other. This advantage drops away for an
increasing number of right-hand sides that can be well represented on the coarse grid
because the fine grid is after the expensive set-up phase no more touched in the method
of Målqvist and Peterseim. In this respect, their method behaves like a reduced basis
method that condenses the information about the system in a comparatively small set
of data, not like a fast parallel iterative solver such as ours. Both methods are based on
similar assumptions, essentially on the existence, the stability, and the approximation
properties of a quasi-interpolation operator, which enters directly into the method of
Målqvist and Peterseim but serves in our case only for the analysis.

The proposed iterative procedure is an example of an additive subspace correction
or additive Schwarz method and is analyzed in this framework. The theory of these
methods has in essence been brought to completion in the early 1990s. We refer to
[22] and to [26] and the monograph [21] and the references cited therein for more
information. A more recent work having a similar focus to ours is [19]. In the analysis
of such subspace correction methods one usually assumes that the underlying solution
space is finite dimensional, unlike the case considered here. As a byproduct of our
analysis we present therefore a slightly modified version of the theory that covers the
infinite dimensional case as well. Sequential versions, modeled after the Gauss–Seidel
method, are possible, too, and can be analyzed under the same conditions.

2. The equation and the basic iterative process. The problem considered
in this work is a second order differential equation in weak form with homogeneous
Dirichlet boundary conditions on a polygonal domain Ω in d = 2 or 3 space dimensions.
Its solution space is the Sobolev space H1

0 (Ω), and the associated bilinear form reads

(2.1) a(u, v) =

∫
Ω

∇u ·A∇v dx.

The matrix A is a function of the spatial variable x with measurable entries and
assumed to be symmetric positive definite. We assume that

(2.2) δ |η|2 ≤ η · A(x)η ≤ M |η|2

holds for all η ∈ Rd and almost all x ∈ Ω, where |η| denotes the euclidian norm of
η and δ and M are positive constants. This guarantees that the bilinear form (2.1)
is an inner product on H1

0 (Ω) which induces a norm ‖ · ‖, the energy norm, that is
equivalent to the original norm on this space. The Lax–Milgram theorem states under
this condition that the boundary value problem

(2.3) a(u, v) = f∗(v), v ∈ H1
0 (Ω),

possesses for all bounded linear functionals f∗ onH1
0 (Ω) a unique solution u in H1

0 (Ω).
We will see in section 4 that the condition (2.2) can be replaced by a local counterpart,
which, although not completely independent of (2.2), will often yield better constants,
and that in some cases one can even do without conditions on the contrast.

We cover the domain Ω with a triangulation T . For simplicity we assume that T
consists of triangles in two, and of tetrahedrons in three, space dimensions, although
the argumentation transfers without essential modifications to other types of elements.
We assume that the elements in T are shape regular but do not require that T is
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1020 RALF KORNHUBER AND HARRY YSERENTANT

quasiuniform. Associated with T is the conforming, piecewise linear finite element
subspace S of H1

0 (Ω). As said, this space does not serve for the discretization of the
boundary value problem but only for the representation of the low frequency parts
of the functions in the solution space and for the global transport of information
in the iterative process. Let x1, x2, . . . , xn be the vertices of the elements in T .
To each of these vertices, we assign the local patch ωi, the union of the finite elements
surrounding xi, and the local space H1

0 (ωi). To simplify the presentation, let

(2.4) V0 = S, Vi = H1
0 (ωi) for i = 1, . . . , n.

Let Pi : V → Vi be the orthogonal projection from the solution space V = H1
0 (Ω) to

its subspace Vi in the sense of the inner product (2.1) on V , defined via the equation

(2.5) a(Piv, vi) = a(v, vi), vi ∈ Vi.

Introducing the operator

(2.6) T = P0 + P1 + · · ·+ Pn

and fixing a starting value u(0), the approximations of the solution u of the boundary
value problem (2.3) are then more or less optimally chosen weighted averages

(2.7) w(�) =

�∑
ν=0

α�νu
(ν),

�∑
ν=0

α�ν = 1,

of the basic iterates

(2.8) u(ν+1) = u(ν) + T (u− u(ν)).

The by far most simple example of such a method is the Richardson iteration

(2.9) w(�+1) = w(�) + ω T (u− w(�)),

where ω > 0 is a given acceleration parameter. The corrections T (u − w(�)) are
composed of the projections di = Pi(u − w(�)) of the present error u − w(�) onto the
spaces Vi, that is, on the solutions di ∈ Vi of the equations

(2.10) a(di, vi) = f∗(vi)− a(w(�), vi), vi ∈ Vi.

They consist therefore of a globally defined finite element function and solutions of
continuous local problems on the patches ωi. A more sophisticated, parameter-free
variant is the gradient method in which the acceleration parameter is optimally de-
termined in every iteration step. Much superior to these simple examples is the
(preconditioned) conjugate gradient method, which chooses by construction the best
possible linear combination (2.7) with almost the same effort; see [8]. The aim is
to show that the convergence rate of these iterative or semi-iterative methods is in
wide limits independent of the underlying triangulation and that already ∼ ln(1/ε)
iteration steps suffice to reduce the energy norm of the error by the factor 1/ε.

3. An analysis of additive subspace correction methods. The convergence
analysis of additive subspace correction or additive Schwarz methods like the one
considered here starts from two abstract assumptions that need to be verified in each
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NUMERICAL HOMOGENIZATION BY SUBSPACE DECOMPOSITION 1021

particular case. First, one assumes that every function in v ∈ V can be decomposed
into a sum v = v0 + v1 + · · ·+ vn of functions in the subspaces Vi such that

(3.1)
∑
i

‖vi‖2 ≤ K1 ‖v‖2.

