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ReaDDyMM: Fast Interacting Particle Reaction-Diffusion Simulations Using
Graphical Processing Units
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ABSTRACT ReaDDy is a modular particle simulation package combining off-lattice reaction kinetics with arbitrary particle
interaction forces. Here we present a graphical processing unit implementation of ReaDDy that employs the fast multiplatform
molecular dynamics package OpenMM. A speedup of up to two orders of magnitude is demonstrated, giving us access to
timescales of multiple seconds on single graphical processing units. This opens up the possibility of simulating cellular signal
transduction events while resolving all protein copies.
INTRODUCTION
Modern and quantitative experimental techniques have pro-
vided overwhelming evidence that cells are not well-mixed
containers: specific spatial arrangements of molecules with
well-defined particle numbers, the diffusion-mediated trans-
port between them, which is often affected by crowding and
space exclusions, and stoichiometric association/dissocia-
tion reactions play a key role in cellular signal transduction.
No experiment is able to simultaneously probe localizations
and time-sequences of all relevant molecular processes
in vivo. Thus, computer simulations are unique in their
ability to integrate available experimental data in a physi-
cally realistic model that can be run to study the complete
cellular system.

Classical reaction kinetics simulation techniques lack the
level of detail necessary to simulate biological systems
at physically realistic conditions: well-mixed approaches
do not resolve space, and concentration-based approaches
do not keep track of molecule copy numbers. Among the
most realistic reaction kinetics models are particle-based
reaction-diffusion techniques that resolve every reacting
molecule in space and time (1–3). Most available particle-
based reaction-diffusion techniques lack interaction
potentials (or forces) between particles that are required
to realistically model molecular aggregates, clusters, or
fibers/chains. Molecular dynamics (MD) simulations, on
the other hand, permit modeling of particles with interaction
potentials, but MD implementations are generally not built
to facilitate reactions between particles and do not tolerate
significant changes in the particle numbers over time.

The software package ReaDDy (4) is believed to be the
first generic implementation of a new class of reaction
Submitted November 4, 2014, and accepted for publication December 4,

2014.

*Correspondence: frank.noe@fu-berlin.de

Editor: Daniel Beard.

� 2015 by the Biophysical Society

0006-3495/15/02/0457/5 $2.00
kinetics models combining particle-based reaction-diffusion
with interaction potentials, which we shall call interacting-
particle-reaction-diffusion dynamics. In ReaDDy, one
typically simulates signaling cascades by resolving each
protein copy with a single or a few tethered particles.
With most cellular proteins having micromolar concentra-
tions, and most biochemical pathways requiring a few pro-
tein types, this leads to a few 1000 particles in a typical
simulation setup. ReaDDy is a MD package in the sense
that arbitrary interaction potentials can be defined between
particles and multiple dynamical models can be employed,
although time-discretized Brownian dynamics and Metrop-
olis Monte Carlo are the most common models to update
particle positions. ReaDDy also permits unimolecular
and bimolecular reactions to be defined between any of
the simulated particles (e.g., Aþ B#C). More complex
reactions (e.g., three or more educts) must be split into
bimolecular steps.

The reference implementation of ReaDDy, available un-
der the BSD license at https://github.com/readdy, is written
in JAVA, a language that combines rapid development with
an execution speed similar to the language C. However,
JAVA is less suited for highly parallel computing, and this
single-threaded implementation practically limits simula-
tion timescales of ~100 ms for ~1000 particles. These time-
scales facilitate the study of very fast processes, such as the
activation phase in phototransduction requiring ~200 ms of
simulation time with 1000 slowly-diffusing particles (5). To
access a wider range of biological phenomena and larger
simulation systems, a significant speedup is needed.

ReaDDy was designed with modular software architec-
ture. In particular, its core package, which runs the most
expensive computations, can be replaced by implementa-
tions in other languages that are optimized for specific
computing platforms. Implementations based on the
languages C or Cþþ can be easily executed through the
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JAVA native interface (JNI). To our knowledge, we present a
new implementation of the ReaDDy core where the particle
dynamics are propagated on graphical processing units
(GPUs). This implementation uses the fast, open-source,
and flexible MD package OpenMM (6,7) in order to propa-
gate particle positions (here using Brownian dynamics
although other integrators could be easily used), while
computing the reactions on the central processing unit
(CPU). It is demonstrated that this implementation can yield
up to a factor-of-100 speedup when the timescales of reac-
tions are significantly smaller than the particle integration
timesteps. Such a scenario is common, with integration
timesteps typically on the nanoseconds timescales, while
biochemical reactions rarely have rates higher than 1/ms.
The two-orders-of-magnitude speedup will permit a much
wider range of biological processes to be simulated at sin-
gle-particle resolution with custom hardware, including
the photoactivation in a complete rod cell, or presynaptic
exo- and endocytosis in neurotransmission. Further applica-
tions of ReaDDy are discussed in Schöneberg et al. (8).
MATERIALS AND METHODS

