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1. Introduction

Stochastic differential equation models are ubiquitous in real world applications from
various different disciplines, such as molecular dynamics [1], economy [2], or climate
science [3]. As a typical feature, these often high-dimensional models display dynamics
on vastly different time and length-scales, which makes their analysis and numerical
simulation a nontrivial task. In most situations of practical relevance, however,
these different scales are either not well resolved or the equations of motion are too
complicated to explicitly identify scaling parameters that would make the equations
amenable to asymptotic methods.

In this work we focus on stochastic dynamics with multiple time scales, without
assuming that the system admits an explicit separation into slow and fast variables.
Specifically, we are interesting in solving stochastic control problems under these dy-
namics that may arise in an optimal control context or in the estimation of rare events
based on variance minimizing Monte Carlo schemes. There are various model reduc-
tion techniques that approximate a complex (i.e. large-scale or multiscale) stochastic
dynamics without assuming explicit scale separation or resolution of the dynamics on
all scales. Typically, these methods assume that a suitable set of collective variables or
macroscopic observables that describe the essential behaviour of the system is known
and then seek a statistical closure by projecting the dynamics onto these variables
[4, 5, 6, 7, 8]; cf. also [9, 10] and the references therein. If the collective variables
are chosen appropriately, then the (forward) dynamics as a function of the control
is well approximated by the projected equation (cf. [6]). We shall refer to this as
forward stability of the approximation scheme. However, here the situation is that
the controls will be functions of the dynamics in the sense of a feedback law, and the
question is whether the optimal controls for the projected equations—that are easily
computable—yield reasonable approximations of the optimal control for the original
equation and therefore can be used to control the original dynamics. Approximations
with this property are referred to as backward stable. The question of backward stabil-
ity of the projected dynamics has been recently analyzed in the context of averaging
and homogenization of multiscale diffusions [11, 12]. (Roughly speaking, the loss of
backward stability of some standard approximation schemes for optimal control has
to do with the fact that the associated dynamic programming or Hamilton-Jacobi-
Bellman equations are nonlinear, whereas the approximation is based on the linear
evolution equations of the forward dynamics.)

The main purpose of this work is to design backward stable numerical algorithms
for solving certain types of optimal control and sampling problems. For both opti-
mal control and sampling, we devise algorithms to compute suboptimal, but nearly
optimal control policies based on reduced-order models. Our approximation schemes,
the associated algorithms and the terminology used are partially based on ideas from
dynamical systems, in particular molecular dynamics. One concept borrowed from
molecular dynamics is the concept of transition pathways that play a key role in the
study of transition events between metastable sets of a stochastic dynamical system.
Transition pathways are curves in state space along which transition events are likely
to occur and along which typical trajectories concentrate (see, e.g., [13, 14, 15, 16];
cf. also [17, 18]). Once a transition pathway is known, it is possible to design locally
optimal control policies based on the information that the dynamics concentrate in a
certain region of phase space, using any stochastic optimization technique such as the
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cross-entropy method (see [19] or [20] and the references therein) with suitably placed
ansatz functions. A related notion that we will adopt is known by the name of reaction
coordinate, a generalized coordinate by which the dynamics along the transition path-
way can be parametrized [21, 22]. Putting this into a broader perspective, one may
replace the term reaction coordinate by collective variable or any other macroscopic
observable that describes the essential behaviour of the system. By projecting the
dynamics onto these variables, one then obtains a low-dimensional equation for the
essential dynamics (after applying an appropriate closure, e.g., conditional expecta-
tions [5, 6]), and, as the projected equations are low-dimensional, it is possible to solve
the corresponding optimal control by means of traditional PDE-based discretization
techniques that would be out of scope otherwise.

The article is organized as follows: In Section 2, we introduce the indefinite time
horizon stochastic control problem and its dual sampling problem that represent the
two basic computational problems to be solved by the methods considered herein.
Section 3 is devoted to projected dynamics based on conditional expectations with
respect to a given set of collective variables, a method also called first-order optimal
prediction. We formulate the projected dynamic programming equations for the
underlying control and sampling problems and sketch a numerical discretization for
computing suboptimal control policies that are active only in the direction of the
collective variables. In Section 4 we recall the string method for computing transition
pathways and explain how it can be used together with the cross-entropy method to
solve stochastic control and importance sampling problems. Numerical examples are
presented in Section 5. The article concludes with a brief discussion of possible issues
and future directions in Section 6.

2. Two related stochastic control problems

In this paper, we consider diffusion processes governed by stochastic differential
equations (SDE) of the form

dxs = −∇V (xs)ds+
√

2β−1dws , (1)

where xs ∈ Rn is the system state at time s ≥ 0, V :Rn → R is a sufficiently
smooth (e.g. C∞) potential energy function, β > 0 is an arbitrary scaling factor
for the noise (inverse temperature), and ws is an n-dimensional standard Wiener
process.‡ We moreover consider the process to be confined to some open and
bounded set Ω ⊂ Rn with sufficiently smooth boundary, and define the stopping
time τ = inf{s > 0:xs 6∈ Ω} to be the first exit time from Ω.

As the next step, we will introduce two apparently unrelated functionals of the
dynamics (1), namely, an exponential expectation over realizations of (1) and a closely
related stochastic optimal control problem. The two formulations turn out to be
related by a Legendre-type duality principle that will be important in the course of
the article. See [23, 12, 19, 11] for further background.

‡ It is possible to generalize most of the considerations in this article to the case of general, non-
degenerate diffusions of the form dxs = b(xs)dt + σ(xs)dws, but for the sake of clarity, we refrain
from doing so.
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2.1. Stochastic optimal control of diffusions

To begin with, we consider the following optimal control problem: minimize

J(u;x) = Eµu

[ ∫ τ

0

(
G(xus ) +

1

2
|us|2

)
ds+H(xuτ )

∣∣∣ xu0 = x
]
, (2)

over all admissible controls u ∈ A and subject to the dynamics

dxus =
(√

2us −∇V (xus )
)
ds+

√
2β−1dwus , xu0 = x , (3)

that is is a controlled version of (1). Here G,H:Rn → R+ are non-negative and contin-
uous running and terminal cost functions, and the set A of admissible controls consists
of all bounded and measurable functions u: [0,∞)→ A ⊂ Rn, such that (3) admits a
unique strong solution. The expectation in (2) is taken over all realizations of the con-
trolled dynamics (3), which we denote by an expectation with respect to a probability
measure µu on the space C([0,∞),Rn) of continuous trajectories. In the controlled
SDE, wus is again an n-dimensional standard Wiener process where the superscript
“u” is only used to distinguish it from ws in (1), when it comes to the application of
the Girsanov’s theorem in Subsection 2.2. It will be dropped later on when it is conve-
nient. (The scaling factor

√
2 in front of the control is for notational convenience only.)

Now let

U(x) = inf
u∈A

J(u;x) (4)

be the value function or optimal cost-to-go associated with (2)–(3). Intuitively
speaking, computing the control value U means to drive the dynamics (3) starting
from xu0 = x ∈ Ω until it reaches the set boundary ∂Ω, in such a way that the cost
(2) is minimized. Under certain regularity conditions on the coefficients V,G,H and
the boundary of the domain Ω, it can be shown (see, e.g., [23]) that U satisfies a
Hamilton-Jacobi-Bellman type boundary value PDE:

0 = min
α∈Rn

{
β−1∆U + (

√
2α−∇V ) · ∇U +G+

1

2
|α|2

}
H = U |∂Ω .

(5)

or, equivalently,

0 = β−1∆U −∇V · ∇U − |∇U |2 +G

H = U |∂Ω .
(6)

For this type of optimal control problem, it is known that the infimum of J(u) is
attained, with a unique minimizer û that is given by (see, e.g., [23])

ûs = −
√

2∇U(xus ), (7)

where xus is system’s state. Note that the optimal control û is a Markovian feedback
control, i.e. the action ut at time t depends only on the system state xut at time t.
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2.2. Adaptive importance sampling

The stochastic control problem (2)–(3) has a well-known dual formulation in terms of
a sampling problem [24, 25, 26, 27, 28]. Consider again the uncontrolled dynamics (1)
and define the function ψ by

ψ(x) = E

[
exp

(
−β
∫ τ

0

G(xs)ds− βH(xτ )

) ∣∣∣∣ x0 = x

]
. (8)

Here the expectation is taken over all realizations of (1) with initial condition x0 = x.
By the Feymann-Kac formula (e.g., [23, App. D]), ψ(x) satisfies the PDE

0 = β−1∆ψ −∇V · ∇ψ − βGψ , x ∈ Ω ,

e−βH = ψ|∂Ω .
(9)

Clearly, computing ψ(x) by solving the above boundary value problem is numerically
infeasible if the state space is high-dimensional. We could compute (8) by Monte
Carlo, simulating a sufficiently large number of independent realizations of (1) until
they leave the domain Ω. However, in most of the relevant cases, this straightforward
method suffers from poor convergence of the corresponding Monte Carlo estimator,
especially when τ is large, i.e. when escaping from Ω is a rare event.

