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Abstract. Thermodynamic free energies or cumulant generating functions play a significant
role in the estimation of rare event statistics of equilibrated systems because of their interpretation
as normalisation constants. In this article we discuss a recently proposed method [C. Hartmann
and C. Schütte, J. Stat. Mech. Theor. Exp., (2012), P11004] for variance reduction of free energy
estimates of reversible diffusions by minimisation of a certain control functional. Our derivation
of the method using the Cameron-Martin-Girsanov formula adds a martingale term to the control
functional. Using numerical examples involving the calculation of rare event probabilities, we show
that the martingale-based functional exhibits smaller variance under suboptimal controls, and that
minimisation of the control functional by gradient descent yields free energy function approximations
that exhibit more stability.
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1. Introduction. Free energy differences are important quantities for charac-
terising the properties of physical systems. For example, in chemical physics, one
may model a chemical reaction by viewing the reactive complex as a physical sys-
tem. Roughly speaking, the free energy difference of the reactive complex between its
educt and product states characterises the energetic barrier which must be overcome
in order for the reaction to take place. Crucially, free energy differences may be used
to estimate the reaction rate, via Kramers’ theory.

A popular model for reactive complexes in computational physics are diffusions -
i.e., Markovian dynamical systems with continuous paths. This is because diffusions
on energy landscapes can exhibit the multiscale nature of molecular dynamics, from
the short time scale dynamics corresponding to random fluctuations, to the long
time scale dynamics corresponding to transitions between basins of low energy on the
energy landscape. Furthermore, it makes sense to model chemical reactions using the
inter-basin transition events, because one can also model the educts and products as
regions of the system’s state space corresponding to basins of low energy.

In computational molecular dynamics, the challenge in studying transition events
is their rarity. The random fluctuations that drive inter-basin transitions are uncor-
related, and impart amounts of energy that are small compared to the associated free
energy differences. Thus, it becomes necessary to develop methods for importance
sampling of diffusions and for computing free energy differences. One important
class of methods is based on the relations between nonequilibrium and equilibrium
statistical mechanical systems, e.g., those of Jarzynski [14] and Crooks [3]. These
nonequilibrium methods involve applying a biasing force in order to drive the system
out of equilibrium, and exploiting relations between equilibrium and nonequilibrium
probability densities of observables in order to estimate the equilibrium average of a
given property using nonequilibrium measurements. The mathematical theory behind
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importance sampling methods for diffusions also continues apace; see [7,8,29] and the
references therein for some examples.

In this paper, we derive and extend a nonequilibrium method [13] for estimating
properties of diffusions on landscapes via the solution of a stochastic optimal control
problem. The method expresses such properties in terms of a quantity which formally
resembles the Helmholtz free energy in statistical physics. Our derivation uses the
Cameron-Martin-Girsanov formula to obtain the key inequality (2.12) of the method.
The derivation yields a nonequilibrium estimator of the free energy which modifies
the estimator in [13] by the addition of a martingale term. The main contributions
of this paper are to show how the martingale term changes the statistical properties
of the nonequilibrium estimator and leads to different gradient descent dynamics. In
particular, we show that the martingale-based estimator exhibits smaller variance,
and that the resulting martingale-based gradient descent dynamics are more stable.

The outline of this paper is as follows. We present the theory behind the method
in Section §2, the numerical discretisation scheme in Section §3, and an illustrative
example in Section §4. In addition to the derivation of the method in Section §2.1,
the new results in this paper are proofs of convergence of measures in Section §2.3, an
analysis of the role of the martingale in the approximate gradient descent dynamics
in Section §3.1, and an analysis of the sensitivity of the gradient descent algorithm to
some parameters in Section §4.3. We conclude in Section §5.

2. Theory. In this section, we apply Girsanov’s theorem to derive the key in-
equality of the method presented in [13]. The requisite theory of continuous-time
stochastic processes may be found in standard texts such as [9], and that of con-
trolled Markov processes in [10]. All stochastic integrals in this paper are of Itô type.

2.1. Changing between Equilibrium and Nonequilibrium Dynamics.

Let (Ω,F , (Ft)t≥0, P ) be the filtered probability space of continuous, Rd-valued paths,
i.e., Ω = C([0,∞),Rd), and B be a d-dimensional Brownian motion with respect to P
on this probability space. Let V : Rd → R be a differentiable potential and ε be a noise
scaling factor which is small relative to the differences between the maxima and min-
ima of the potential V . The object of interest is an ergodic, Markovian, d-dimensional
dynamical system X having continuous paths, which satisfies the stochastic differen-
tial equation

dXt = −∇V (Xt)dt+
√
2εdBt, t ∈ [0, T ],(2.1)

X0 = x ∈ R
d,(2.2)

for an arbitrary T ∈ (0,∞). We define (2.1) as the equilibrium dynamics of the
dynamical system. The equilibrium dynamics yield a map X : Ω → Ω, where for
every ω ∈ Ω, the function X(ω) : [0, T ] → R

d satisfies

Xt(ω) = X0 +

∫ t

0

−∇V (Xs(ω))ds+
√
2εBt(ω), t ∈ [0, T ].

We assume that the solution X of (2.1), (2.2) is pathwise unique. Recall that for a
general stochastic differential equation with measurable b and Σ

(2.3) dXt = b(t,Xt)dt+Σ(Xt)dBt,

there exists a one-to-one correspondence between distributions of solutions of (2.3)
and solutions of the martingale problem MP(b,ΣΣ⊤), where solutions of MP(b,ΣΣ⊤)



MARTINGALE-BASED GRADIENT DESCENT ALGORITHM 3

are defined to be probability measures on (Ω,F , (Ft)t≥0). In particular, for the special
case (2.1), we can think of the solutions to the martingale problems as probability
measures µx := P x ◦X−1 that solve the martingale problem MP(−∇V, 2ε) subject to
the initial conditionsX0 = x for any given x ∈ R

d, where the superscript on a measure
denotes conditioning on the initial condition. By the assumption that (2.1)–(2.2) has
a unique strong solution, it holds that µx is the unique solution to MP (−∇V, 2ε)
(see Theorem 5.4.1 in [9]). Consistent with our definition of (2.1) as the equilibrium
dynamics, we define µx to be the equilibrium measure of X .