Second, one needs that for every such decomposition

(3.2) ‖v‖2 ≤ K2

∑
i

‖vi‖2

holds. These two assumptions imply the following lemma that is central for the
analysis of additive Schwarz methods and represents the basic building block of the
theory; see the references given at the end of the introduction.

Lemma 3.1. The operator T : V → V from (2.6) is symmetric with respect to the
inner product on V given by the expression (2.1). For all functions v ∈ V,

(3.3) 1/K1 a(v, v) ≤ a(Tv, v) ≤ K2 a(v, v).

Proof. The symmetry of the T results from its definition, that is, the symmetry
of the projections Pi. Let v = v0 + v1 + · · · + vn be a decomposition of the function
v ∈ V as in the assumption (3.1). Then it follows from the Cauchy–Schwarz inequality

a(v, v) =
∑
i

a(vi, v) =
∑
i

a(vi, Piv) ≤
(∑

i

‖vi‖2
)1/2(∑

i

‖Piv‖2
)1/2

and therefore, by assumption (3.1),

a(v, v) ≤ K1

∑
i

‖Piv‖2 = K1

∑
i

a(Piv, v) =,K1a(Tv, v).

By assumption (3.2) conversely

∑
i

a(Piv, v) ≤ ‖
∑
i

Piv‖‖v‖ ≤
(
K2

∑
i

‖Piv‖2
)1/2

‖v‖

and, using once more that Pi is an a-orthogonal projection,

∑
i

a(Piv, v) ≤
(
K2

∑
i

a(Piv, v)

)1/2

‖v‖,

that is, with the definition (2.6) of T , the upper estimate in (3.3).

In the next step of the analysis one usually expands the elements of the solution
space V in an eigenbasis of the operator T . This is no longer possible in the present
context because such an eigenbasis does not need to exist in the infinite dimensional
case. Therefore we proceed differently here and first recall the notion of the spectrum
of a bounded, symmetric linear operator T mapping a real Hilbert space V into itself.
The spectrum σ(T ) of T is the set of all real λ for which the operator T − λ does
not possess a bounded inverse, mapping V back to itself. The spectrum of such an
operator is a compact subset of the set of the real numbers.
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1022 RALF KORNHUBER AND HARRY YSERENTANT

Theorem 3.2. The spectrum of the operator (2.6) is a subset of the interval

(3.4) 1/K1 ≤ λ ≤ K2.

The condition number κ of the operator, the ratio of the least upper and the greatest
lower bound of its spectrum, is therefore less than or equal to K1K2.

Proof. We consider at first the case λ < 1/K1. The bilinear form

〈u, v〉 = a(Tu− λu, v)

is for these λ by (3.3) an inner product on the Hilbert space V that induces a norm
that is equivalent to the energy norm. The equation

a(Tu− λu, v) = a(f, v), v ∈ V ,

possesses therefore by the Riesz representation theorem a unique solution u that can
be estimated by the right-hand side f ∈ V . As Tu− λu = f , the operator T − λ thus
possesses a bounded inverse and λ cannot lie in the spectrum of T . Correspondingly,
also the values λ > K2 cannot belong to the spectrum.

To continue, we observe that the difference of the solution u of the boundary value
problem (2.3) and the weighted averages (2.7) of the iterates (2.8) can be written as

(3.5) u− w(�) =

�∑
ν=0

α�ν(I − T )ν(u − u(0)).

We need therefore best possible estimates for the norm of operator polynomials p(T ).
The spectral mapping theorem states that the spectrum of such an operator polyno-
mial consists of the values p(λ) with λ in the spectrum of T . Since the norm of a
bounded, symmetric linear operator coincides with its spectral radius, therefore

(3.6) ‖p(T )‖ = max{ |p(λ)| | λ ∈ σ(T ) },

as in the finite dimensional case. This allows us to estimate the distance between the
solution u and its approximations (2.7) in terms of the condition number of T .

Lemma 3.3. For the error between the solution u and its approximations (2.7)

(3.7) ‖u− w(�)‖ ≤ max
λ∈σ(T )

|p(λ)| ‖u− u(0)‖

holds, where p(λ) is the polynomial

(3.8) p(λ) =

�∑
ν=0

α�ν(1− λ)ν

of degree 
 associated with the linear combination (2.7) of the iterates (2.8).

From here one can proceed as usual and gets the same estimates in terms of the
constants K1 and K2 as in the finite dimensional case. Inserting the polynomials
p(λ) = (1− ωλ)� with ω optimally chosen, one obtains the Richardson-type iteration

(3.9) w(�+1) = w(�) + ω T (u− w(�))
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with starting value w(0) = u(0), whose convergence rate is

(3.10) q =
κ− 1

κ+ 1
.

The polynomial p of degree 
 that satisfies the normalization condition p(0) = 1
and attains the minimum maximal value on an interval 0 < α ≤ λ ≤ β is, up to
a linear transformation of the variable and the multiplication by a constant factor,
the Chebyshev polynomial of degree 
, a fact that is widely used in the analysis of
Krylov-space methods [8]. Choosing the averaging coefficients α�ν accordingly, one
gets from (3.7) and the bounds (3.4) for the spectrum of T the final estimate for the
best attainable convergence rate, realized by the conjugate gradient method.

Theorem 3.4. If the coefficients α�ν are optimally chosen,

(3.11) ‖u− w(�)‖ ≤ 2 q �

1 + q 2�
‖u− u(0)‖

holds, where the convergence rate

(3.12) q =

√
κ− 1√
κ+ 1

is determined by the condition number κ ≤ K1K2 of the operator (2.6).