As a remedy, we could try to generate realizations from the controlled SDE,
with a control such that reaching the set boundary ∂Ω is no longer a rare event, and
then account for this change of the underlying probability measure by reweighting the
Monte Carlo estimator with the likelihood ratio between the two distributions. This
is the idea behind importance sampling, and, in our case estimators, it can be based
on the reweighted expectation

ψ(x) = Eµu

[
exp

(
−β
∫ τ

0

G(xus )ds− βH(xuτ )

)
Z−1
τ

∣∣∣∣ x0 = x

]
, (10)

where xus is the solution of the controlled SDE (3) with—not necessarily optimal—
control u. The random variable Z = dµu/dµ is the Radon-Nikodym derivative
(likelihood ratio) between the probability measures of the controlled and the
uncontrolled dynamics:

Zτ = exp

(
β1/2

∫ τ

0

us · dws −
β

2

∫ τ

0

|us|2ds
)

= exp

(
β1/2

∫ τ

0

us · dwus +
β

2

∫ τ

0

|us|2ds
)
,

(11)

with the shorthand dwus = dws − β
1
2usds. By Girsanov’s theorem [29, Thm. 8.6.8],

the µu-law of the transformed Brownian motion wuτ is the same as the µ-law of the
standard Brownian motion wτ , where dµu|Fτ = Zτdµ|Fτ where Fτ is the filtration
generated by ws up to time s = τ , hence (8) and (10) agree (see Remark 1 below)

Note that even though a standard Monte-Carlo estimator based on (10) is an
unbiased estimator of ψ for any admissible control u, the variance of the estimator,
and hence its convergence, heavily depends on the choice of u. As a consequence,
a careful design of the importance sampling estimator (i.e., a clever choice of u) is
crucial for obtaining efficient Monte Carlo estimators.
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Efficiency of importance sampling In term of computational cost, the efficiency of
importance sampling will depend on both the average length τ of simulated trajectories
and the variance of the estimator. To simplify notation, call I the user-specified
statistical estimator of (10) with ψ(x) = Eµu [I]. The standard deviation of I is√

Varµu [I] =
√
Eµu [I2]− (Eµu [I])2 .

Now suppose that we have generated N independent realizations of xus , and let Ii
denote the estimator based on the i-th realization where 1 ≤ i ≤ N . Then we can
approximate ψ(x) by

ÎN =
1

N

N∑
i=1

Ii ,

with standard deviation

σÎN =

√
Varµu [I1]

N
.

Given a tolerance ε > 0, such that σÎN ≤ ε, it follows that we have to use

N ≥ Var[I1]/ε2 realizations to approximate ψ within the prescribed accuracy. To
quantify the efficiency of the importance sampling scheme, let ∆tu be the constant
time step (depending on u) used to numerically compute the realization of the
controlled SDE. The computational cost for a single trajectory then is proportional
to Eµu [τ ]/∆tu, which results in a total computational cost of

C(ε, u) =
Varµu [I]

ε2
· Eµu [τ ]

∆tu
. (12)

to achieve the given tolerance ε. We call the quantity

Accel(u) =
C(ε, 0)

C(ε, u)
(13)

the acceleration index of the importance sampling estimator, comparing standard
Monte Carlo based on the uncontrolled SDE and importance sampling based on
the control u. Note that the acceleration index is independent of ε. (When ∆t is
independent of u, the acceleration index coincides with the definition in [19].) Further
note that for

ûs =
√

2β−1∇ψ(xus )

ψ(xus )
, (14)

the variance of the estimator is zero [25], hence Accel(û) =∞.

Remark 1 A brief comment on the application of the Girsanov’s theorem with a
random terminal time τ is in order. Let W = C([0,∞),Rn) be the space of continuous
paths (i.e. realizations of our SDE) of arbitrary length, equipped with the Borel σ-
algebra σ(W ) that is generated by all cylinder sets of the form {f ∈ W : f(t1) ∈
E1, f(t2) ∈ E2, . . . , f(tk) ∈ Ek} where k ∈ N, Ei ∈ B(Rn) and 0 ≤ t1 < t2 <
. . . < tk < ∞. Further let Ft = σ({ws: s ≤ t}) denote the σ-algebra generated by
the Brownian motion up to time t < ∞. Then, Girsanov’s theorem holds on the
measurable space (W,σ(W )) as long as the family (Zt)t≥0 of random variables

Zt = exp
(
β1/2

∫ t

0

us · dws −
β

2

∫ t

0

|us|2ds
)

(15)
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is a uniformly integrable martingale. By Ito’s formula [29], (Zt)t≥0 is a nonnegative
local martingale, which is uniformly integrable if Novikov’s condition holds:

E

[
exp

(
β

2

∫ ∞
0

|us|2ds
)]

<∞

Now given an admissible control u that is defined up to a random stopping time τ , we
define a stopped version of the control by

ũs =

{
us s ≤ τ ,

0 s > τ .

The stopped control ũ satisfies Novikov’s condition and thus the change of measure that
is the basis of (10)–(11) is well-defined on Fτ by Doob’s optional stopping theorem.

2.3. Duality between optimal control and importance sampling

From the previous consideration, it follows that both the optimal control problem
(4) and the importance sampling problem (10)–(11) boil down to finding an optimal
feedback control, either (7) or (14). It turns out that the sought optimal controls are
the same and that the functions ψ and U are related by

ψ = exp(−βU) , (16)

as can be readily seen by checking that exp(−βU(x)) solves linear PDE (9); (16) is
called a logrithmic transformation [23]. By a slight variation of Theorem 3.1 in [23,
Sec. VI.3], the solution to (9) is C2(Ω) ∩ C(Ω), under mild additional regularity and
growth conditions on the coefficients and the domain, hence the assertion follows from
chain rule [12, 19]. This proves the important duality relation (cf. [30, 31]):

Lemma 1 Let xs and xus denote the solutions of (1) and (3), respectively. Further
let G,H ≥ 0 be bounded. Then

−β−1 ln E
[

exp
(
− β

(∫ τ

0

G(xs)ds+H(xτ )
)) ∣∣∣ x0 = x

]
= min

u∈A
Eµu

[ ∫ τ

0

(
G(xus ) +

1

2
|us|2

)
ds+H(xuτ )

∣∣∣ xu0 = x
]
.

(17)

We conclude that the optimal control (7) that is the unique minimizer of (2)–(3)
coincides with the optimal change of measure based on (14) that leads to a zero-
variance importance sampling estimator of (8). This clearly implies that computing
the optimal change of measure is as difficult as solving the dynamic programming
equation (5) of the optimal control problem. On the other hand, it is neither possible
(in high dimension) nor neccessary to find the optimal control to compute either (8)
or the value function (4) exactly, since we can always sample the exact solution using
the importance sampling identity (10)–(11). The idea is that, even with a suboptimal
control policy based on, e.g., an approximation of the SDE, we can use reweighting to
compute an unbiased estimate of ψ and hence a (biased) estimate of U = −β−1 lnψ.
By continuity of the cost functional J as a function of the control, suboptimal controls
that are close to the optimal control (in some norm) will lead to efficient estimators,
in that they have small variance and require only short trajectories.

Motivated by these considerations, our purpose is to design numerical algorithms
for computing cheap suboptimal controls u, without solving a PDE like (5) or (9).
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3. Projection onto essential coordinates

In this section, we derive approximations of the optimal control problem (4) and its
dual sampling problem (8) under the assumption that a collective variable is known
that describes the essential dynamics of the system. We will first recall some facts on
model reduction using collective variables (first-order optimal prediction in the sense
of [4]), and then discuss algorithms for solving (4) or (8) in this situation.