Let W : Ω → R be a measurable random variable with the property that the
scaled, conditional cumulant generating function

(2.4) F (σ;x) := −σ−1 logEx[exp(−σW )]

is well-defined and finite for all σ > 0 and x ∈ R
d. In this paper, we shall refer to

W as ‘work’ and F as the ‘free energy’. We consider a method for estimating the
expected value of the equilibrium work done by X ,

(2.5) Ex[W ] :=

∫

Ω

W dµx =

∫

Ω

W (X(ω))P x(dω).

To estimate Ex[W ], we shall use another dynamical system Y , whose evolution is
given by the non-equilibrium dynamics

(2.6) dYt = c(t, Yt)dt−∇V (Yt)dt+
√
2εdBt, t ∈ [0, T ],

where c is a bounded, measurable, nonvanishing control. We assume that (2.6) has a
unique strong solution for every given initial condition Y0 = x, so the non-equilibrium
measure νx := P x ◦ Y −1 uniquely solves the martingale problem MP(c−∇V, 2ε) for
every x ∈ R

d. Note that we omit the explicit dependence of Y and ν on c.
The choice of the control c is often motivated by the need to sample events with

small µ-probability, i.e., by importance sampling. In importance sampling problems,
there is a set A ∈ F such that P x(X ∈ A) ≪ 1 which one wishes to sample more
frequently. In this case, c should be such that P x(Y ∈ A) ≫ P x(X ∈ A).

If c 6= 0 and x = X0 = Y0, then given ω ∈ Ω, the functions X(ω) and Y (ω) differ.
Hence, νx 6= µx, so the equilibrium and nonequilibrium expectations of work differ:

Ex[W ] 6= Ex
ν [W ] :=

∫

Ω

W dνx =

∫

Ω

W (Y (ω))P x(dω).

Thus, we cannot use nonequilibrium measurements of W to estimate the equilibrium
expectation of W . However, if µ is absolutely continuous with respect to ν, and if we
can sample values of the Radon-Nikodym derivative dµ/dν, then by

(2.7) Ex[W ] = Ex
ν

[
dµ

dν
W

]
,

we may obtain an unbiased estimate of the expected value of W (X) using sample
means of the product of dµ/dν with W (Y ).

Change of measure based on Girsanov’s theorem. We now explain how to
sample values of dµ/dν. By our assumption of boundedness of c, we have (see Theorem
5.5.1 in [9]) that there exists a probability measure Q on (Ω,F , (Ft)t) which is locally
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equivalent to P , such that Qx ◦ Y −1 solves the martingale problem MP(−∇V, 2ε).
Since MP(−∇V, 2ε) is uniquely solved by µ, it holds that µx = Qx ◦ Y −1. Thus

(2.8) Dt :=

(
dµ

dν

)

t

=
dQ

dP

∣∣∣∣
Ft

(Y ).

By the Cameron-Martin-Girsanov formula for dQ/dP ,

(2.9) Dt = exp

(
− 1√

2ε

∫ t

0

c(s, Ys)dBs −
1

4ε

∫ t

0

|c(s, Ys)|2ds
)
,

or Dt = exp(−Mt −At/2), where we define

Mt :=
1√
2ε

∫ t

0

c(s, Ys)dBs,(2.10)

At :=
1

2ε

∫ t

0

|c(s, Ys)|2ds.(2.11)

Recall that M and D are continuous local martingales with respect to P , that D is
strictly positive due to the boundedness of c, and that A is the quadratic variation of
−M . We omit the dependence of D, M and A on c.

Remark. Changing the minus sign preceding the Itô integral in (2.9) to a plus
sign yields a measure Q◦Y −1 that differs from the desired equilibrium measure µ. In
Section §3.1 we show that changing the sign also affects the gradient descent dynamics.

Theorem 2.1. Let σ > 0, x ∈ R
d, and F (σ;x) be as in (2.4). Then

(2.12) F (σ;x) ≤ Ex
P

[
W (Y ) +

1

4εσ

∫ T

0

|c(s, Ys)|2ds
]
.

Proof. By using (2.7)–(2.9) and Jensen’s inequality, we have

−σ−1 logEx [exp(−σW )] = −σ−1 logEx
ν [D exp(−σW )]

= −σ−1 logEx
ν

[
exp

(
−σ
(
W + σ−1MT + (2σ)−1AT

))]

≤ Ex
ν

[
W + σ−1MT + (2σ)−1AT

]

The conclusion follows, using (2.11) and the martingale property of M .
From the proof of Theorem 2.1, we obtain two random variables which differ

solely by the martingale M , which we shall write as

K(α, σ) :=W + (2σ)−1AT + ασ−1MT , α ∈ {0, 1} .(2.13)

Note that equality holds in Jensen’s inequality and thus in (2.12) if and only if W +
σ−1MT + (2σ)−1AT is νx-almost surely constant, since −σ log(·) is strictly convex.
In particular, K(α, σ) is in general a biased estimator of F (σ;x) for any x.

In [13], the authors proposed a nonequilibrium estimator that equals K(0, ε−1)
(up to scaling of c), and remarked that (2.12) provides an example of Legendre-type
duality relationships [2, 5, 12] between free energy and relative entropy,

(2.14) F (σ;x) = inf
ν≪µ

{
Ex

ν [W ] + σ−1KL(νx|µx)
}
,

where the relative entropy or Kullback-Leibler divergence [17] is

(2.15) KL(νx|µx) :=

{
Ex

ν

[
log
(

dν
dµ

)]
ν ≪ µ

∞ otherwise.
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Remark. In statistical physics, the duality (2.14) between entropy and free energy
appears in the definition of the canonical ensemble: If W exp(−σW ) ∈ L1(µ), then
the measure ν∗ for which the infimum in (2.14) is attained satisfies (cf. [5])

(2.16)

(
dνx

dµx

)∗

=
exp(−σW )

Ex[exp(−σW )]
= exp(−σ(W − F (σ;x))).