Although much better than the estimate above for the Richardson-type iteration
(3.9), the estimate from Theorem 3.4 is still suboptimal in the case of a few isolated
eigenvalues at the boundary of the spectrum and in comparable situations. This is
reflected in the convergence behavior of the conjugate gradient method which chooses
by construction the best possible linear combination. Effects of this type in a context
similar to ours are described and analyzed in [23] and for another class of elliptic
operators, with a small number of negative eigenvalues, in [25].

4. The stability of the subspace decomposition. It remains to prove the
estimates (3.1) and (3.2), that is, the stability of the decomposition of the solution
space V = H1

0 (Ω) into the subspaces (2.4). The upper estimate (3.2) is the easy part.

Lemma 4.1. For any decomposition v = v0+v1+ · · ·+vn of a function v ∈ V into
functions vi in the subspaces Vi, the estimate (3.2) holds with the constant K2 = d+2:

(4.1) ‖v‖2 ≤ (d+ 2)

n∑
i=1

‖vi‖2.

Proof. We restrict the energy norm first to the single finite elements t ∈ T and
prove a local version of the estimate. Since on every finite element t only d + 2 of
the functions vi, namely, v0 ∈ S and the vi in the spaces Vi = H1

0 (ωi) assigned to
the d + 1 vertices xi of the given element, are different from zero, one gets with the
triangle- and the Cauchy–Schwarz inequality the estimate

‖v‖2t ≤ (d+ 2)

n∑
i=1

‖vi‖2t

for the energy norm of v over t. Summation over the t ∈ T yields (4.1).
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1024 RALF KORNHUBER AND HARRY YSERENTANT

The constant K2 thus depends only on the space dimension d. The construction
of a decomposition of the functions v ∈ H1

0 (Ω) into sums v = v0 + v1 + · · · + vn of
functions v0 ∈ S and vi ∈ H1

0 (ωi), i = 1, . . . , n, for which the lower estimate (3.1)
holds is a more difficult task and requires some preparations. Let

(4.2) a(x) = max { η · A(x)η | |η| = 1 }.

Lemma 4.2. The function a : Ω → R given by the expression (4.2) is measurable.
For almost all x ∈ Ω, δ ≤ a(x) ≤ M holds with the constants δ and M from (2.2).

Proof. As the union of the countably many measurable sets

{ x | η ·A(x)η > c }, η ∈ Qd and |η| < 1,

the set {x | a(x) > c} is measurable for all real c. The function (4.2) is therefore
measurable. The bounds for its values are an immediate consequence of (2.2).

This observation allows us to introduce the weighted L2-norm on L2(Ω) given by

(4.3) ‖v‖20 =

∫
Ω

|v(x)|2 a(x) dx,

which is, via the definition of the weight, related to the energy norm on H1
0 (Ω).

Moreover, we assign to each vertex xi of the elements in T the nodal basis func-
tion ϕi, the continuous, elementwise linear function that takes the value 1 at xi and
vanishes at all other vertices xj . The support of ϕi is the patch ωi, the union of the
elements in T with vertex xi. The ϕi form a partition of unity on Ω. The key tool for
the construction of the desired decompositions of the functions in H1

0 (Ω) is a locally
defined quasi-interpolation operator

(4.4) Π : H1
0 (Ω) → S.

Such quasi-interpolation operators have a long history. A construction that works for
energy norms behaving locally, in a sense explained later, like the H1-seminorm is

(4.5) Πv =
∑
i

αiϕi, αi =
1

volωi

∫
ωi

v dx,

with the mean values αi of v over the patches ωi as nodal values of Πv, where the
summation extends here only over the indices i assigned to vertices in the interior of
the domain Ω. We decompose the functions v ∈ H1

0 (Ω) into the functions

(4.6) v0 = Πv ∈ S, vi = ϕi · (v −Πv) ∈ H1
0 (ωi) for i = 1, . . . , n.

Lemma 4.3. For all functions v ∈ H1
0 (Ω),

(4.7)
n∑

i=1

‖ϕi (v −Πv)‖2 ≤ 2 ‖τ (v −Πv)‖20 + 2 ‖v −Πv‖2,

where the function τ is constant on the interior of the t ∈ T and is there given by

(4.8) τ2 =

n∑
i=1

|∇ϕi|2.
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Proof. For abbreviation, let w = v −Πv. As ∇(ϕiw) = w∇ϕi + ϕi∇w in a weak
sense and as the coefficient matrix A is symmetric and positive definite,

∇(ϕiw) ·A∇(ϕiw) ≤ 2 (w∇ϕi) ·A(w∇ϕi) + 2 (ϕi∇w) ·A(ϕi∇w).

By the definition of the weight function (4.2) and because of ϕ2
i ≤ ϕi, this leads to

∇(ϕiw) · A∇(ϕiw) ≤ 2 |∇ϕi|2 w2 a+ 2 ϕi∇w ·A∇w,

at least almost everywhere. Because the ϕi form a partition of unity, integration over
the domain Ω and summation over the indices i yield the proposition.

The function τ can on the elements t ∈ T , because of their shape regularity, be
estimated from above and below by the reciprocals of their diameters ht:

(4.9) τ ∼ 1

ht
on t ∈ T .