3.1. First-order optimal prediction of diffusions

We suppose that there is a smooth function ξ:Rn → Rk, 1 ≤ k < n, such that the
level sets ξ−1(z) are smooth submanifolds of codimension k in Rn for all values z ∈ Rk
of ξ, in other words, the Jacobian ∇ξ(x) has constant rank k for all x ∈ Rn.

Now let Σz = ξ−1(z) denote the isosurface of ξ for any regular value z ∈ Rk. We
borrow some terminology from molecular dynamics and call ξ the essential coordinate,
reaction coordinate or collective variable. The rationale behind projecting the SDE
(1) onto the collective variable ξ is that the value zs = ξ(xs) varies slowly, whereas the
orthogonal dynamics on Σzs is fast and therefore relaxes to its (conditional) invariant
measure while the slow variable zs ≈ z stays approximately constant—provided that
ξ is carefully chosen. As a consequence, the influence of the fast variables on the
essential dynamics is only through their average, where averages are understood with
respect to the invariant measure of the fast variables condition on the slow variables,
and thus it makes sense to construct a closure of the ξ-dynamics by taking conditional
expectations of drift and diffusion coefficients in (1).

Closure scheme We shall briefly recall the first-order optimal prediction approach
using conditional expectations that goes back to [6, 32]; cf. also [4, 5]. To this end, let
xs be the solution of (1). By Ito’s formula, ξ(xs) satisfies the SDE

dξ =
(
β−1∆ξ(xs)−∇ξ(xs)T∇V (xs)

)
ds+

√
2β−1∇ξ(xs)T dws (18)

where we use the convention that the Jacobian matrix ∇ξ of ξ:Rn → Rk is an (n×k)-
matrix. (Gradients are represented by column vectors.) Note that (18) is not a closed
equation for ξ, but rather depends on the solution of (1). To obtain a differential
equation for ξ only, we need an appropriate closure scheme for (18). One such closure
is obtained by taking conditional expectations with respect to the invariant probability
distribution of (1) with density

ρ(x) = exp(−βV (x)) ,

∫
Rn
ρ(x) dx = 1 , (19)

where we assume without loss of generality that exp(−βV ) is normalized to have total
probability mass one. The corresponding conditional expectation, given that ξ(x) = z,
reads

Eρ[f |ξ = z] =
1

Q(z)

∫
Σz

fρ (vol(∇ξ))−1
dσz , (20)

with vol(A) =
√

det(ATA) denoting the matrix volume of a (not necessarily square)
matrix, σz the Riemannian volume element of Σz, and Q the normalization constant

Q(z) =

∫
Σz

ρ (vol(∇ξ))−1
dσz . (21)
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Taking conditional expectations of the right hand side (18), i.e., computing the
best approximation with respect to the ρ-weighted L2-norm, we obtain a closed
equation for the essential variable:

dzs = b(zs)ds+
√

2β−1σ(zs) dws, z0 = ξ(x0) , (22)

Here zs ∈ Rk, ws is k-dimensional Wiener process and the coefficients b, σ are given
by

b(z) = E
[
β−1∆ξ −∇ξT∇V | ξ = z

]
,

a(z) = E
[
∇ξT∇ξ | ξ = z

]
,

(23)

where a = σσT , and ∆ξ in the first equation is understood component-wise. We call
(22)–(23) the effective dynamics of along ξ. For the case of a scalar essential variable,
the approximation error of the effective dynamics has been analyzed in [6]. Numerical
schemes to compute (23) by constrained simulations have been studied in [33, 34].

For later use, we also define the thermodynamic free energy with respect to ξ as

F (z) = −β−1 lnQ(z) , (24)

with Q being the normalization constant from (20)–(21).

3.2. Dynamic programming based on first-order optimal prediction

The aim of this paragraph is to derive an effective equation for the control problem
(2)–(3) in terms of the nonlinear dynamic programming equation (5). By the
duality principle, Lemma 1, this will give us an analogous effective equation for the
corresponding sampling problem (8). We will use the duality principle in reverse order
and start from the linear boundary value problem (9).

Further assumptions The following notation and additional assumptions will be used
throughout this section.

(a) Let Ω ⊂ Rn be a bounded open set, in which the dynamics takes place, and assume
that there exists an open and bounded set S ⊂ Rk such that Ω = ξ−1(S) ⊂ Rn.

(b) The random variable

τ = inf{s > 0: ξ(xs) 6∈ S}
is a stopping time with respect to the filtration generated by ξ(xs).

(c) There exists a continuous and bounded function h such that

H(x) = h(ξ(x)) ,

i.e., the terminal cost H depends only on ξ.

Petrov-Galerkin method The starting point of our formal derivation is the integral
form of the elliptic PDE (9) based on test functions that are constant on the level
sets Σz for every z ∈ Rk. To this end, we call L2(Ω, ρ) the space of measurable
functions on Ω that are square integrable with respect to the Boltzmann density ρ and
consider N smooth functions ψi ∈ L2(Ω, ρ) of the form ψi(x) = fi(ξ(x)) for x ∈ Ω,
where the fi:S → R, 1 ≤ i ≤ N are smooth functions that vanish on the boundary
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∂S. Further let ψ be the unique strictly positive solution of (9). We suppose that
ψ ∈ span{ψ1, ψ2, · · · , ψN}+ {e−βH} ⊂ L2(Ω, ρ), in other words,

ψ =
N∑
j=1

ajψj + e−βH , (25)

in accordance with the boundary condition in (9). Multiplying (9) by a test function

φ(x) = φ̃(ξ(x)), φ ∈ L2(Ω, ρ) and integrating over the domain Ω with respect to ρ, we
obtain

N∑
j=1

aj

∫
Ω

(
β−1∆ψj −∇V · ∇ψj

)
φ ρ dx

= β
N∑
j=1

aj

∫
Ω

Gψjφ ρ dx+ β

∫
Ω

Ge−βHφ ρ dx .

(26)

To derive an equation for ξ, we call ∇ξ the gradient with respect to ξ. By chain rule,

∇ξψj |ξ=z = (∇ξ|ξ=z)∇fj(z) ,
∆ξψj |ξ=z = (∇ξT∇ξ|ξ=z):∇2fj(z) +∇fj(z) ·∆ξ|ξ=z ,

for all functions ψj(x) = fj(ξ(x)) where ∆ξ in the second equation should be
interpreted as a column vector with components ∆ξi. Since the test functions are
constant on the level sets Σz, the total law of expectation (equivalently: the co-area
formula) and the stability of the conditional expectation Eρ[·|ξ = z] imply that (26)
is equivalent to

N∑
j=1

aj

∫
S

(
β−1a:∇2fj + b · ∇fj

)
φ̃ e−βF dz

= β

N∑
j=1

aj

∫
S

gfj φ̃ e
−βF dz + β

∫
S

ge−βh φ̃ e−βF dz

where F is the free energy (24), g(z) = Eρ[G|ξ = z] is the average running cost, and

all functions such as fj , φ̃ etc. are evaluated at ξ = z. The last equation can be
viewed as the Galerkin discretization of the linear boundary value problem

0 = b · ∇ϕ+ β−1a:∇2ϕ− βgϕ, z ∈ S
e−βh = ϕ|∂S .

(27)

for ϕ = ϕ(z), which is a discretization of (27) on span{f1, f2, · · · , fN} + {e−βh},
considered as an affine subspace of L2(S, ρ̄) with ρ̄(z) ∝ exp(−βF (z)).