The rightmost expression can be interpreted as the Boltzmann distribution at in-
verse temperature σ > 0. Closely related is Jarzynski’s equality [14] that states that
exp(−β(W −∆F )) is a probability density with respect to the probability measure
of an externally driven Hamiltonian system when W is the nonequilibrium work done
on the system, β is the inverse temperature, and ∆F = FB − FA is the free energy
difference between two states A and B of the system in equilibrium.

We remark that by Theorem 2.1, the change of measure defined by (2.16) is
optimal in that a Monte-Carlo estimator of the free energy F based on the optimal
change of measure will have zero variance, i.e., the estimator will converge to the free
energy value in one step (cf. [21]). However, this observation is of limited practical use
because the normalization constant that appears in the Radon-Nikodym derivative in
(2.16) is exactly the quantity that one wants to estimate, namely F .

2.2. Stochastic optimal control. We briefly review the stochastic optimal
control problem presented in [12, 13]. We specify the random variable W in (2.5) as

(2.17) W (ω) =

∫ τ

0

f(ωs)ds+ g(ωτ ) =:

∫ τ

0

fsds+ gτ ,

where f, g ≥ 0 are nonnegative and bounded continuous functions, fs := f(ωs),
gτ := g(ωτ ), and τ is an almost surely finite random stopping time,

(2.18) τ = inf {t > 0 | Xt /∈ O} ,

for bounded, open O ⊂ R
d with smooth boundary. Let ψσ(x) := Ex[exp(−σW )] be

the ‘moment-generating function’ of W , considered as a function of the initial data
x ∈ O. For any w ∈ C2(Rd,R) define A to be the linear operator

(2.19) Aw =
d∑

j=1

ε
∂2w

∂x2j
− ∂V

∂xj

∂w

∂xj
.

Then by the Feynman-Kac theorem [19, pp. 201], ψσ satisfies the linear equation

(2.20) (A− σf)ψσ(x) = 0 , x ∈ O

with boundary condition

(2.21) ψσ(x) = exp (−σg(x)) , x ∈ ∂O .

For smooth potentials V ∈ C∞(Rd,R) and sufficiently small σ > 0, the strong maxi-
mum principle for elliptic partial differential equations implies that (2.20)–(2.21) has
a classical solution ψσ ∈ C2(O,R) ∩ C(O,R). Moreover ψσ is bounded away from
zero, which implies that the free energy F (σ, x) = −σ−1 logψσ(x) is a bounded and
smooth function of x whenever σ > 0 is sufficiently small.
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Solving a partial differential equation to compute the free energy is clearly not
recommended beyond one- or two-dimensional toy systems. An alternative, varia-
tional characterization of F that has been studied in [12, 13] is in terms of the value
function of a stochastic control problem: minimise the cost functional

I(u) = EP

[∫ τ

0

f(Ys) +
1

4εσ
|us|2ds+ g(Yτ )

]
(2.22)

over the set U of admissible controls u : [0,∞) → R
d, subject to

(2.23) dYt = (ut −∇V (Yt)) dt+
√
2εdBt.

We specify U as the set of bounded controls that are adapted to the filtration generated
by the Brownian motion, such that (2.23) admits a unique strong solution for every
initial condition Y0 = x. Note that solving the optimal control problem gives the
optimal control c∗ for which equality holds in (2.12).

We define I(u;x) as the version of I(u) conditioned on Y0 = x, and call

(2.24) vσ(x) = min
u∈U

I(u;x) , x ∈ O

the ‘value function’ or ‘optimal cost-to-go’ of the optimal control problem (2.22)–
(2.23). It follows from the dynamic programming principle of stochastic control [10]
that the optimal controls u∗ = argminI(u) are Markovian feedback laws of the form

(2.25) u∗t = c∗(Yt)

where c∗ : Rd → R
d is a bounded and measurable function that depends on the control

problem, through F . Since ψσ(x) > 0, we can rewrite (2.20) and (2.21) as

f(x) +AF (σ;x) − εσ|∇F (σ;x)|2 = 0 x ∈ O,(2.26)

F (σ;x) = g(x) x ∈ ∂O.(2.27)

Using that

(2.28) −εσ|∇F (σ;x)|2 = min
c(x)∈Rd

{
c(x) · ∇F (σ;x) + 1

4εσ
|c(x)|2

}
,

it follows that (2.26) is equivalent to

(2.29) min
c(x)∈Rd

{
AF (σ;x) − c(x) · ∇F (σ;x) + f(x) +

1

4εσ
|c(x)|2

}
= 0, x ∈ O.

Thus, (2.29) is the Hamilton-Jacobi-Bellman equation of the optimal control problem
defined by (2.22) and (2.23), and the unique optimal control which solves this problem
is the argument that minimises the quantity in the curly braces in (2.28),

(2.30) c∗(x) = −2εσ∇F (σ;x) = 2ε
∇ψσ(x)

ψσ(x)
.

Thus, by substituting the definition of c∗ in (2.30) into the nonequilibrium dynamics
(2.6), we find that the optimal nonequilibrium dynamics are of gradient form:

(2.31) dYt = −∇[2εσF + V ](Yt)dt+
√
2εdBt.

By definition of the value function and (2.17), it follows from Theorem 2.1 that
F (σ;x) = vσ(x), and hence c∗(x) = −2εσ∇vσ(x). Thus, one can obtain an ap-
proximation of the free energy F by quadrature if one has an approximation of the
optimal control, and the optimal control by differentiation if one has the free energy.
Note that, since ψσ ∈ C2(O,R), the optimal control c∗ is bounded in O.
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2.3. Convergence results. Recall that for every control c, equations (2.8)–
(2.9) give the corresponding change of measure D = dµ/dν, where ν = P ◦Y −1. Note
that we suppress the explicit dependence of Y , and hence of ν, on c. As c approaches
the optimal control c∗, we expect that ν converges in some sense to the optimal change
of measure ν∗, i.e. the unique minimizer of (2.12) as given by (2.16).