ReaDDy and ReaDDyMM

Let

Xðt1; t2Þ ¼ �
x1ðt1; t2Þ;.; xNt2

ðt1; t2Þ
�

be an ordered list describing the system configuration. We call t1 the dy-

namics time and t the reaction time—these two clocks are distinguished
2

in order to represent the fact that the dynamical equations and the reaction

kinetics equations are integrated separately. Nt2 is the total number of

particles at reaction time t2 (the length of X can vary over time). The value

xi(t1,t2) is a vector containing all properties needed to describe the instanta-

neous state of particle i, at least three floating-point numbers for its position,

and an integer number for its type, as

xiðt1; t2Þ ¼ �
qi;1ðt1; t2Þ; qi;2ðt1; t2Þ; qi;3ðt1; t2Þ; aiðt2Þ

�
:

The vector could contain additional information, such as particle velocities

when nonoverdamped dynamics are used. ReaDDy usually propagates the
configuration by iterating two steps:

Step 1. Dynamics: X(t,t) / X(t þ t,t), and

Step 2. Reactions: X(t þ t,t) / X(t þ t, t þ t).

Particle reactions in ReaDDy can be very complex. For example, it is

possible for a protein to consist of several tethered particles, and when bind-

ing a ligand particle this could be modeled as building a new particle into

the particle network representing the protein-ligand complex. Thus, particle

reactions may involve changes not only in the particles’ numbers and posi-

tions, but also to the system topology and energy function. For this reason,

ReaDDyMM was designed to handle all reactions within the ReaDDy CPU

implementation (Fig. 1 B), while the computationally most intensive part of

integrating the particle dynamics is delegated to the OpenMM GPU imple-

mentation (Fig. 1 D).

The setup and parameterization of the simulation occurs completely via

the usual ReaDDy input files (Fig. 1 A). In particular, the user can specify

various particle interactions, reaction rates, initial coordinates, particles

diffusion constants, and integration timesteps for the reactions and dynamic

calculations. Parsing this input and setup of the OpenMM simulation is
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entirely automated and invisible to the user. At initialization time, all

particle positions and parameters such as radii and diffusion constants are

passed from JAVA-ReaDDy (Fig. 1 B) to a Cþþ wrapper (Fig. 1 C), which

builds the relevant OpenMM simulation objects. OpenMM was accessed

using its Cþþ interface from JAVA using the JNI. After building the

OpenMM system (Fig. 1 D), the interface calls a number, n, of integration

steps. The value n is the coarse-graining factor for the reaction kinetics

timestep, a simulation parameter that trades between speedup and accuracy

of the simulation. Briefly, the dynamics/reactions integration scheme

becomes

GPU : Xðt; tÞ/Xðt þ t; tÞ///Xðt þ nt; tÞ:

CPU : Xðt þ nt; tÞ/Xðt þ nt; t þ ntÞ:
At time t, particle positions are copied from the CPU to the GPU in order to

start the particle dynamics integration sweep. After n dynamics timesteps

and a time nt later, they will be copied back in order to evaluate and execute

particle reactions on the CPU. Each such copy event involves data transfer

through the PCIe bus and the JNI interface (Fig. 1, B–D). When n is small,

these interfaces become a bottleneck in execution speed, and in the worst

case could lead to a situation where the GPU implementation is slower

than the CPU implementation. When n is large, a large speedup of the

GPU implementation over the CPU implementation is possible. However,

n can only be increased to a point before the reaction kinetics becomes inac-

curate. The value nt needs to be significantly smaller than the timescale

of the fastest reactions in the system to avoid missing reaction events by

too-large-reaction timesteps.

Because OpenMM does not support on-the-fly changes of particle

numbers, we have introduced an initially noninteracting dummy particle

buffer to generate or consume particles consumed or generated by reactions.

Such a buffer is created for every particle type with a given diffusion

constant.
RESULTS

We demonstrate the validity and efficiency of ReaDDyMM
on a test system established in Schöneberg and Noé (4).
We use a cubic box with 100-nm edge length. Particles
interact with each other and with the box walls with a
soft-core repulsion potential. We have simulated different
numbers of particles: 1135, 3017, and 4733, to obtain sys-
tems with 10, 30, and 50% occupied volume density, respec-
tively. Three different particle types (A, B, and C) are
simulated with the reversible reaction A þ B ! C. (See
Schöneberg and Noé (4) and Table 1 for the simulation pa-
rameters.) For the 50% density system we here used several
sets of (forward rAþB/C and backward kC/AþB) micro-
scopic reaction rates: slow (105 s�1, 5 � 103 s�1), interme-
diate (106 s�1, 5 � 104 s�1), and fast (107 s�1, 5 � 105 s�1).
The 10 and 30% systems were only simulated with the inter-
mediate rates. The forward rates refer to reaction radii of
1.5 nm for A- and 3.0 nm for B-particles.