Equation (27) is the best approximation of (9) in L2(Ω, ρ) as a function of the
essential variable ξ. The next statement is a direct consequence of Lemma 1, the
dynamic programming principle (5) and the Feynman-Kac formula (cf. [12, 35]):

Theorem 1 Let zvs be the solution of (22) and the controlled projected SDE

dzvs = b(zvs )ds+
√

2σ(zvs )vs ds+
√

2β−1σ(zvs ) dws . (28)

with ws standard k-dimensional Brownian motion and coefficients b, σ as given by
(23). Further let ϕ be the solution of the projected boundary value problem (27). Then

−β−1 lnϕ(z) = inf
v∈Aξ

Eνv

[∫ τ

0

g(zvs ) +
1

2
|vs|2ds+ h(zvτ )

∣∣∣∣ zv0 = z

]
(29)
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where τ = inf{s > 0 | zvs 6∈ S}, νv is the path probability measure associated with (28),
and Aξ is the set of all bounded measurable controls adapted to ws, such that (28) has
a strong solution. The optimal control, for which the minimum is attained, is unique
and is given by

v̂s = v̂(zvs ) =
√

2β−1∇ϕ(zvs )

ϕ(zvs )
. (30)

From the above reasoning and Theorem 1 we expect that, if ψ(x) ≈ ϕ(ξ(x)),
then the solution to the projected boundary value problem (27) provides a good
approximation to the original optimal control or sampling problems (7) or (14), since

ûs =
√

2β−1∇ψ(xs)

ψ(xs)
≈
√

2β−1∇ξ(xs)∇ξϕ(ξ(xs))

ϕ(ξ(xs))
= ∇ξ(xs)v̂s , (31)

with v̂s = v̂(ξ(xs)) as defined by (30). We refrain from making precise statements
about the “≈” sign in the last equation, which would involve L2 estimates of the
control and instead refer to Remark 2 below (cf. also [12, 19]).

This suggests the following algorithm for approximating the control policies (7)
or (14) and solving the corresponding control or sampling problems:

Algorithm 1 Control along essential coordinates.

1: Compute the coefficients (23) of the effective SDE (22).
2: Compute the solution v̂ of the low-dimensional optimal control problem (28)–(29).
3: Set us = ∇ξ(xs)v̂s in the original dynamics (3) where v̂s = v̂(ξ(xs)) as defined by

(30).

The low-dimensional optimal control problem in Step 2 of Algorithm 1 can be
solved either directly or by solving the PDE (27) the equivalent dynamic programming
equation (32) by one’s favourite discretization scheme, which is typically feasible up
to dimension k = 3 provided that the averaged coefficients b, σ, g can be efficiently
computed (cf. [33, 34]).

Remark 2 It is easy to see that the value function ϑ = −β−1 lnϕ of the simplified
optimal control problem (29) solves the projected dynamic programming equation

β−1a:∇2ϑ+ b · ∇ϑ− |∇ϑ|2 + g = 0

ϑ|∂S = h .
(32)

Nevertheless, the best approximation property of (27) does not imply that ϑ is a best
approximation of the original value function U in any reasonable sense, because ϕ
and ϑ are related by a logarithmic transformation, and the nonlinear transformation
destroys the linear structure of the approximating L2-subspace.

One may argue, however, that the logarithm is locally Lipschitz when its argument
is bounded away from zero, which restores the best approximation property in some
sense. Specifically, if we assume that ψ and ϕ are classical solutions of (9) and (27)
that are bounded away from zero, which is guaranteed if the coefficients ∇V,G and
b, σ, g satisfy suitable regularity conditions (see, e.g., [23, Ch. VI.3]), and if we let
L > 0 denote the Lipschitz constant of the logarithm, then

Eρ
[
| lnψ − lnϕ|2

]
≤ L2Eρ

[
|ψ − ϕ|2

]
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where the right hand side of the inequality cannot be made smaller by approximating
the coefficients in (9) by functions of ξ (if we keep L fixed). Therefore we may assume
that good approximations of ψ will lead to good approximations of U and thus of the
optimal control (assuming that U is a classical solution and thus differentiable). For
a rigorous approximation result for systems with time scale separation, see [12, 19].

4. Localization of the dynamics near optimal trajectories

The previous approach is useful if appropriate (e.g. problem specific) collective
variables are known beforehand. But even then, the numerical algorithm requires
that one can efficiently evaluate the coefficients (23) of the projected equation, which
may be numerically challenging if the space orthogonal to the collective variables
contains slowly mixing components that impede the convergence of the corresponding
conditional expectations. Moreover, first and second derivatives of ξ need to be
explicitly available in Algorithm 1, which may be prohibitive in some cases.

In this section, we consider the situation that collective variables or their effective
equations are either not available or are difficult to find, even though they may exist.
The key idea then is to first numerically identify a most likely pathway, along which
the typical realizations of the dynamics concentrate, and then place basis functions
along this pathway and iteratively compute an approximation to the optimal control
using the cross-entropy method [19].

4.1. Finding typical pathways in metastable systems

In many situations of practical relevance, e.g., in molecular dynamics, modelling
of materials or chemical reactions, it is very likely that transition events of a
stochastic dynamical system concentrate along an isolated pathway, often called most
probable transition path (MPTP). One such example is diffusions in multi-well energy
landscapes at low temperature, and large deviations theory states that, with high
probability, the typical transition follows the MPTP that minimizes the Freidlin-
Wentzell rate functional [36]. For gradient-type diffusions of the form (1), the MPTP
coincides with the minimum energy pathway γ that is characterized by [13]

∇V (γ(s)) ‖ γ̇(s) ⇐⇒ ∇⊥V (γ(s)) = 0 , s ≥ 0 , (33)

where γ̇(s) is the tangent vector of the curve γ: [0,∞)→ Rn at γ(s), and ∇⊥ denotes
the component of the gradient that is perpendicular to the curve.

The string method The minimum energy pathway can be numerically identified using
the zero temperature string (ZTS) method [13, 37], extensions of which include
the finite temperature string (FTS) method [14, 38] that allows for computinmg
approximations to transition paths in rugged potential energy surfaces or at finite
temperature. It is convenient to parametrize the curve γ by arc length, i.e., we
consider γ as a differentiable map on [0, 1] rather than the real half line [0,∞),
with boundary conditions γ(0) = c0 and γ(1) = c1 that satisfy ∇V (ci) = 0 and
represent the relevant metastable sets of the dynamics. Both ZTS and FTS methods
compute an approximation of the MPTP based on a discretization (xl)l=0,1,... of γ
and a constrained gradient descent algorithm, where the main difference between the
two methods is that in the ZTS method each discretization node follows the gradient
direction dl = −∇V (xl), while in the FTS method a descent direction dl based on an
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ensemble average of the local gradients in the Voronoi cell corresponding to xl is used.
The key steps of ZTS and FTS methods are summarized in Algorithm 2 below; for
further details we refer to the original papers [13, 37, 14, 38].

Algorithm 2 String method

1: Initialization. At step k = 0, set x0
0 = c0, x0

N = c1. Compute x0
l , l =

1, 2, · · · , N − 1 by linearly interpolating x0
0 and x0

N .
2: Update. At the k-th step, for each discretized nodes xkl compute the descent

direction dl to obtain x
k+ 1

2

l , l = 0, 2, · · · , N by

x
k+ 1

2

l = xkl + ∆t dl + rkl
where rk0 = rkN = 0, and rkl = κ(xkl+1 + xkl−1 − 2xkl ), 1 ≤ l ≤ N − 1.

3: Reparameterization. (Linearly) interpolate the updated nodes x
k+ 1

2

l and obtain

xk+1
l at k + 1 step, l = 0, 2, · · · , N .

4: Termination. Iterate Steps 2 and 3 until convergence.

4.2. Cross-entropy minimization based on typical pathways

The cross-entropy (CE) method is a numerical method, with a wide range of
applications in combinatorial optimization and statistics [20, 39]. The idea is as
follows: Given a target probability measure µ∗ and a parameterized subset of
probability measures D = {µ(ω) | ω ∈ Θ}, where Θ is any parameter set, the
CE method seeks an optimal probability measure µ(ω∗) in the parametric family
D that minimizes the Kullback-Leibler divergence with respect to µ∗. For the reader’s
convenience, we briefly recall the basics of the cross-entropy method for diffusions
[19], and discuss its application to the numerical approximation of optimal controls
of the form (7) and (14); since the optimal control policy provides a zero-variance
estimator for the sampling problem (8) and vice versa, we take the optimal control
problem as a starting point. To this end, we observe that (2) has the following entropy
representation (see [19]):

J(u) = J(û) + β−1D(µu | µ̂) (34)

where û is the unique minimizer of J(u), and µ̂ = µû is the corresponding probability
measure on the space of SDE realizations. Here D(· | ·) denotes the Kullback-Leibler
(KL) divergence

D(µ1 |µ2) =

Eµ1

[
ln
dµ1

dµ2

]
µ1 � µ2 ,

∞ otherwise

(35)

between two probability measures µ1 and µ2. Notice that D(· | ·) is not symmetric,
i.e., in general, D(µ1 |µ2) 6= D(µ2 |µ1). Nevertheless the KL divergence can be re-
garded as a measure of similarity between two probability measures µ1 and µ2 in that
D(µ1 |µ2) ≥ 0 and equality holds if and only if µ1 = µ2. As a consequence, minimizing
J(u) in (34) is equivalent to minimizing D(µu | µ̂). However, minimizing D(µu | µ̂) is
not feasible because µ̂ is not explicitly available.
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The key idea of the CE method is to solve a relaxed minimization problem

min
µu∈D

D(µ̂ |µu) , (36)

which should yield a good approximation of µ̂ provided that µ̂ can be accurately
approximated within the parametric family of candidate probability measures. It
turns out that for solving (36), it is only necessary to know µ̂ up to a normalization
constant (which depends on the value function and therefore is not known).