Theorem 2.2. Let x ∈ O ⊂ R
d. For an arbitrary bounded control c, let D be the

Radon-Nikodym derivative given by (2.9) and ν be the corresponding nonequilibrium
measure. When c = c∗, then we write D∗ and ν∗, where the optimal control c∗ is
given by (2.30). Then as ‖c− c∗‖∞ → 0,

(i) Dτ converges to D∗
τ P

x-almost surely, and
(ii) when restricted to Ft for any finite t ≥ 0, the nonequilibrium measure ν

converges to (ν∗) in the total variation norm, i.e.,

(2.32) TV(ν, ν∗)|t := sup {|ν(A)− ν∗(A)|, A ∈ Ft} → 0.

Proof. The uniqueness of c∗ follows from standard arguments and the specific form
of the stochastic control problem that is ‘linear-quadratic’ in the control variables [13];
cf. [10, Sec. IV.2]. Moreover, the assumptions on the potential V and the boundary ∂O
of the set O ⊂ R

d entail that the value function is differentiable almost everywhere.
Therefore the optimal feedback control c∗ is essentially bounded, and it suffices to
consider controls of the form c = c∗ + δ for δ > 0. By (2.8) and (2.9), we obtain

(2.33)

(
D

D∗

)

τ

=

(
dν∗

dν

)

τ

= exp

(
− δBτ√

2ε
− δ

2ε

∫ τ

0

c∗(Ys)ds−
δ2

4ε

)
.

To prove part (i), observe that the term in the exponenti77al satisfies

(2.34)

∣∣∣∣
δBτ√
2ε

+
δ

2ε

∫ τ

0

c∗(Ys)ds+
δ2

4ε

∣∣∣∣ ≤ δ

( |Bτ |√
2ε

+
τ‖c∗‖∞

2ε
+

δ

4ε

)
.

We only need to consider the first two of the three terms on the right-hand side of
(2.34). Since Bτ : Ω → R

d is a Gaussian random variable, it holds that P x-almost
surely, |Bτ | < ∞, and hence δBτ → 0 as δ → 0. By our assumption in Section §2.2
that τ <∞ P x-almost surely, it also holds that δτ → 0. By (2.34),

P x

(
lim
δ→0

∣∣∣∣
δBτ√
2ε

+
δ

2ε

∫ τ

0

c∗(Ys)ds+
δ2

4ε

∣∣∣∣ = 0

)
= 1,

which, with (2.33), implies that Dτ converges to D∗
τ P

x-almost surely.
To prove part (ii), observe that, by (2.33) and (2.15), the Kullback-Leibler diver-

gence of νx|Ft
with respect to (ν∗)x|Ft

satisfies

(2.35) KL (ν|ν∗) ≤ δ

(
t‖c∗‖∞

2ε
+

δ

4ε

)
.

Applying the Csiszar-Kullback-Pinsker inequality [4, 16, 22] to νx|Ft
and (ν∗)x|Ft

,

TV (νx, (ν∗)x)|t ≤
√
2KL(νx|(ν∗)x)|t.

Letting δ → 0, the conclusion follows.
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Remark. Note that we can replace t in Theorem 2.2(ii) with the bounded stopping
time min {τ, T }, since then we can replace t with T in the right-hand side of (2.35).
However, we cannot then let T → ∞ (i.e., we cannot set t = τ), since our assumption
that τ is almost surely finite does not guarantee that Ex

ν [τ ] is finite.

The importance of Theorem 2.2 is that the nonequilibrium measures depend in a
continuous way on the control. In particular, for any bounded, measurable random
variable φ : Ω → R defined on the filtered probability space, Theorem 2.2(ii) implies
that the statistics of φ with respect to νx will converge to the statistics of φ with
respect to (ν∗)x. Unfortunately, since neither K(α, σ) nor its variance are in general
bounded, we cannot expect that the variance ofK(α, σ) will go to zero as ‖c−c∗‖∞ →
0, even though Theorem 2.1 implies that the variance of K(α, σ) is zero when c = c∗.

2.4. Reweighted estimation. Recall that we seek to estimate the equilibrium
average Ex[W ] (2.5) of the path functional W defined in (2.17). In order to estimate
Ex[W ] from F (σ;x), one may use the property of cumulant generating functions, i.e.,

(2.36)
d

dσ

∣∣∣∣
σ=0

σF (σ;x) = Ex[W ].

Or, one may use the Taylor series approximation of log(1 + r) for |r| < 1 to conclude
that for sufficiently small σ,

(2.37) F (σ;x) ≈ Ex[W ]− σ

2
varx(W ),

assuming that the variance varx(W ) of W with respect to P x is finite. The method
which we consider in this study for estimating equillibrium expectations from free en-
ergy values directly benefits from the addition of the martingale term in the nonequi-
librium estimator. This procedure was applied to committor probabilities (see Section
§4 below) in [12].

Observe that, by (2.13), the martingale-based estimator K(α = 1, σ) satisfies
exp(−σK(1, σ)) = exp(−σW )D, where D = dµ/dν. By (2.7), we expect that
exp(−σK(1, σ)) is an unbiased estimator of Ex[exp(−σW )]. Suppose we seek to es-
timate the µx-expectation of an integrable path functional W, that is bounded from
below and of the form (2.17). We may assume that W > 0. Define

(2.38) W := −σ−1 log (W) ,

so that the free energy function F (σ;x) of W satisfies

(2.39) Ex[W] = Ex[exp(−σW )] = exp(−σF (σ;x)).

Thus, we can estimate Ex[W] by using sample means of exp(−σK(1, σ)). This method
requires only one estimate of the free energy function to obtain an estimate of Ex[W].
However, the method applies only to functionals W which are bounded from below.
By Jensen’s inequality and the strict concavity of the logarithm, the estimates of F
that are obtained from unbiased estimates of Ex[W] will be biased in general.

Remark. It is tempting to estimateEx[W ] using the identity Ex[W ] = Ex
ν∗ [D∗W ],

where the optimal change of measureD∗ for the cumulant generating function F (σ;x)
is available. It turns out, however, that when W ≥ 0, this leads to estimators that
perform worse than the equilbrium estimator for Ex[W ] in that they have larger
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variance. The property of unbiasedness permits comparison of the second moments
of the equilibrium and nonequilibrium estimators:

Ex
ν∗

[
(D∗W )2

]
= Ex

[
D∗W 2

]
versus Ex[W 2] .