To finalize the proof of the lower estimate (3.1), we assume that for all v ∈ H1
0 (Ω)

(4.10) ‖Πv‖ ≤ c1‖v‖, ‖τ (v −Πv)‖0 ≤ c2‖v‖

holds. The first condition means that the quasi-interpolation operator (4.4) is stable
with respect to the energy norm induced by the bilinear form (2.1). The second
condition is an approximation property. Let Bi the ball of minimum radius with
center xi that covers the patch ωi. It is then not particularly difficult to show that
the construction (4.5) satisfies these two assumptions if the local counterpart

(4.11) δi |η|2 ≤ η · A(x)η ≤ Mi |η|2

of condition (2.2) holds for all η ∈ Rd and almost all x ∈ Bi ∩ Ω and the ratios
Mi/δi > 0 remain uniformly bounded. The proof is based on the Poincaré inequality
over these balls, on an exterior cone condition to the polygonal domain Ω in form of
the assumption that for the balls Bi assigned to the xi on the boundary of Ω

(4.12) volBi ≤ c volBi\Ω

holds with some constant c independent of i, and on the shape regularity of the fi-
nite elements. Details can be found in the second appendix. The condition (4.11)
excludes strong anisotropies and large jumps of the coefficient functions. Since the
balls Bi overlap each other, the bound for the local contrast ratios Mi/δi is not com-
pletely independent of the global condition (2.2). Nevertheless such a local bound can
lead to substantially better estimates. Under certain monotonicity assumptions on
the coefficient functions one can even do without such assumptions on the contrast.
Examples of corresponding quasi-interpolation operators have been constructed by
Dryja, Sarkis, and Widlund [9] and have been developed further in [19]. Such opera-
tors are also used in the recent work [18] of Peterseim and Scheichl.

Inserting (4.10) into (4.7), the proof of the stability of the given decomposition of
the solution space H1

0 (Ω) into the finite element space V0 = S and the local Sobolev
spaces Vi = H1

0 (ωi) is completed.

Lemma 4.4. For all functions v ∈ H1
0 (Ω),

(4.13) ‖Πv‖2 +
n∑

i=1

‖ϕi (v −Πv)‖2 ≤ K1‖v‖2

with a constant K1 that depends only on the constants c1 and c2 from (4.10).
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1026 RALF KORNHUBER AND HARRY YSERENTANT

From Lemmas 4.1 and 4.4 in conjunction with Theorem 3.2 we obtain our final
bounds for the spectrum of the operator (2.6) and can summarize our considerations
in the following theorem.

Theorem 4.5. The condition number κ of the operator (2.6), the ratio of the
least upper and the greatest lower bound of its spectrum, is bounded by a constant that
depends only on the constants c1 and c2 from (4.10) and on the space dimension.

In other words, if a quasi-interpolation operator (4.4) from H1
0 (Ω) to the given

subspace S (or an arbitrary other subspace S) of H1
0 (Ω) exists that is stable with

respect to the energy norm and satisfies an approximation property as in (4.10), the
iterative methods from section 2 converge rapidly. One needs not more than

(4.14) ∼ ln(1/ε)

iterations to reduce the energy norm of the error by the factor 1/ε. The number of
iterations does not increase faster than the logarithm of the required accuracy.

5. Sequential versions. Based on the same assumptions, it is also possible to
analyze variants of the given iterative method that mimic different variants of the
Gauss–Seidel method and exhibit qualitatively the same kind of convergence behav-
ior. The single subspaces Vi are then not as up to now processed in parallel but
sequentially, in arbitrary order. Experience shows that such sequential versions con-
verge in general faster than their additive counterparts considered so far. This holds in
particular for symmetrized versions, with symmetric error propagation operators like

(5.1) E = (I − Pn) . . . (I − P1)(I − P0)(I − P1) . . . (I − Pn),

that can again be accelerated by the conjugate gradient method.
For the sake of completeness, we roughly estimate the speed of convergence of the

most simple such sequential version, with the error propagation operator

(5.2) E = (I − Pn) . . . (I − P1)(I − P0),

along the lines given in [22] or [26]. The precise convergence rate is determined in
[24]. The crucial assumption is again the existence of a stable decomposition of any
function in the solution space V into a sum of components in the subspaces Vi in the
sense of condition (3.1). It is complemented by the Cauchy–Schwarz type inequality

(5.3)

n∑
j=0

j∑
i=0

a(ui, vj) ≤ K3

( n∑
i=0

‖ui‖2
)1/2( n∑

j=0

‖vj‖2
)1/2

for arbitrarily given functions ui ∈ Vi, vj ∈ Vj , again the easy, uncritical part.

Lemma 5.1. For arbitrary functions ui ∈ Vi and vj ∈ Vj the estimate (5.3) holds
with a constant K3 ≤ d+ 2, that can be bounded in terms of the space dimension d.

Proof. As in the proof of Lemma 4.1 we prove at first a local version of the
estimate for a single element t ∈ T . By the Cauchy–Schwarz inequality,

n∑
j=0

j∑
i=0

a(ui, vj)|t ≤
n∑

j=0

j∑
i=0

‖ui‖t‖vj‖t ≤
( n∑

i=0

‖ui‖t
)( n∑

j=0

‖vj‖t
)
.
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Because at most d+ 2 functions ui and vj , respectively, are different from zero on t,

n∑
j=0

j∑
i=0

a(ui, vj)|t ≤ (d+ 2)

( n∑
i=0

‖ui‖2t
)1/2( n∑

j=0

‖vj‖2t
)1/2

follows. Summation over all t ∈ T and another application of the Cauchy–Schwarz
inequality now to the outer sum on the right-hand side yield the proposition.

Theorem 5.2. Every cycle of the given iterative method reduces the energy norm
of the error at least by the factor ‖E‖, where, with C = K1K

2
3 ,

(5.4) ‖E‖2 ≤ 1− 1

C
.

Proof. Let v = v0 + v1 + · · ·+ vn be a stable decomposition of the function v ∈ V
into a sum of functions vj in the subspace Vj as in condition (3.1). Let E−1 = I and
set Ei = (I − Pi) . . . (I − P0) for i = 0, 1, . . . , n. Since Ej maps into the a-orthogonal
complement of Vj , a(Ejv, vj) = 0 for j = 0, 1, . . . , n. Therefore

‖v‖2 =
n∑

j=0

a((I − Ej)v, vj) =
n∑

j=0

j∑
i=0

a(PiEi−1v, vj).