Specifically, we suppose that there are m candidate control policies ui : Rn →
Rn, i = 1, 2, · · · ,m, such that û can be approximated by feedback controls of the form

u(x ; ω) =
m∑
i=1

ωiui(x) , x ∈ Rn, ω = (ω1, ω2, · · · , ωm)T ∈ Rm .

In terms of the candidate policies, (36) takes the form

min
ω∈Rm

D(µ̂ |µω) , (37)

where µω coresponds to the probability measure in path space related to dynamics

dxus = −∇V (xus )ds+
√

2u(xus ; ω) ds+
√

2β−1dws , xu0 = x . (38)

Now let ν be the scaled Wiener measure (corresponding to
√

2β−1ws). By Girsanov’s
theorem, it follows that there exists a measurable function f such that µω(dz) =
f(z;ω)ν(dz), with

f(z;ω) = exp
(β

2

∫ τ

0

b(zs) · dzs −
β

4

∫ τ

0

∣∣b(zs)∣∣2ds) (39)

with

b(x) =
√

2
m∑
i=1

ωiui(x)−∇V (x) (40)

and the shorthands z and zs for the random variables (xus )s and xus . On the other
hand, the dual relationship (17) and Jensen’s inequality imply that µ̂(dz) = g(z)ν(dz)
where

g(z) ∝ exp
[
− β

(∫ τ

0

G(zs)ds+H(zτ )
)]
f(z ; 0) . (41)

To exploit this relation, note that, for two probability measures µ1, µ2 that are both
absolutely continuous with respect to ν such that dµi = gidν, we have

D(µ1 |µ2) =

∫
g1 ln g1 dν −

∫
g1 ln g2 dν . (42)

Hence minimizing D(µ1 |µ2) with respect to the second argument is equivalent to
maximizing the cross-entropy

CEν(g1 | g2 ) =

∫
g1 ln g2 dν , (43)

between the probability densities g1 and g2. Hence the name cross-entropy method.

Combining (39)–(43), it turns out that the target function in (37) is quadratic and
strictly convex in ω, as a consequence of which a necessary and sufficient condition
for optimality is that the coefficient vector ω satisfies the linear system of equations

Aω = r (44)
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with

Aij =Eµv

[
B(z)

∫ τ

0

ui(zs) · uj(zs)ds η(z ; v)

]
ri =

1√
2
Eµv

[
[B(z)

(∫ τ

0

ui(zs) · dzs

+

∫ τ

0

ui(zs) · ∇V (zs)ds

)
η(z ; v)

] (45)

for 1 ≤ i, j ≤ m and

B(z) = exp

(
−β
(∫ τ

0

G(zs)ds+H(zτ )

))
, η(z ; v) =

f(z ; 0)

f(z ; v)
. (46)

Notice that (44) can be calculated under any reference probability measure µv,
v ∈ Rm. Although the linear system (44) can be solved directly, in practice it is
advisable to solve the CE minimization problem (37) iteratively, with an increasing
sequence of inverse temperatures βj , to improve the overall convergence of the method.
The complete CE algorithm is summarized in Algorithm 3, and readers are referred
to [19, 20, 39] for further details.

Algorithm 3 Cross entropy method.

1: Define 0 < β0 < β1 < · · · < βk = β, set v(0) = 0, or some nonzero initial guess.
2: for j = 0 to k do
3: generate Nj trajectories zi, i = 1, 2, · · · , Nj from dynamics (38), with ω = v(j),
β = βj .

4: compute the coefficients of A(j), r(j) from (45) with v = v(j), and solve the
linear equations A(j)v(j+1) = r(j).

5: end for

Choice of ansatz functions We shall now discuss how to combine the string method
and the cross-entropy method, so as to efficiently approximate the control forces
(7) and (14) in the optimal control and the dual sampling problem. Although the
CE method has no specific requirements regarding the choice of ansatz functions,
attention should be paid to their placement in order to avoid combinatorial explosion
in the number of basis functions. Our key idea is to utilize the information about the
MPTP from the string method to optimize the design of the ansatz functions in the
cross-entropy method.

Following the consideration in Subsection 4.1, we assume that we have computed a
discretization x0, . . . , xN of the transition path γ using Algorithm 2. The unit tangent
direction tl along γ at xl can then be approximated by finite differences:

tl =
xl+1 − xl
|xl+1 − xl|

, 0 ≤ l ≤ N − 1 (47)

where we set tN = tN−1. Now consider a Voronoi partition of the state space associ-
ated with the nodes {xl: 0 ≤ l ≤ N} and denote by Cl the Voronoi cell corresponding
to the l-th node. Further let l:Rn → {0, . . . , N} be the membership function that is
defined by l(x) = i for x ∈ C◦i and every 0 ≤ i ≤ N , where C◦i denotes the interior of
the Voronoi cell Ci.
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We consider the following types of ansatz policies for the control.

(i) Gradients of Gaussian basis functions:

ui(x) = ∇ϕi(x) , withϕi(x) = exp
(
− |x− xki |

2

2r2

)
, (48)

where 1 ≤ i ≤ m and 0 ≤ k1 < k2 < · · · < km−1 < km ≤ N . Here r > 0 is an
adjustable parameter that may be chosen globally or for each ϕi.

(ii) Piecewise linear functions with Chebyshev coefficients:

ui(x) = Ti−1

(
2l(x)

N
− 1

)
φ

( |x− xl(x)|
Rl(x)

)
tl(x) , 1 ≤ i ≤ m(49)

where the n-th Chebychev polynomial Tn is defined as

Tn(x) = cos(n cos−1(x)) , x ∈ [−1, 1] , n ∈ N0 (50)

See [40] for details. The function φ is a nonnegative smooth cutoff function (for
example, take φ(r) = 1, |r| ≤ 1 and φ(r) = 0, |r| > 2 and interpolate smoothly
in between), and Rl is a fitting parameter, depending on the diffusivity of the
dynamics within cell Cl (or width of the “transition tube”, which can be inferred
by the string method). Intuitively, the control force ui(x) in the Voronoi cell Cl(x)

is along the tangent direction tl(x) of the transition path and the magnitude is
proportional to the (i − 1)-th Chebyshev polynomial Ti−1. Furthermore, if x is
far away from the centre xl(x) of Cl(x), then ui(x) = 0, i.e., the control force is
only active inside the transition tube.

(iii) Localized piecewise functions: Similarly to the previous case, set m = N + 1 and

ui(x) = φ

(
|x− xi|
Ri

)
1Ci(x)ti , 1 ≤ i ≤ N + 1 , (51)

where φ is a cutoff function as above. In this case, we have N + 1 basis control
functions which have disjoint supports and are parallel to ti inside the Voronoi
cell Ci.

Algorithm 4 Control along the transition path

1: Compute the discretized transition path using the string method (Algorithm 2).
2: Interpolate the unit tangent directions tl for each xl, 0 ≤ l ≤ N from (47).

Construct m basis functions from (48), (49) or (51).
3: Solve for the optimal candidate policy u(x,ω) using the CE method (Algorithm 3).

Computational cost We summarize the MPTP-based approach for computing the
control policies (7) or (14) in Algorithm 4 and conclude this section with a brief dis-
cussion of the computational complexity of calculating (44). For simplicity we consider
a single temperature level β0 = β in Algorithm 3. Further assume that the cost, Mint,
of generating and computing the path integral along each trajectory is constant and
that M trajectories are generated to evaluate the expectation in (44). Depending
on the type of basis functions used the computational costs are as follows, where we
assume throughout that m functions are used:
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(i) The total computational cost for evaluating the coefficient matrix A in (44) with
a Gaussian basis is of the order

O
(
m(m+ 1)MMint

2

)
,

taking into account that A is symmetric.