It readily follows that the second moment - and hence the variance of the nonequilib-
rium estimator for the first moment - is reduced if and only if Ex[D∗W 2] < Ex[W 2].
If W ≥ 0, then by (2.16), we observe that

Ex
[
D∗W 2

]
≥ Ex[D∗]Ex[W 2] ≥ Ex[W 2] ,

since W 2 and D∗ = exp(σ(W − F )) are positively correlated, and since Ex[D∗] ≥ 1
by Jensen’s inequality. Thus, the variance of the nonequilibrium estimator of the first
moment will be larger than the variance of the equilibrium estimator, even though D∗

admits a zero variance estimate of the cumulant generating function. In Section §4
we explore the issue of variance reduction for reweighted estimates of Ex[exp(−σW )].

3. Discretisation. We follow the same numerical discretisation procedure as
described in [13]. Let (bi)1≤i≤n be a set of linearly independent, sufficiently weakly
differentiable basis functions from R

d to R. We project the free energy function F
and control to the span of the (bi)i, so that for some constant C, and using (2.30),

F (σ;x, a) := − 1

2εσ

n∑

i=1

aibi(x) + C,(3.1)

c(x; a) :=

n∑

i=1

ai∇bi(x).(3.2)

In order to solve the stochastic optimal control problem of minimising (2.22) subject
to the nonequilibrium dynamics (2.23), we need to find coefficients a = (ai)i which
give the projection of the optimal control c∗ to the linear approximation space.

Since the optimal control is of feedback form (2.30), we replace the measurable
control ut in (2.23) accordingly. Euler-Maruyama discretisation then yields

(3.3) Ŷk+1 − Ŷk = (c(Ŷk; a)−∇V (Ŷk))∆t+
√
2ε∆tηk+1, k = 0, 1, 2, . . . ,

where the (ηk)k are i.i.d. centred Gaussian random variables in R
d, tk+1 = tk + ∆t

for t0 = 0, and ∆t is the fixed time step of integration. With the discretisations of
the random variables τ , W , M , and A given in Section §2.2,

τ̂ := inf
{
k ∈ N | Ŷk /∈ O

}
,(3.4)

Ŵ (Ŷ ) :=

τ̂−1∑

k=0

f
(
Ŷk

)
∆t+ g

(
Ŷτ̂

)
,(3.5)

M̂τ̂ (a) :=
1√
2ε

τ̂−1∑

k=0

c
(
Ŷk; a

)√
∆tηk+1,(3.6)

Âτ̂ (a) :=
1

2ε

τ̂−1∑

k=0

∣∣∣c
(
Ŷk; a

)∣∣∣
2

∆t.(3.7)

we obtain the discretisations D̂ and K̂(α, σ; a) by replacing W , M and A with their
discrete counterparts in D (2.9) and K(α, σ) (2.13).
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The discretised stochastic control problem involves finding a control c(·, a∗) which
minimises the objective function K̂(α, σ; a) subject to the dynamics (3.3), i.e., of
finding optimal coefficients in (3.2). In the gradient descent algorithm of [13], each ai
in (3.2) changes at iteration ℓ from its current value aℓi to aℓ+1

i by step size ∆aℓi :

aℓ+1
i = aℓi −

∂

∂ai
Ex

ν

[
K̂(α, σ; a)

]ℓ
∆aℓi ,(3.8)

∂

∂ai
Ex

ν

[
K̂(α, σ; a)

]
= Ex

ν

[
∂

∂ai
K̂(α, σ; a)

]
− covxν

(
K̂(α, σ; a),

∂Ŝ

∂ai

)
.(3.9)

The derivatives of the Gaussian path density Ŝ and K̂(α, σ; a) are

∂Ŝ

∂ai
= −

√
∆t

ε

τ̂−1∑

k

∇bi(Ŷk) · ηk+1,(3.10)

∂K̂(α, σ; a)

∂ai
=

1

2σ

∆t

ε

τ̂−1∑

k=0

c(Ŷk; a) · ∇bi
(
Ŷk

)
+
α

σ

√
∆t

2ε

τ̂−1∑

k=0

ηk+1 · ∇bi
(
Ŷk

)
.(3.11)

We emphasise that, in the partial derivatives (3.9), (3.10), and (3.11), we have made

the approximation that τ̂ and Ŵ are independent of a. This can introduce significant
errors in the gradient descent dynamics, as we shall see in Section §4.3.

3.1. Role of the martingale term. Observe that (3.10) and (3.11) give the
discrete-time approximations of the following stochastic processes at time t = τ :

Si
t := − 1√

ε

∫ t

0

∇bi(Ys)dBs(3.12)

Ki
t(α, σ; a) :=

1

2σ

1

ε

∫ t

0

c(Ys; a) · ∇bi(Ys)ds+
α

σ

√
1

2ε

∫ t

0

∇bi(Ys)dBs.(3.13)

Since Si is an Itô integral with respect to Brownian motion, it is a martingale. Recall
that, given two continuous-time stochastic processes X and X ′,

covxν(Xt, X
′
t) = Ex

ν [〈X,X ′〉t] , t ≥ 0.

If X =M +N and X ′ =M ′ +N ′ are real-valued continuous semimartingales, where
M and M ′ are continuous local martingales and N and N ′ are processes of locally
bounded variation, then the covariance process 〈X,X ′〉t is defined by

(3.14) 〈M +N,M ′ +N ′〉t = 〈M,M ′〉t :=
1

4
(〈M +M ′〉t − 〈M −M ′〉t) .