The Cauchy–Schwarz type inequality (5.3) leads thus to the estimate

‖v‖2 ≤ K3

( n∑
i=0

‖PiEi−1v‖2
)1/2( n∑

j=0

‖vj‖2
)1/2

.

With the stability (3.1) of the given decomposition of v, one obtains the estimate

‖v‖2 ≤ C

n∑
i=0

‖PiEi−1v‖2.

The summands can be expressed as differences:

‖PiEi−1v‖2 = ‖Ei−1v‖2 − ‖Eiv‖2.

Because of E−1 = I and En = E the estimate thus finally reduces to the estimate

‖v‖2 ≤ C (‖v‖2 − ‖Ev‖2)

that holds for all v ∈ V and is therefore equivalent to the proposition.

6. Discrete variants. The infinite dimensional solution space of the original
problem has to be replaced by a discrete counterpart to obtain a computationally
feasible method. We start from a potentially very strong, uniform or nonuniform
refinement T ′ of the triangulation T , bridging the scales and resolving the oscillations
of the coefficient functions, and a finite element space S ′ ⊆ H1

0 (Ω) that consists of
continuous functions whose restrictions to the elements in T ′ are polynomials of a
given degree r ≥ 1. Our aim is to calculate the solution u ∈ S ′ of the equation

(6.1) a(u, v) = f∗(v), v ∈ S ′,
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1028 RALF KORNHUBER AND HARRY YSERENTANT

approximately by the same kind of iterative methods as before. For this purpose, we
need to replace the local solution spaces Vi = H1

0 (ωi) by their discrete counterparts

(6.2) Vi = S ′ ∩H1
0 (ωi), i = 1, . . . , n.

The coarse grid space V0 = S remains as it is. The resulting numerical method
requires the storage and handling of information on the full fine grid, but only coarse
grid data need to be exchanged globally. It shares this property not with all methods
for numerical homogenization but at least with those that, like that of Målqvist and
Peterseim, do not make use of a scale separation or try to exploit statistical effects
and that scan the whole information available on the fine grid.

The convergence theory of section 3 applies to this discretized version of our basic
method. The upper estimate (4.1) transfers without changes to any decomposition
of a function v ∈ S ′ into a sum of a function v0 in the coarse grid space S and
functions vi in the local spaces (6.2). The only point that requires special attention
is the construction of such a decomposition that is stable in the sense of estimate
(3.1). The problem is that the construction from section 4 does not transfer directly
to the present case because the product of a function in S ′ with a hat functions ϕi

is no longer contained in S ′. To overcome this problem, we utilize the interpolation
operator I : C(Ω̄) → S ′ that interpolates at the nodes of usual kind and reproduces
the functions in S ′. As the operator I is linear and the ϕi form a partition of unity,
we can then decompose the functions v ∈ S ′ into the sum of the functions

(6.3) v0 = Πv ∈ S, vi = I (ϕi (v −Πv)) ∈ S ′ ∩H1
0 (ωi) for i = 1, . . . , n.

The stability of this decomposition in the sense of (3.1) can be easily deduced from the
stability of the decomposition of the functions in H1

0 (Ω) into the sum of the functions
(4.6) on condition that that for all functions v ∈ S ′ an estimate

(6.4) ‖I (ϕi (v −Πv))‖ ≤ c3 ‖ϕi (v − Πv)‖

holds. The restriction of a function ϕi (v − Πv), v ∈ S ′, to an element in T ′ is a
polynomial of degree r + 1. For all t ∈ T ′ and all polynomials p of degree ≤ r + 1,

(6.5) | Ip |1, t ≤ θ | p |1, t

with a constant θ > 0 that depends only on r and the shape regularity of the elements;
compare [6]. This proves the estimate (6.4), provided the energy norm can on the
elements t ∈ T ′ again be estimated from above and below by the H1-seminorm | · |1, t,
with constants whose ratio remains uniformly bounded independent of t. We conclude
that there is a constant K1, now also depending on the constant c3, such that

(6.6) ‖Πv‖2 +
n∑

i=1

‖I (ϕi (v −Πv))‖2 ≤ K1‖v‖2

holds for the decomposition of a function v in the finite element space S ′ into the
functions (6.3) in the coarse grid space S and the local spaces (6.2). The rapid con-
vergence of the basic iteration from section 2 thus transfers to the discrete case. The
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same holds for the Gauss–Seidel type variants from section 5 as the Cauchy–Schwarz
type inequality (5.2) is not affected by the transition to the smaller local spaces.

7. Complexity considerations. To get a rough impression of the numerical
complexity of the proposed methods in comparison to existing approaches, we consider
a simple model problem that illustrates the basic effects. The domain is the two-
dimensional unit square that is uniformly refined into squares of edge length H for
the coarse and h

.
= Hε for the fine grid, where the constant ε fixes the lengthscale

on which the coefficient functions oscillate, and the local patches are rectangles and
squares of edge length between H and 2H , squares of edge length 2H in the interior.
The coupling between the gridsizes is motivated by the fact that the second order
derivatives of the solutions typically grow like ∼ 1/ε as ε goes to zero. The fine grid
discretization error behaves then, in the case of linear elements, like ∼ h/ε, that is,
like ∼H under the given circumstances. As the convergence rate of our methods is
independent of the gridsizes, ∼| lnH | iteration steps are needed to reach an accuracy
of order H . The aim is to estimate the work needed by the method of Målqvist and
Peterseim for the same data, that is, with the given coupling of the two gridsizes, for
the same accuracy, in terms of the cost of one iteration step.