(ii) As for the piecewise linear basis with Chebyshev coefficients, notice that the i-

th Chebyshev function is a polynomial of order i, i.e. Ti(z) =
∑i
j=0 Ti,jz

j for
some Ti,j ∈ R. For each trajectory z, instead of computing Aij directly, we first
calculate ∫ τ

0

(
2l(zs)

N
− 1

)k
φ2

( |x− xl(zs)|
Rl(zs)

)
ds, 0 ≤ k ≤ 2m− 2 , (52)

and then, using (49),∫ τ

0

ui(zs)uj(zs)ds

=
∑

0≤k1≤i−1
0≤k2≤j−1

Ti,k1Tj,k2

∫ τ

0

(
2l(zs)

N
− 1

)k1+k2

φ2

( |x− xl(zs)|
Rl(zs)

)
ds.

The overall computational cost for evaluatingA in this case isO ((2m− 1)MMint).

(iii) Similarly, localized piecewise linear control basis functions have the property that
any two of the m = N + 1 basis functions in (51) have disjoint support, which
entails that A is a diagonal matrix. The total computational cost therefore is
O ((N + 1)MMint).

Remark 3 A remark on the interpretation of the MPTP and the string method in the
context of optimal control is in order. Let us suppose that Ω = Rn and replace the first
exit time τ by a finite, but sufficiently large deterministic stopping time T < ∞, in
which case the value function U in (4) becomes a function of both x and t via the initial
condition xut = x . Further let G = 0 and consider the limit β → ∞ in the dynamic
programming equation (5). If the potential energy function V and the terminal cost
H satisfy mild regularity conditions, then the limit of (5) has a unique solution in the
viscosity sense that is given by

U∞(t, x) = inf
γ∈AC(t,T )
γ(t)=x

{
1

2

∫ T

t

‖γ′(s) +∇V (γ(s))‖2 ds+H(γ(T ))

}
,

where AC(t, T ) is the space of absolutely continuous functions ϕ: [t, T ] → Rn. The
string method basically approximates the minimizer γ∗ that attains the control value
U∞(0, c0), with the auxiliary boundary condition γ(T ) = c1 that can be enforced by
choosing the terminal cost H such that it penalizes deviations from hitting the endpoint
c1 at time T . Hence the string method provides a reasonable initial guess for the
optimal trajectories of the stochastic control problem (4).

5. Numerical examples

In the following, we study several examples to demonstrate and compare the different
algorithmic approaches. For simplicity, we choose G(x) = λ > 0 and H = 0. In this
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case, the value function (4) becomes

U(x) = inf
us

Eµu

[
λτ +

1

2

∫ τ

0

|us|2ds
]

(53)

and the objective function (8) in the associated sampling problem is ψ(x) = E
[
e−βλτ

]
.

For notational simplicity we have dropped the conditioning on the initial value and
consider only trajectories with fixed initial condition x0 = x or xu0 = x.

5.1. Two-dimensional diffusion in a stiff potential

The following example is taken from [6]. Here, the dynamics is given by (1) with the
stiff potential

Vε(x1, x2) =
(
x2

1 − 1
)2

+
1

ε

(
x2

1 + x2 − 1
)2
. (54)

The potential Vε has two local minima c1 = (−1, 0) to c2 = (1, 0), and two possible
candidates for the essential variables to describe transitions between the wells are

ξ1(x1, x2) = x1 exp(−2x2) and ξ2(x1, x2) = x1 . (55)

For details, see [6].

As a first test, we solve the control task (2) using Algorithm 1 with ξ1 and ξ2
as essential coordinates. The simulation parameters are set to β = 3.0, ε = 0.02 and
G(x) = 1.0, and the stopping time τ is defined as the first hitting time of the basin of
attraction of c2 under the condition that the process is initialized at x = c1:

τ = inf
s>0
{|xus − c2| < 0.02:x0 = c1} ,

For the projected dynamics, we define

τ ξ = inf
s>0
{|zus − ξend| < 0.001: zu0 = ξstart}

where zus is the solution of (28), and we set ξstart = −1.0 and ξend = 1.0. (Note that
the definitions of the stopping sets and τ ξ, τ differ slightly from the definition on page
9.)

Projection onto ξ1 We compute the effective dynamics (22) for ξ = ξ1 on the interval
[−5.0, 5.0], with mesh size 3.0× 10−2 on [−5.0,−0.5] and [0.5, 5.0], and 5.0× 10−3 on
[−0.5, 0.5]. The coefficients of the effective dynamics b, σ were computed from (23)
using constrained dynamics [33]. The constrained simulation step size was dt = 10−5

where N = 106 time steps were generated to compute the expectations in (23) at each
grid point ξ ∈ [−5.0, 5.0]. The computed profiles of b and σ are shown in Figure 1(a,b).
The optimal control v̂ in (29)–(28), wich has been computed by a finite differences
discretization of (32), is shown in Figure 1(c).
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Figure 1. The coefficients b, σ for the 1D observable ξ = ξ1 and the resulting
optimal control policy v̂ as function of ξ = ξ1 (with a slight abuse of notation).

Projection onto ξ2 For comparison we consider the effective dynamics (22) for ξ = ξ2,
computed in the interval [−3.0, 3.0], with uniform mesh size 0.01 and all other simula-
tion parameters as before. The resulting coefficients b, σ and the optimal control policy
as a function of the coordinate ξ are shown in Figure 2. Notice that, unlike in the
previous case, the effective drift b is oscillatory, which indicates that the coordinate
ξ2 is not orthogonal to the fast dynamics and involves slow or metastable compo-
nents, hence it is not a good essential coordinate for this problem. As a test, we have
computed the optimal control using the oscillatory drift coefficient and a smoother
approximation (see Figure 2(a)). The resulting one-dimensional control policies are
shown in the rightmost panel of Figure 2, and they indicate that the result is not at all
sensitive to the sampling error that produced the random oscillations in the effective
drift b. This somewhat surprising outcome may be explained by the smoothing effect
that the elliptic operator has in the one-dimensional dynamic programming equation
(32).
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Figure 2. Coefficients b, σ as functions of ξ = ξ2 and the corresponding optimal
control v̂.

Now, to test the validity of the approach, we approximate the optimal control for
the original 2D dynamics (1) by the 1D control policies v̂ for both ξ1 and ξ2, following
the route of Algorithm 1. By construction, the approximation to the full-dimensional
optimal control is always acting in the direction of the respective essential coordinates.
We have then simulated the original systems with the approximating control policies
and computed the control value (53) and the mean first hitting time (MFHT). The
results that are shown in Table 1, and we observe that ξ1 gives a much better estimate
of the optimal cost value than ξ2. We further observe that the ξ1 estimate is closer
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ξ1 ξ2
cost MFHT cost MFHT

reduced 3.02 − 2.20 −
full 3.13 1.5 4.53 2.3

Table 1. Approximations of the optimal control problem based on coordinates ξ1,
ξ2. The row with the label “reduced” is the cost value of the projected dynamics
(28)–(29). The row with the label “full” records the cost value and the mean
value of τ , obtained from a simulation of 105 trajectories of the controlled 2D
dynamics, with the approximate controls.

MC ξ1 ξ2
E
[
e−βτ

]
1.2× 10−4 1.1× 10−4 1.1× 10−4

√
Var 1.9× 10−3 2.2× 10−5 1.2× 10−3

MFHT 38.3 1.5 2.3
∆t 10−4 10−5 10−5

Accel(u) 1.0 1.9× 104 4.2

Table 2. Importance sampling estimates. Here,
√

Var is the standard deviation
of the estimators, “MFHT” records the average length of the trajectories, and
‘Accel(u)” is the acceleration index as defined in (13). The columns “MC”, “ξ1”,
“ξ2” show the results from standard Monte Carlo and importance sampling with
biasing force u in the directions of ξ1 or ξ2.

to the cost value of the reduced optimal control problem, which indicates that ξ2 is
not a good (i.e. slow) variable and which is in agreement with the asymptotic results
obtained in [12] for systems with slow and fast variables.