All systems were equilibrated using ReaDDy’s Metrop-
olis Monte Carlo implementation (4) before starting the
production runs. The timestep for calculating the dynamics
was kept constant at 0.1 ns. The reaction timestep was var-
ied in order to explore the tradeoff between speedup and
reaction kinetics accuracy. For each system, we computed
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FIGURE 1 Scheme of the ReaDDyMM software architecture. (A) User layer: the user specifies particle interactions, reactions, and initial coordinates by

input files; runs a ReaDDy simulation; and harvests trajectory data or statistical analyses. (B) Reaction kinetics layer: the reaction kinetics is handled by the

JAVA-based CPU-implementation of ReaDDy. (C and D) Core layer: particle dynamics and simple reaction event handling is done by the modular

ReaDDy core. This implementation uses OpenMM for the GPU implementation of particle dynamics (D), and connects to the reaction kinetics layer through

a Cþþ interface (C). For a good speedup, it is important that a significant number n (typically 100–1000) of dynamics times steps are conducted per reaction

timestep.
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the kinetics by averaging over 10 independent runs of
0.01-ms length each.

Fig. 2 shows simulation results for a reaction timestep
of nt ¼ 0.1 ms that is obtained for n ¼ 1000 dynamics inte-
gration steps per reaction step. For this setting, the results
in Fig. 2 demonstrate that ReaDDyMM accurately repro-
duces the dynamics and reaction kinetics using the ReaDDy
implementation with t ¼ 0.1 ns as a reference.
TABLE 1 Depiction of the speedup from ReaDDy to

ReaDDyMM

N r (%) nt (ms) t0 (min) tMM (min) Speedup

1135 10 0.1 100 3.5 28.4

3017 30 0.1 651 9.9 65.6

4733 50 0.01 1573 38.2 41.2

4733 50 0.1 1573 19.7 80.0

4733 50 1 1573 19.3 81.4

4733 50 n/a 1517 13.2 114.9

The dynamics timestep was chosen to be t¼ 0.1 ns. N is the number of par-

ticles simulated, r the particle density. The reaction timesteps nt are given,

and were produced using n equal to 100, 1000, or 10,000. The term ‘‘n/a’’

means that no reactions were executed. Thewall-clock times needed to simu-

late 1,000,000 timesteps with the softwares ReaDDy (t0) and ReaDDyMM

(tMM) are given. The speedup is computed from the ratio t0/tMM.
Fig. 3 compares ReaDDy’s reaction kinetics with the
ReaDDy reference (yellow) as a function of the timestep.
For the system simulated here, reaction timesteps of nt %
0.1 ms performed well, while a reaction timestep of nt ¼
1 ms led to systematic errors in the kinetics. Fig. 3 shows
the increase of systematic simulation error when n is set so
large that the reaction timestep is on the order of the inverse
fastest reaction rate. Therefore we suggest that the reaction
timestep is chosen one order-of-magnitude smaller than
the inverse of the fastest microscopic reaction rate, i.e.,
nt % 0.1 � (k)�1 or, equivalently, n % 0.1 � (kt)�1.

The diffusion timestep t has to be chosen carefully in
order to keep the Brownian dynamics integration error
small. Because the integrator uses a local linearization of
the nonlinear potential, it is only a good approximation
when the timestep is small enough compared to the curva-
ture of the potential. Thus, stiffer potentials require shorter
timesteps (4). E.g., for a harmonic repulsion with force con-
stant kpot ¼ 10 kJ mol�1 nm�2 between two particles with
collision radius rc ¼ 3 nm and diffusion constant D ¼
143.1 mm2/s, a valid timestep is t ¼ 0.1 ns. In the future
we plan to automate the choice of the timestep based on
the interaction potentials employed.
Biophysical Journal 108(3) 457–461
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FIGURE 2 Simulation results for the reversible reaction A þ B! C with particles enclosed in a cube of 100-nm edge length. Particle numbers are varied

to obtain 10, 30, and 50% occupied volume density in rows 1, 2, and 3, respectively. The particle and reaction dynamics timesteps were set to 0.1 ns and 0.1