We assume that the cost for the solution of the coarse grid equation and of the
local subproblems increases like ∼ Nβ , β ≥ 1, with the number N of unknowns
and start from the observation that the total cost of a iteration step is dominated
by the cost for the solution of the local subproblems. The reason is that the local
systems assigned to the interior nodes are, because of 1/H < 2H/h for ε ≤ H , bigger
than the global coarse grid system and that the number of all other operations is
bounded by the total number of unknowns. The number of local subproblems is in
both methods the same, but the number of unknowns in each of these subproblems
is in the method of Målqvist and Peterseim by a factor of order ∼ | lnH |2 larger
because the edge length of the subdomains increases there logarithmically relative to
basic gridsize H . The total effort of the iterative methods is thus at least by a factor
of order ∼ | lnH |2β−1 lower than with the method of Målqvist and Peterseim, the
additional cost for assembling the discretization matrix built up from the new basis
functions and the cost for calculating the right-hand side not yet taken into account.
Conversely, one gets with the same effort a much better approximation of the fine
grid solution, no matter how meaningful this is under the given circumstances. These
effects get even more pronounced in three space dimensions.

Even if such considerations could suggest this, we emphasize once more that there
is no link between the choice of the coarse grid and the accuracy of our methods. The
coarse grid space serves only for the stabilization of the iteration and for the global
transport of information across the region. In the basic version of our methods,
with the continuous local solution spaces H1

0 (ωi), the iterates converge to the exact
solution of the multiscale problem, without any error. This is, of course, no longer
the case if these local spaces are, as in section 6, replaced by discrete counterparts.
In this case, the iterates converge to the solution of the fine grid equation, so that the
choice of the fine grid reference space, and only of this space, determines the attainable
accuracy. In our example, the fine grid discretization error behaves like∼h/ε for linear
elements, at least for smooth coefficient functions oscillating on the lengthscale ε and
gridsizes h sufficiently small compared to ε, as numerical homogenization requires. If
h is halved, asymptotically also the energy norm of the discretization error is halved,
independent of the coarse grid. The L2-error decreases under the given circumstances
even by the factor four. This makes an essential difference in comparison to methods
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1030 RALF KORNHUBER AND HARRY YSERENTANT

like that of Målqvist and Peterseim, where a coupling between the two gridsizes is
mandatory. In methods like that of Målqvist and Peterseim, the choice of the coarse
grid determines the low-dimensional subspace of the fine grid reference space in which
an approximation is sought and thereby strictly limits the accuracy.

Our conclusion backed by computational experience is that iterative methods
like ours are superior and have a clear advantage as long one is only interested in
the calculation of few approximate solutions for a small number of right-hand sides.
The merits of upscaling methods like that of Målqvist and Peterseim are different.
They behave more like reduced basis methods and condense the information about
the system in a comparatively small coarse grid matrix. This is a value by itself that
often justifies to ignore the high cost of the “off-line” set-up phase.

8. First numerical examples. The number of iteration steps needed to reduce
the error to the size of the fine grid discretization error determines in the end the
efficiency of our methods. The crucial question is therefore how fast our iterative
methods converge in reality and how robust they are with respect to the variation of
the coefficient functions. In the following, we present the results of a few calculations
that illustrate their convergence behavior by means of some simple model problems
similar to those in the paper [15] of Målqvist and Peterseim.

The domain under consideration is again the two-dimensional unit square of edge
length 1 that is subdivided into squares of edge length H and these then further into
squares of edge length h. We are working with piecewise linear elements, that is, sub-
divide each of the resulting squares once more into two triangles. The equation reads

(8.1) −∇ · (a∇u) = f,

to be understood in weak form, with zero Dirichlet boundary conditions. The scalar
coefficient function a is assumed to be piecewise constant on a 64×64 square grid, with
values that are uniformly distributed random numbers in an interval with lower bound
δ > 0 and upper bound M . To simplify the computations a bit, we have replaced
the local subdomains ωi by the slightly larger squares of edge length 2H centered
around the vertices of the coarse grid triangles, with corresponding modification near
the boundary of the domain.

It turns out that already the additive version reaches in a few steps a satisfying
accuracy and is, with conjugate gradient acceleration, rather robust with respect to
the variation of the coefficient functions expressed by the ratio M/δ. The convergence
history for four examples, with coarse gridsize H = 1/32, fine gridsize h = 1/512,
right-hand side f = 1, and ratios M/δ = 1, 10, 102, 104, and 106 is listed in Table 1.
Starting values are the coarse grid finite element solutions. The values given in Table 1
are the factors by which the energy norm distance of the iterate to the exact fine
grid solution, the iteration error, has decreased with the given iteration step. The
convergence rates do not worsen much from the first example, the Laplace equation
with the constant coefficient function a = 1, to the examples with more extreme ratios
M/δ less and less covered by the theory. Let u be the solution of the underlying
continuous problem, uh the exact solution for gridsize h, and uh/2 the exact solution
for the finer gridsize h/2. As the function uh/2 − uh is the a-orthogonal projection of
u− uh to the finite element space assigned to the grid of gridsize h/2,

(8.2) ‖uh/2 − uh‖ ≤ ‖u− uh‖.

In the case of all four examples, not more than three iteration steps are needed
to reduce the iteration error to a size less than the energy norm distance of the
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Table 1

The factors by which the energy norm of the error is reduced from the last step to the given one.

Step M/δ = 100 M/δ = 101 M/δ = 102 M/δ = 104 M/δ = 106

1 0.206 0.458 0.514 0.524 0.545

2 0.296 0.473 0.515 0.522 0.534

3 0.254 0.415 0.396 0.394 0.389

4 0.260 0.333 0.343 0.353 0.367

5 0.320 0.287 0.357 0.366 0.376

6 0.350 0.431 0.538 0.539 0.533

7 0.456 0.389 0.501 0.513 0.498

8 0.381 0.392 0.411 0.405 0.399

approximations uh and uh/2 of the solution u and thereby as just shown to a size
less than the discretization error. In brief, these examples and numerous further
calculations with a large variety of different gridsizes and coefficient functions confirm
the predictions of the theory and underline the potential of the iterative approach.