As an additional test, we have solved the dual sampling problem E
[
e−βτ

]
by im-

portance sampling using the approximate controls obtained from the one-dimensional
approximation. The results are shown in Table 2, along with a comparison to standard
Monte Carlo simulation. In accordance with the observations from the optimal control
problem, we see again that the importance sampling estimator based on controlling ξ1
clearly outperforms the estimator based on controlling ξ2 in terms of sample variance
and expected trajectory length (cf. the discussion on page 6). Nevertheless, the sec-
ond scheme that biases the dynamics only in the direction of ξ2 appears to be more
efficient than brute-force Monte Carlo.

Remark 4 By Lemma 1, the importance sampling estimator yields an accurate
(though biased) estimator of the true optimal control value, even when a suboptimal
control is used.

5.2. One-dimensional bistable dynamics: choice of ansatz functions

The purpose of this example is to study the effect of the control basis functions on the
accuracy of the cross-entropy (CE) minimization (see Subsection 4.2). As reference
dynamics, we consider a one-dimensional diffusion (n = 1) in a double-well potential

V (x) =
1

2

(
x2 − 1

)2
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because no approximation error is introduced by reducing the state space to the
neighbourhood of the transition path, and thus the system allows for a systematic
comparison of different basis functions. The potential V (x) has two local minima at
x = ±1. We set xu0 = −1 and G(x) = 1, which, together with the stopping time
definition

τ = inf{s ≥ 0:xus ≥ 1.0}
leads to a cost functional of the form (53). We seek to minimize (2) subject to
the dynamics (3) by forcing the dynamics to make a quick transition from one local
minimum to the other. The related sampling task then is to compute E

[
e−βτ

]
. With

the choice β = 3.0 we obtain the estimate E[τ ] = 12.5 based on 105 independent
realizations of the uncontrolled reference dynamics, with a time step ∆t = 10−4 in the
Euler discretized SDE.

−2 −1 0 1 2
x

0.0

0.5

1.0

1.5

2.0

u

Gaussian

Chebyshev

linear

exact

Figure 3. CE approximations of the reference (“exact”) optimal control for the
dynamics in a 1D double-well potential based on different ansatz functions.

Based on this prior information, we solve the CE minimization problem with the
following choices of basis functions: For the Gaussian basis, m = 20 basis functions
are used with centers equally distributed in [−1.25, 1.0] and r = 0.5 as in (48). For
the Chebyshev basis, m = 9 basis functions are used. For the localized piecewise
linear basis, the interval [−1.5, 1.0] is divided evenly into 20 subintervals (Voronoi
cells), leading to m = 20 basis functions. Figure 3 displays the resulting control
approximations together with the reference solution that has been obtained by directly
solving the boundary value PDE (9) using a finite difference scheme. In each case the
optimal control policy is quite well approximated by the CE method.
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Gaussian Chebyshev linear exact
J(u) 2.04 2.04 2.04 2.03

MFHT 1.01 1.01 1.01 1.01

Table 3. Approximations of the optimal cost value J(û) using the CE-based
controls as in Figure 3. For comparison, the row “MFHT” records the mean
trajectory length under the controlled dynamics, averaged over 105 independent
realizations.

MC Gaussian Chebyshev linear
E
[
e−βτ

]
2.2× 10−3 2.2× 10−3 2.2× 10−3 2.2× 10−3

√
Var 1.3× 10−2 6.9× 10−5 5.9× 10−5 2.0× 10−4

MFHT 12.5 1.01 1.01 1.01
Accel(u) 1.0 4.4× 105 6.0× 105 5.2× 104

Table 4. Importance sampling of E
[
−eβτ

]
with CE-based controls as in Figure 3.

Here “MC” denotes standard Monte Carlo,
√

Var is the standard deviation of the
estimator and “Accel(u)” is the acceleration index defined in (13). All estimates
were computed using 105 trajectories with a time step ∆t = 10−4.

As a next step, we plugged the approximations of the optimal control into the
controlled SDE and generated 105 independent realizations, from which we estimated
the cost value J(u) and the average stopping time Eµu [τ ]. The simulation results
are shown in Table 3 and demonstrate that all three types of basis functions lead to
very accurate approximations of J(û) = U(−1) and Eµu [τ ]. We then repeated the
calculation for the computation of E

[
e−βτ

]
, using importance sampling with different

control bases. For a better comparison, average trajectory length and standard
deviation were recorded for each estimator and compared to standard Monte Carlo (see
Table 4). The importance sampling estimators differ slightly in the achieved variance
reduction and thus lead to slightly different acceleration indices that, however, should
be contrasted with the computational complexity of each method (see page 16). But
even then, a tremendous acceleration is obtained over standard Monte Carlo for every
choice of ansatz functions.

5.3. Two-dimensional dynamics with Müller-Brown potential

As a nontrivial test case for the transition path based CE minimization, we study the
two-dimensional dynamics with Müller-Brown potential

V (x1, x2) =

4∑
i=1

αi e
ai(x1−x0

i )
2+bi(x1−x0

i )(x2−y0i )+ci(x2−y0i )2

with αi, x
0
i , y

0
i , ai, bi, ci ∈ R, 1 ≤ i ≤ 4, taken from [41, 42], where all the αi have

been rescaled with a factor 0.1, so as to yield a realistic average potential energy and
realistic transition probabilities for β = 0.8. With this choice of parameters, the system
exhibits two metastable regions centred around c0 = (−0.5, 1.5) and c1 = (0.5, 0) that
are connected by a third, less metastable region close to the point c1/2 = (−0.1, 0.5);
see Figure 4.

As a first step, we have computed the MPTPs using both ZTS and FTS methods.
The MPTPs are shown in Figure 4; cf. [38]. Notice even for this relatively smooth
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Figure 4. Scaled Müller-Brown potential with Voronoi cells. Yellow dashed line
and black dotted line are the MPTPs computed using ZTS method and FTS
method respectively. The Voronoi cell Ci corresponds to node xi are shown.

potential, the MPTP obtained from ZTS method is slightly different from the one
obtained from FTS method due to temperature-related entropic effects. (In the FTS
case, we have decreased the temperature to β = 3.0 in order to reduce the diffusivity
in the system after having observed that the FTS method becomes rather sensitive to
the initialization of the string and may converge to an unphysical transition path.)

As the next step, we have solved the CE minimization problem (53) and its
dual sampling problem for G(x) = λ, with λ ∈ {0.5, 1.0, 2.0}. To this end, we
have placed basis functions along the discrete nodes xl, 0 ≤ l ≤ N = 39 of the
discrete representation of the FTS-MPTP (black dots in Figure 4), where we define
x2 = (−0.53, 1.47) to be the initial point as it has lower potential energy than x0 and
x1. Denoting by {Cl: 0 ≤ l ≤ N} the associated Voronoi tessellation, we define τ to
be the first hitting time of C39, which is centred at the last node x39 on the MPTP.

Before going into the comparison of the results, we have generated 105

independent realizations of the uncontrolled dynamics (u = 0, ∆t = 10−4) and
estimated the mean first hitting time E[τ ] ≈ 258.6, with standard deviation

√
Var[τ ] ≈

258.3. The large mean value and the fact that the standard deviation is of the same
order of magnitude indicate that the typical transition paths from C2 to C39, given
our choice of simulation parameters for the uncontrolled dynamics, are typically long
and diffusive.
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Figure 5. The added potential −
√

2
∑
i ωiϕi(x) corresponding to the control

force computed with Gaussian basis functions. The white dots are the discrete
nodes of the approximation to the MPTP and are chosen to be centers of the
Gaussians.

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Voronoi cells
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Figure 6. (a) Voronoi cells Cl associated with the nodes xl, l = 0, 1, · · · , N ; the
MPTP is in white, the black segment corresponds to the region, in which the
control is large. (b) Average control force per Voronoi cell with Chebyshev basis.
(c) Average control force with localized piecewise linear basis functions.