mm, respectively. The first column visualizes the simulated system using VMD (9). Columns 2–4 compare different system statistics between the CPU refer-

ence implementation of ReaDDy and the CPU/GPU hybrid implementation ReaDDyMM. Column 2 shows the time evolution of particle types A and C (B is

redundant). Column 3 reports the radial distribution functions of particles A and B. Column 4 shows the mean-square displacements of all particle types over

time. All system statistics are accurately reproduced with ReaDDyMM. To see this figure in color, go online.
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Table 1 reports the performance of ReaDDyMM using a
Tesla K20c GPU (NVIDIA, Santa Clara, CA) with a Xeon
CPUE5-2609, 2.40 GHz (Intel, Mountain View, CA) in com-
parison with the ReaDDy reference implementation running
on a single Core2 Quad CPU Q6600, 2.40 GHz (Intel).

Absolute times are given for 1,000,000 dynamics simula-
tion timesteps. Note that due to the short-ranged nature of
ReaDDy, simulation times are proportional to the number
of particles, N, when a fixed particle density r is given.
In Table 1, N changes as a result of r, and therefore a super-
linear increase of the simulation time is seen.

Systems with higher numbers of particles use the GPU
more efficiently and thus benefit from a high speedup rate
compared to CPU-ReaDDy. For the system with 4733 parti-
cles (50% density), the speedups are given for different
choices of n, i.e., of the reaction timestep. It is seen that
increasing n increases the speedup. However when using
the large reaction timestep of 106/s with the fast reaction
parameters (106/s association rate), this comes at the price
of losing accuracy in the reaction kinetics. The maximum
speedup for this system is ~115, which was obtained by
switching off the reactions and executing all computations
Biophysical Journal 108(3) 457–461
on the GPU, thus avoiding the GPU-CPU communication
bottleneck.

How these wall-clock runtimes per 1,000,000 steps trans-
late into simulated timescales strongly depends on the sys-
tem setup. A timestep of 0.1 ns as used above is needed
for small soluble molecules such as ATP. Typical proteins
can be simulated with timesteps of ~1 ns (4), such that a
coarse-grained simulation of a bacterial cytosol segment
(using r ¼ 50%, N ¼ 4733, n ¼ 1000, and t ¼ 1 ns) would
require 3 h, 20 min/ms simulation time using 4733 particles,
or approximately three days per ms simulation time using
100,000 particles (for comparison, Escherichia coli has
~3,000,000 protein copies in total).

Many signal-transduction processes, such as photo-
transduction or neurotransmission, are governed by slowly
diffusing membrane or membrane-associated proteins
permitting timesteps of ~10 ns (5). The protein volume den-
sity is low in such simulations; using r ¼ 10%, N ¼ 1000,
n ¼ 1000, and t ¼ 10 ns would require ~6 h for 1 s of simu-
lation time. A full retinal rod cell disk membrane (~30,000
proteins) could be simulated for 1 s in approximately one
week.
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FIGURE 3 Reaction kinetics integration error as a function of the reac-

tion timestep in a A þ B ! C reaction with rAþB/C ¼ 106 s�1 per

encounter complex. Particle motion is integrated at 0.1 ns timesteps, while

the reaction timestep is varied. (A) Number of particles A and B (upper

curve) and C (lower curve) over time. (B) Maximum relative error of the

C-population, defined as [C(t)] – [Cref(t)]/[Cref(N)]. With a reaction time-

step 10-fold faster than the inverse fastest reaction rate, the reaction kinetics

are still accurately modeled, but large errors are obtained when the reaction

timestep approaches the inverse of the fastest microscopic reaction rate. To

see this figure in color, go online.
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DISCUSSION

The coupling of the particle-base reaction-diffusion simula-
tion package ReaDDy with the multiplatform MD package
OpenMM to ReaDDyMM has resulted in a fast GPU
implementation of a particle-based reaction-diffusion solver
with particle interaction forces. As a result, biologically
important signaling pathways that take place in seconds
(e.g., neurotransmission or phototransduction) can now be
simulated by explicitly resolving all involved biomolecules
in space and time in a realistic cellular architecture.

This implementation exploits the fact that due to typical
reaction rates in biological applications, the reaction
kinetics can be integrated at a larger timestep than the time-
step needed to propagate the particle dynamics. When such
a timescale separation is not present, an efficient GPU
implementation will require us to implement a significant
part of the reaction-kinetics solver on the GPU. ReaDDy’s
software design allows for such a setup, and we will pursue
this in the future.

We hope that ReaDDy and ReaDDyMMwill be useful for
the community. The code is hosted using the BSD license at
https://github.com/readdy. Contributions are welcome.
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