Appendix A. Some notions and results from spectral theory. For the
convenience of the reader, this appendix shortly summarizes the needed facts from
the spectral theory of bounded, symmetric linear operators mapping a real Hilbert
space H into itself. A standard source in this field is still [3]. We begin with the
definition of the (real) resolvent and the spectrum of such operators, which consists
in the infinite dimensional case not necessarily only of eigenvalues.

Definition. The resolvent of a bounded, symmetric operator T : H → H consists
of the real numbers λ for which the operator T − λ possesses a bounded inverse. The
spectrum σ(T ) of T consists of those real λ that do not belong to the resolvent.

A first statement on the structure of the spectrum is the following.
Theorem. The resolvent of the operator T is an open subset of R and the spec-

trum a compact subset of the interval with the endpoints −‖T ‖ and ‖T ‖.
Proof. Assume that λ0 belongs to the resolvent. The equation (T − λ)u = f is

then equivalent to the equation

u− (λ− λ0)(T − λ0)
−1u = (T − λ0)

−1f.

If λ is sufficiently close to λ0, this equation possesses a unique solution that depends
continuously on f and can be represented as a Neumann series. The resolvent is
therefore an open set. A similar fixed point argument, based on the reformulation

u− λ−1Tu = −λ−1f

of the equation (T − λ)u = f , shows that the λ outside the given interval belong to
the resolvent. This proves the theorem.

The points in the spectrum can be characterized as follows.
Theorem. A value λ belongs to the spectrum of the bounded, symmetric linear

operator T : H → H if and only if there exists a sequence of elements un ∈ H with

lim
n→∞ ‖(T − λ)un‖ = 0, ‖un‖ = 1,

that is, if λ is a so-called approximate eigenvalue.
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1032 RALF KORNHUBER AND HARRY YSERENTANT

Proof. Let λ first belong to the resolvent and let Rλ be the bounded inverse of
the operator T − λ. If the vectors fn = (T − λ)un tend then to zero as n goes to
infinity, the same holds for the vectors un = Rλfn. Thus λ cannot be an approximate
eigenvalue and the approximate eigenvalues form a part of the spectrum.

Let λ conversely belong to the spectrum. If λ is an eigenvalue of T , nothing has
to be shown. If λ is not an eigenvalue, T − λ is injective. Furthermore, the range of
T − λ is a dense subset of H as can be seen as follows. Let (u, (T − λ)v) = 0 for all
v ∈ H. Since T is symmetric, then also ((T − λ)u, v) = 0 for all v ∈ H. This is only
possible for (T −λ)u = 0, that is, for u = 0 by the injectivity of T −λ. Therefore the
inverse operator of T − λ mapping the range of T − λ back to H cannot be bounded.
Otherwise it could be extended to a bounded inverse of T − λ and λ would belong to
the resolvent. Thus there is a sequence of elements fn in the range of T −λ such that

lim
n→∞ ‖fn‖ = 0, ‖(T − λ)−1fn‖ = 1.

The vectors un = (T −λ)−1fn have then the norm 1 and the norms ‖(T −λ)un‖ tend
to zero so that λ is indeed an approximate eigenvalue.

Theorem. At least one of the endpoints of the interval −‖T ‖ ≤ λ ≤ ‖T ‖ belongs
to the spectrum of the bounded, symmetric linear operator T : H → H. Therefore

‖T ‖ = max{ |λ| | λ ∈ σ(T ) }.

That is, the operator norm of T coincides with the spectral radius of T .

Proof. Let ρ = ‖T ‖. Then there exists a sequence of elements un ∈ H such that

‖un‖ = 1, lim
n→∞ ‖Tun‖ = ρ.

Because of the symmetry of T , then

‖(T 2 − ρ2)un‖2 = ‖T (Tun)‖2 − 2ρ2(Tun, T un) + ρ4 ‖un‖2

holds. Since ‖T ‖ = ρ and ‖un‖ = 1, this leads to the estimate

‖(T 2 − ρ2)un‖2 ≤ ρ4 − ρ2 ‖Tun‖2

whose right-hand side tends to zero as n goes to infinity. The real number ρ2 is
therefore an approximate eigenvalue of T 2 and thus contained in the spectrum of T 2.
That means that the operator

T 2 − ρ2 = (T − ρ)(T + ρ)

does not possess a bounded inverse. This then also holds for one of the operators
T − ρ or T + ρ. Thus −ρ, ρ, or both values are contained in the spectrum of T .

Next we insert bounded, symmetric operators T : H → H into real polynomials
and prove the spectral mapping theorem.

Lemma. Let the polynomial p(λ) = λ2+2aλ+b have no real zeroes. The operator

p(T ) = T 2 + 2aT + b

possesses then a bounded inverse, independent of the properties of the operator T .
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Proof. We first rewrite p(T ) in the form

p(T ) = (T + a)2 + δ, δ = b− a2.

Because p(λ) has no real zeroes, δ > 0 must hold. The expression

〈u, v〉 = (p(T )u, v)

defines therefore an inner product that induces a norm which is equivalent to the
original norm. By the Riesz representation theorem, thus there exists for every f ∈ H
a unique u ∈ H with 〈u, v〉 = (f, v) for all v ∈ H, that is, a unique solution of the
equation p(T )u = f whose norm can be bounded by the norm of f .