In particular, processes of locally bounded variation do not contribute to the covari-
ance. Since A is the quadratic variation of M , it is increasing and hence locally of
bounded variation. Consider the work process defined by

(3.15) Wt :=W f
t +W g

t :=

∫ t

0

fsds+ gτ1[τ,∞)(t),

and note that Wτ defined by (3.15) equals the random variable W defined in (2.17).
Under the assumptions that f, g ≥ 0 are continuous and bounded,W f is an increasing
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process with continuous paths, and hence is locally of bounded variation, and W g is
locally of bounded variation since W g has a single jump-type discontinuity at t = τ .
Therefore (Wt)t is locally of bounded variation. The conclusion holds if we weaken
the conditions on f and g and require that f has countably many jump discontinuities
and that both f and g are finite. Thus, we have

covxν(K(α, σ; a), Si
τ ) = Ex

ν

[
〈K(α, σ; a), Si〉τ

]
= ασ−1Ex

ν

[
〈M,Si〉τ

]
,

where K(α, σ; a) is the limit of K̂(α, σ; a) as ∆t→ 0,

(3.16) Kt(α, σ; a)(ω) :=Wt(ω) +
1

4ǫσ

∫ t

0

|c(ωs; a)|2ds+
α

σ
√
2ε

∫ t

0

c(ωs; a)dBs.

By definition of M ,

〈
M,Si

〉
t
= − 1

ε
√
2

∫ t

0

c(Ys; a) · ∇bi(Ys)ds.

Thus, the preceding analysis shows that in the limit as ∆t→ 0, (3.9) becomes

(3.17)
α
√
2 + 1

2σε
Ex

P

[∫ τ

0

c(Ys; a) · ∇bi(Ys)ds
]
.

If α = 1, then the martingale term M̂ is included in the nonequilibrium estimator K̂
of the free energy, and the resulting martingale-based gradient descent dynamics given
by (3.11) will differ from the dynamics for α = 0. We also expect that changing the
minus sign preceding the Itô integral in (2.9) to a plus sign yields a different change
of measure, since this implies α = −1.

The expression (3.17) is important for two reasons. First, it shows that the value

of the non-covariance term Ex
ν [∂/∂aiK̂(α, σ; a)] in (3.9) will increase by a factor of

1 +
√
2 if α = 1, since

√
2 > 1. Therefore, for any i, the contribution to (3.13) from

a sample path of Ŷ is zero when the control c(·; a) is smaller by a factor of 1 +
√
2,

if α = 1, so the martingale-based gradient will not produce the correct free energy
landscape. To obtain the correct free energy landscape, we only need to multiply the
coefficients aℓ obtained from martingale-based gradient descent by 1 +

√
2. We shall

use this correction procedure in Section §4.2. Second, (3.17) shows that the gradient
given by (3.9) is not optimal for minimising the discretisation of the cost functional in
(2.22), because in the limit of small ∆t, the work W does not appear in the gradient.
A better approximation of the gradient should take into account the dependence of
the stopping time τ on the projected control c(·; a). In Section §4.2, we present results
which suggest that gradient descent using the approximate gradient given by (3.9) can
still yield reasonable estimates of the free energy value and the free energy surface.

4. Illustrative example. The equilibrium average we wish to estimate is the
equilibrium probability of commitment to B, or simply the B-committor,

(4.1) pB(x) := Ex
P

[
1B(Xτ(X)

]

where we recall that X denotes a random solution of (2.1), and the set O in the
definition of the stopping time (2.18) is (A ∪ B)∁ for disjoint, closed subsets A,B ⊂
R

d. The value pB(x) gives the probability that the equillibrium dynamical system
X(ω) which starts at X0 = x will first reach B before A. In the physics literature,
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Onsager’s study [20] of ion-pair dissociation is often cited as the first to consider
committor probabilities in physics. The committor is an important quantity because
it describes how likely a reaction will proceed to completion (i.e., to set B), given that
the reactants are in a certain ‘state’ x. In practice, obtaining the entire committor
function poses computational difficulties, because molecules have high-dimensional
state spaces. However, individual values of pB(x) are still useful, because one may use
committor values to determine whether a given observable can describe the progress
of a reaction [6, 11].

Since 1B ≥ 0, we may apply the derivative-free estimation method presented in
Section §2.4. For fixed λ > 0, the work

(4.2) W (ω) := −σ−1 log(1B(ωτ ) + λ)

has the free energy F (σ;x) = −σ−1 log (pB(x) + λ). Thus, pB + λ = ψσ in (2.20)–
(2.21), with f ≡ 0 and exp(−σg(x)) = 1B(x) + λ. Note that g and W can assume
negative values in this example. By (2.30), the optimal control c∗

(4.3) c∗(x) :=
2∇pB(x)
pB(x) + λ

,

Thus, if λ > 0, then the optimal control c∗ is bounded. The example of the committor
in the context of derivative-free estimation was studied in [12].

The key element of our treatment is the parameter λ, the importance of which is
immediate from (4.3): as λ decreases to zero, the magnitude of the optimal control
grows arbitrarily large. This is undesirable, since the boundedness of the optimal
control was crucial in the proof of convergence of measures in the total variation
norm (cf. Theorem 2.2). On the other hand, if λ is large, then the optimal control
c∗ will be small, and there may be no significant advantage to controlling the system.
Hence, λ should be small enough such that the optimal control is sufficiently different
from zero, while keeping the forces suitably small for the system under study. For
example, in simulations of single-molecule pulling experiments, one must keep the
pulling forces sufficiently small for numerical stability of the integration scheme.

4.1. Parameters and reference solutions. We considered an artificial 1-
dimensional landscape shown in Figure 1, which was obtained from projecting GRO-
MACS [24] time series data of solvated alanine dipeptide at 300K down to a dihedral
angle defined by four atoms on the backbone of the molecule.

Potential and domain. The landscape is defined on the circle [−180, 180) and has
two minima, the smaller of which is in A := [10, 50] and the other in B := [162,−158]
(A and B are the projections of two metastable regions to the aforementioned dihedral
angle). Since (A∪B)∁ is just the disjoint union of two domains, we can consider each
domain separately. In this illustrative example, we set the domain of interest to be
O := (50, 162). The difference between the minimum in A and the maximum in
(50, 162) is approximately four times the value of the noise temperature ε = 2.5. Note
that, although all domain variables are expressed in terms of degrees, the numerical
calculations were performed in radians.