We have then computed the control force using Algorithm 4 with N + 1 = 40
Gaussians ϕi = N (xi, r

2
i ) as basis functions centered at each node xi and radii ri that

were chosen to be 5 times the mean Euclidean distance of xi to its nearest neighbours
xi±1. Algorithm 3 was first used to solve the optimal control problem for a 5-step
temperature sequence βj ∈ {0.5, 0.6, 0.7, 0.8, 0.8} with Nj ∈ {105, 105, 105, 106, 106}
realizations. The calculation was repeated with Chebyshev basis functions (49) and
localized piecewise linear basis functions (51), with a Chebychev basis up to order 12;
for simplicity we choose the cutoff function to be φ(r) ≡ 1 (no cut-off).
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For Gaussian type basis functions, it is clear that adding a control force to
the dynamics is equivalent to modifying the original potential V (x) by adding a
linear combination of Gaussians, and Figure 5 visualizes the added potential. For
the other two types of non-integrable basis functions, Figure 6 displays the 2-norm
of the control forces along the MPTP. Once the CE-based control forces have been
computed, we sample the corresponding cost values J(u) and the average trajectory
length are computed from 106 independent realizations of the controlled dynamics.
The results are shown in Table 5. As in the previous examples, and in agreement
with our expectations, the control renders the trajectories to become much shorter
compared to the average trajectory length of the original dynamics for u = 0.

λ = 0.5 λ = 1.0 λ = 2.0
Gaussian 5.3 / 7.9 2.6 / 8.8 1.3 / 9.8

Chebyshev 5.2 / 8.0 2.6 / 9.1 1.4 / 10.3
Localized 2.6 / 7.5 1.4 / 8.8 0.9 / 10.2

MC - / 6.0 - / 7.1 - / 8.4
PDE - / 6.0 - / 7.0 - / 8.3

PDE-MC 2.6 / 6.1 1.5 / 7.2 0.9 / 8.5

Table 5. Cost value J(u) and average trajectory length for various λ and different
basis functions (Gaussian, Chebyshev, localized). The rows “MC” and “PDE”
contain the optimal cost from the left hand side of dual relation (17), as obtained
by sampling of the uncontrolled dynamics or by solving PDE (9). The row “PDE-
MC” records estimates of Eµu [τ ] and J(u) based on sampling the dynamics with
the optimal PDE-based control. 106 trajectories were simulated in each case,
except for “MC”, for which 105 trajectories were used.

In order to validate our numerical results for the control problem, we also calcu-
late the optimal cost by means of the dual relation (17), whose left hand side can be
computed either by directly generating trajectories and computing the expectation or
by solving the PDE (9). The results of the brute-force Monte Carlo calculation based
on 105 trajectories with time step ∆t = 10−4 starting from x2 is shown in the row
“MC” of Table 5. For a thorough comparison, we moreover discretized (9) using the
finite volume method (FVM) introduced in [43] on the domain [−1.5, 1.0]× [−0.2, 2.0]
with a regular 1000×1000 grid; the Dirichlet boundary condition with value one (cor-
responds to H = 0) was applied to all discretization boxes inside the Voronoi cell C39.
The latter approach leads to a (non-symmetric) linear system of size 106, that was
solved in parallel using the numerical software package PETSs [44]. We found that the
convergence is fast when the BiCGSTAB method (stabilized version of BiConjugate
Gradient Squared method) was used [45]. The resulting value function U is plotted
in Figure 7. Notice that from (7) and (3), the added potential corresponding to value
function U is 2U , i.e. Figure 7 should be rescaled by a factor 2.0 if one want to
compare it with Figure 5. In Table 5, the cost value U(x2) and the cost obtained by
simulating the controlled dynamics with the PDE-based optimal control are recorded
(see rows “PDE” and “PDE-MC”). We conclude that the controls obtained from any
of the above basis functions leads to a cost value J(u) which is close to the optimal
cost. Another general observation is that the control forces increase with λ (see Ta-
ble 5 or Figures 5 and 6) becomes larger, which is not surprising if one bears in mind
that the larger λ, the more weight is put on the minimization of Eµu [τ ], but less on
the control penalization.
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λ MC Gaussian Chebyshev Localized PDE-MC

0.5

E
[
e−βλτ

]
8.0× 10−3 8.0× 10−3 8.0× 10−3 8.0× 10−3 8.0× 10−3

√
Var 5.8× 10−2 1.4× 10−2 2.7× 10−2 3.6× 10−2 3.5× 10−3

MFHT 258.6 5.3 5.2 2.6 2.6
Accel(u) 1.0 4.2× 102 1.1× 102 1.3× 102 1.4× 104

1.0

E
[
e−βλτ

]
3.5× 10−3 3.4× 10−3 3.4× 10−3 3.4× 10−3 3.4× 10−3

√
Var 3.3× 10−2 6.4× 10−3 1.4× 10−2 2.2× 10−2 1.6× 10−3

MFHT 258.9 2.6 2.6 1.4 1.5
Accel(u) 1.0 1.3× 103 2.8× 102 2.1× 102 3.7× 104

2.0

E
[
e−βλτ

]
1.2× 10−3 1.3× 10−3 1.2× 10−3 1.3× 10−3 1.3× 10−3

√
Var 1.9× 10−2 2.8× 10−3 7.0× 10−3 9.8× 10−3 6.2× 10−4

MFHT 257.6 1.3 1.4 0.9 0.9
Accel(u) 1.0 4.6× 103 6.8× 102 5.4× 102 1.3× 105

Table 6. Importance sampling of E
[
e−βλτ

]
and comparison with standard

Monte Carlo. “PDE-MC” records the result of importance sampling based on
the PDE solution. For standard Monte Carlo, a time step ∆t = 10−4 and 105

trajectories were used, otherwise 106 trajectories were simulated at time step
∆t = 5× 10−5.

The second numerical test with the Müller-Brown potential involved the sampling
problem (8). With G as before, we were aiming at computing E

[
e−βλτ

]
, which can

be interpreted as the moment-generating of the random variable −βτ with β > 0.
As before, we compared importance sampling with the CE-based controls and brute-
force Monte Carlo and generally observed large gains in the computational efficiency,
independently of the control bases used (see Table 6). Upon closer inspection, we
observed that the average length of the trajectories was shortest for the localized
linear basis set, while the Gaussian basis provided the smallest standard deviations
and, consequently, the highest acceleration index. This superiority of the Gaussian
basis in this case was clear in despite of the fact that the computational cost of the
Gaussian CE minimization is larger than for the other bases sets (due to the global
support of the Gaussians). Finally, we repeated the importance sampling calculation
with the control that had been obtained from solving the boundary value problem (9).
As was to be expected, the variance was smallest and so the largest computational
gain was achieved. Note that even with the PDE reference solution at hand, a zero
variance importance sampling estimator is out of reach, because of inevitable space
and time discretization errors.

6. Conclusions

In this article, we have studied optimal control and adaptive importance sampling from
the perspective of reduced-order models of diffusions. The idea is to replace a possibly
high-dimensional dynamical system by a simpler (i.e. lower dimensional) dynamics,
for which the underlying control problem can be easily solved, where in contrast to our
previous work [12, 35] no explicit assumptions on scale separation have been made.
Specifically, we have discussed two different scenarios in which reduced-order models
provide sufficiently accurate solutions that can be used to control the original (high-
dimensional) dynamics close to optimality: Situations in which a suitable collective
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Figure 7. Reference value function U for λ = 1 based on the finite-volume
discretization of (9) on a 1000 × 1000 grid. For comparison the 40 nodes of the
discretized string are shown.

variable that describes the essential dynamics is known, and situations in which the
system either exhibits domimant pathways or is close to its viscosity limit. We
have proposed numerical algorithms based on first-order optimal prediction [4] and
a combination of string method [13] and cross-entropy minimization [19] that can
cope with either situation and that are flexible enough to be combined with almost
any other available numerical algorithm for solving optimal control and importance
sampling problems. All algorithms have been validated and systematically compared
to each other on the basis of extensive numerical tests.

This is clearly not the end of the story. Firstly, a thorough test of the algorithms
should involve high-dimensional problems, such as a realistic model of a small protein
or a peptide, which we have refrained from looking at because the purpose of this
article was on systematic tests and comparisons of the algorithms with regard to their
accuracy rather than efficiency and implementation issues. Secondly, it would be
desirable to derive computable error bounds (e.g. in the spirit of [6, 46]) and better
understand the convergence of and the approximations invoked by the cross-entropy
method. Thirdly, systematic algorithms how to find good collective variables are still
missing and there is room for hope that the duality between sampling and control
that was used here can be also used to identify the essential dynamics and suitable
coordinates in an iterative manner by a clever combination of free and targeted state
space exploration, i.e., by iterating sampling and control in the right way.
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