Theorem. Let p(λ) = a0 + a1λ + · · · + anλ
n be a real polynomial and T a

symmetric, bounded linear operator. The spectrum of the symmetric, bounded operator

p(T ) = a0 + a1T + · · ·+ anT
n

consists then of the values p(λ) with λ in the spectrum σ(T ) of T .

Proof. For constant polynomials p(λ) = a0, p(T ) is the corresponding multiple
of the identity operator whose spectrum consists of a single point, namely, λ = a0.
This proves the theorem for this particular case. We can therefore restrict ourselves
to polynomials of degree n ≥ 1 and can moreover assume that an = 1.

We first show that any value μ in the spectrum of p(T ) is of the form μ = p(λ)
with a λ in the spectrum of T . The polynomial p(λ) − μ can, over the real numbers,
be factorized into a product of linear factors λ−λi and of quadratic polynomials qi(λ)
without real zeroes, which turns into a factorization of the operator p(T ) − μ. This
operator possesses by the previous lemma a bounded inverse if the operators T − λi

possess bounded inverses, that is, if none of the solutions λi of the equation p(λ) = μ
is contained in the spectrum of T . Any μ that belongs to the spectrum of p(T ) must
therefore be of the form μ = p(λ) with some λ in the spectrum of T .

Let λ conversely be contained in the spectrum of T and let μ = p(λ). Then there
exists a sequence of elements uk ∈ H of norm 1 for which the norms of the (T − λ)uk

tend to zero as k goes to infinity. As p(λ) − μ = 0, p(ξ) − μ = q(ξ)(ξ − λ) with a
polynomial q(ξ) of degree n− 1. The sequence of the vectors

(p(T )− μ)uk = q(T )(T − λ)uk

tends therefore to zero as well. That is, μ is an approximate eigenvalue of p(T ) and
thus belongs to the spectrum of p(T ).

Hence we can conclude that for any real polynomial p(λ) the norm of the operator
polynomial p(T ) is determined by the values p(λ), λ ∈ σ(T ), and is given by

‖p(T )‖ = max{ |p(λ)| | λ ∈ σ(T ) },

regardless of the existence of a complete set of eigenvectors.

Appendix B. The quasi-interpolation operator. The key to our proof is
the existence of a quasi-interpolation operator (4.4) that satisfies the two assumptions
from (4.10). We prove in this appendix that the operator given by (4.5) falls into this
category, provided the energy norm induced by the bilinear form (2.1) behaves locally,
in the sense of condition (4.11), like the H1-seminorm.
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Theorem. The quasi-interpolation operator given by (4.5) satisfies the conditions
from (4.10). The constants depend only on an upper bound for the ratio Mi/δi of the
constants in the assumption (4.11), on the degeneration of the finite elements, and on
the geometry of the domain Ω via the local condition (4.12) to its boundary.

Proof. It suffices to prove the estimates (4.10) for continuously differentiable func-
tions v : Rn → R that vanish outside a compact subset of Ω. The rest then follows
by the density of these in H1

0 (Ω). We use the notation a � b, meaning that a can be
estimated by b up to a constant that depends at most on the shape regularity of the
finite elements and the constant from (4.12). As the ϕi form a partition of unity,

v −Πv =
∑
i∈N

ϕi (v − αi) +
∑
i /∈N

ϕi v,

where N is the set of the indices of the vertices in the interior of Ω. As on a given
element only the d+ 1 functions ϕi assigned to its vertices are different from zero,

‖v −Πv‖2 �
∑
i∈N

‖ϕi (v − αi)‖2 +
∑
i /∈N

‖ϕiv‖2.

Let hi be the radius of the ball Bi. As |∇ϕi| � h−1
i by the shape regularity of the

elements and 0 ≤ ϕi ≤ 1, the terms in the first sum can by (4.11) be estimated as

‖ϕi (v − αi)‖ � Mih
−1
i ‖v − αi‖L2(ωi) +Mi ‖∇v‖L2(ωi).

The constant αi is the mean value of the function v over the patch ωi. Let α
′
i be the

mean value of v over the ball Bi. Because

‖v − αi‖L2(ωi) ≤ ‖v − α′
i‖L2(ωi) ≤ ‖v − α′

i‖L2(Bi),

the Poincaré inequality for balls leads therefore to the estimate

‖v − αi‖L2(ωi) � hi ‖∇v‖L2(Bi).

For the terms associated with the inner vertices, thus finally

‖ϕi (v − αi)‖ � Mi ‖∇v‖L2(Bi) ≤ Miδ
−1
i ‖v‖Bi∩Ω.

For a boundary term correspondingly

‖ϕiv‖ � Mih
−1
i ‖v‖L2(ωi) +Mi ‖∇v‖L2(ωi)

holds. The L2-distance of a function v ∈ L2(Bi) to the mean value of v over the part
of the assigned ball Bi outside Ω can be estimated by the L2-distance of v to the
mean value of v over Bi itself, where the constant from (4.12) enters. As the mean
value of the functions v under consideration over the part of Bi outside of Ω is zero,
this leads by means of the Poincaré inequality for balls to the estimate

‖v‖L2(Bi) � hi ‖∇v‖L2(Bi)

with a constant depending on that from (4.12). For the boundary terms therefore

‖ϕiv‖ � Mi ‖∇v‖L2(Bi) ≤ Miδ
−1
i ‖v‖Bi∩Ω.
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As Mi/δi ≤ K for some constant K and as the balls Bi form, because of the shape
regularity of the finite elements, a locally finite covering of Ω, we get

‖v −Πv‖ � K ‖v‖,

which implies the stability of Π. Using that for all square integrable functions w

‖τϕiw‖0 � Mih
−1
i ‖w‖L2(ωi)

holds, the approximation property follows by the same arguments.

Acknowledgment. The authors are grateful to Joscha Podlesny for providing
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