Finite differences approximation. Using finite differences with the regular dis-
cretisation of the domain given by

xl := 50 + (l − 1)∆x, 1 ≤ l ≤ (162− 50)/∆x+ 1, ∆x = 10−1,(4.4)
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Fig. 2. Committor pB over [50, 162].

we computed the equilibrium committor, the free energy, and the optimal control by
solving the boundary value problem (2.20), (2.21). We show the equilibrium commit-
tor over the domain of interest in Figure 2.

To measure the approximation quality of the free energy function at each iterate
with respect to the finite-differences approximation, we computed F (σ; ·, ak) from
the current value of the coefficients (aki )i using (3.1) and set the value of C so that
F (σ;x = 50, ak) := −σ−1 logλ. We measured the function approximation error with
the uniformly weighted L1 norm

‖F k − F‖1 :=
∑

l

∣∣F (σ;xl, ak)− F (σ;xl)
∣∣∆x.(4.5)

The projection of the finite-differences approximation of the optimal control c∗ to
the linear subspace defined by the gradients of the basis functions is given by setting
a = a∗ in (3.2), where the optimal values of the expansion coefficients a∗ satisfy

(4.6) Ga∗ = c, cl = c∗(xl), Gil = ∇bi(xl)

for xl given in (4.4).

4.2. Sample implementation. We set σ = 0.4 = ε−1 and λ = 10−3 in (4.2).
The difference ρ(λ) := σ−1 log(1 + λ−1) between the maximum and the minimum
values of work W was approximately 17.3. We performed Niter = 600 iterations of
gradient descent. The coefficients were initialised at a0 = 0. The descent step size
∆ai = ∆a = 5 was constant for every iteration ℓ and coefficient ai. For the basis
functions in (3.2), we used n = 7 tent basis functions with equidistant centres:

bi(x) :=

{
h− |x− µi| 0 ≤ |x− µi| ≤ h

0 otherwise,
(4.7)

∇bi(x) :=
{
−(x− µi)(|x − µi|)−1 0 < |x− µi| < h

0 otherwise,
(4.8)

µi := 50 + h(i − 1),(4.9)

h =
162− 50

n− 1
.(4.10)



14 H. C. LIE, C. SCHÜTTE & C. HARTMANN

At each iteration, we sampled Ntraj = 10 trajectories, all initialised at Ŷ0 = x = 60.

Trajectories of (3.3) terminated when Ŷk /∈ (50, 162). Since pB(x) ≈ 0.0091, the
problem of estimating the free energy value is equivalent to the problem of estimating
a rare event probability. With respect to P x, the equilibrium estimator 1B(Xτ(X))
has the Bernoulli distribution with parameter p = pB(x), and hence its standard
deviation (p(1− p))1/2 ≈ 0.0951.

For a given vector v of length Niter, we define the running average over the window
of Nwin iterations to be the vector r of length Niter whose i-th element is the average
of the min {i, Nwin} elements of v up to and including vi:

ri := j−1(vi−j+1 + · · ·+ vi−1 + vi), j := min {i, Nwin} .

We chose Nwin = 10 to elucidate trends in the sample statistics, while keeping the
averaging of fluctuations over iterations small.

In Figure 3, the running average of the sample mean of K̂(α, σ; a) decreases in
the first 300 iterations, with the running average decreasing by a larger amount when
α = 0. From the 301st iteration onwards, the running averages oscillate around values
that are greater than F (σ;x) ≈ 11.4. Thus, the gradient descent algorithm succeeds in
minimising the objective function, but only to a limited extent. The running average
of the sample mean of K̂(α, σ; aℓ) better approximates the value of F (σ;x) from the
150th to about the 220th iteration. The fluctuations in the running average tend to
be smaller when α = 1.

In Figure 4, the running average of the sample standard deviation of K̂(α, σ; a)
increases in the first 200 iterations, with the running average increasing by a smaller
amount when α = 1. From the 201st iteration onwards, the running average oscillates
between 3 and 4 (for α = 1) and between 5 and 6 (for α = 0). The standard deviation

of K̂(α, σ; a) tends to be smaller when α = 1.
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In Figure 5, the projected control c(xl; a
601) for α = 0 is approximately 1 +

√
2

times as large as the projected control for α = 1. This observation is consistent with
the analysis in Section §3.1. The projected control for α = 0 appears closer to the
finite-differences optimal control c∗ when the latter is large, e.g., over (50,88). On the
other hand, when the optimal control c∗ is moderate, the projected control for α = 1
appears closer.
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In Figure 6, we plot the L1 norm (4.5) with respect to the finite-differences free
energy F (σ; ·) of F (σ; ·; aℓ) (for α = 0) and of F (σ; ·, aℓ(1 +

√
2)) (for α = 1), as

a function of ℓ. The graphs track each other reasonably well, and thus support the
scaling relation described at the end of Section §3.1. The L1 error remains close to the
L1 error of F (σ; a∗) between the 200th and 300th iterations. On the other hand, the
coefficients produced by gradient descent approach their (albeit incorrect) limiting
values sooner with the martingale-based gradient descent: while the L1 error exhibits
an increasing trend from the 201st iteration onwards for α = 0, the L1 error begins
to oscillate around a ‘limiting’ value within 300 iterations for α = 1.
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Fig. 6. L1 error ‖F (σ; ·, aℓ)− F (σ; ·)‖1

We now consider the derivative-free estimation presented in Section §2.4. For the
work W defined by (4.2), it follows from (2.38) that exp(−σW ) = W = 1B(Yτ ) + λ
and thus Ex

ν [DW] = pB(x) +λ, by (2.9) and (2.39). In Figure 7, the running average
of the sample mean oscillates around the value of pB(x) obtained by finite-differences
solution of (2.20)–(2.21), even though the controls are suboptimal (see Figure 6). In
Figure 8, the running average of the sample standard deviation is smaller than the
theoretical standard deviation.
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Figures 3, 4 and 6, suggest that, if one does not change the descent or sampling
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parameters, then the method will not yield significantly better free energy value esti-
mates or function approximations, after a certain number of iterations. At this point,
one may terminate the method or change the parameters. In particular, by the 250th
iteration, the sample mean, standard deviation and L1 error appear to have attained
the best observed values (for α = 0) or to have stabilised (for α = 0). We shall
show in Section §4.3 that these quantities need not attain their best observed values
simultaneously, and postpone the investigation of termination criteria to future work.

4.3. Sensitivity analysis. In order to qualitatively determine the sensitivity
of the gradient descent algorithm to the gradient descent parameters, we examined
the effect of changing the value of a single parameter, while keeping all other param-
eters fixed. We used the running average over 10 iterations of the sample mean of
K̂(α, σ; a) and the L1 error of the free energy function approximation to compare the
performance of the gradient descent. The parameters we changed were: the value of
λ from 10−3 to 10−2; the initial control from c(·; a0) ≡ 0 to c(·; a0) ≡ ρ(λ)/(162− 50);
and the basis functions, from tent functions (4.7)–(4.8) to non-normalised Gaussians

bi(x) := h exp

(
−|x− µi|2

2h2

)
(4.11)

∇bi(x) :=
µi − x

h
exp

(
−|x− µi|2

2h2

)
(4.12)

with µi and h as in (4.9) and (4.10). The results below are consistent with those
observed in Section §4.2, in the sense that the fluctuations in the running average of
the sample mean of K̂(α, σ; a) are smaller, and the function approximations of F (σ; ·)
are more stable, when α = 1. The sample standard deviations of K̂(α, σ; a) are also
smaller when α = 1 (data not shown).

Changing the value λ from 10−3 to 10−2 leads to a smaller difference ρ(λ) between

the minimum and maximum values of Ŵ . This implies that the value of K̂(α, σ; a)

for a sample path of Ŷ decreases by a smaller amount when Ŷ terminates at B, and
in particular, the gradient (3.9) tends to assume smaller values. As a result, the L1

error decreases more slowly in Figure 10 compared to in Figure 6, e.g., for α = 1, the
L1 error decreases to the observed minimum within 200 (400) iterations for λ = 10−3

(10−2). The slower decrease in L1 error explains the slower decrease in the sample

mean of K̂(1, σ; a) in Figure 9 compared to Figure 3.
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Fig. 9. Sample mean of K̂(α, σ; a)
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Fig. 10. L1 error ‖F (σ; ·, aℓ)− F (σ; ·)‖1
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Note that, for α = 1, although the L1 error has already begun to increase from its
minimum after 400 iterations in Figure 10, the running average continues to decrease
towards the value of F (σ;x) in Figure 9.

Changing the value of the initial control from 0 to ρ(λ)/(162 − 50) ≈ 8.8 (recall
that calculations involving domain data were performed in radians) results in running
averages of the sample mean that decrease to their limiting values in fewer iterations,
cf. Figure 11. Note that the limiting values around which the running averages and
L1 errors oscillate are comparable to those in Figures 3 and 6. When α = 1, the
running average of the sample mean of K̂(α, σ; aℓ) exhibits more stable behaviour
and smaller fluctuations, as was observed in Figure 3. Figure 10 shows that the L1

error is more stable, and reaches its limiting value sooner, when α = 1.
The preceding observations suggest that the limiting values of the coefficients (ai)i

will be the same if they are initialised in a suitable range of values, corresponding to
sufficiently small initial controls. If the value of the initial control were so large that
most, if not all, the sample paths had short duration and terminated at B, then τ̂ ,
M̂ , Â, Ŵ and hence the finite sample-approximation of the gradient (3.9) would be
close to zero, and the coefficients (ai)i would remain near their initial values.
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Fig. 11. Sample mean of K̂(α, σ; a)
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Fig. 12. L1 error ‖F (σ; ·, aℓ)− F (σ; ·)‖1

Changing the basis functions to non-normalised Gaussian basis functions results
in running averages and L1 errors that decrease in fewer iterations to similar values. It
is reassuring that the limiting values are similar for both quantities, since this suggests
that the choice of basis function does not significantly affect the limiting value of the
coefficient vector a. Since the choice of basis function affects the estimator K̂(α, σ; a)
only through the control, it suffices to explain the faster decrease in L1 error in order
to explain the faster decrease in the running average.

The faster reduction in L1 error boils down to an analysis of the gradient terms
(3.10) and (3.11). Fix i, and consider ∇bi(Ŷk) for some k ≤ τ̂ . When ∇bi is given by

(4.8), ∇bi(Ŷk) will be nonzero for fewer k, compared to when ∇bi is given by (4.12).
Thus, when Gaussian basis functions are used, the gradient terms will differ from zero
for more k, and thus the contribution to the gradient (3.9) from a single sample path

Ŷ will be larger on average. As a result, the coefficients ai will change by a larger
amount after a single iteration.

5. Discussion. The sensitivity analysis in Section §4.3 emphasises the impor-
tance of the choice of basis functions: if the supports of the gradients are too small,
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then the coefficients change slowly per iteration, and vice versa. If available, a priori
information about the potential V should be used to devise better basis functions.
When no a priori information is available, methods for exploring energy landscapes
such as metadynamics [18] can be used to identify metastable sets. Although we have
not done so here, setting the basis functions adaptively may be useful. For example,
one criterion could be to define the basis functions so that the controlled trajectories
will, on average, spend roughly the same amount of time in the supports of their gradi-
ents. When the system is high-dimensional there is no way around globally supported
(radial) basis functions, so a clever choice in this case is crucial.

Many methods for stochastic approximation, e.g., [15,23,25,28] advocate schemes
for reducing descent step sizes, and specify criteria for terminating the iterations. We
have made no attempt to propose any such step reduction scheme in this study,
because we found that common step reduction schemes reduced the descent step size
too quickly. We leave an analysis of the convergence of the martingale-based method
and the construction of suitable schemes for step reduction to future study.

In this paper, we derived the gradient descent algorithm for free energy value
estimation in [13], using Girsanov’s theorem. The derivation leads to the addition
of a martingale term to the (biased) estimator of the free energy value, and to a
different gradient descent dynamics, as shown in Section §3.1. The martingale term
does not solve the problem caused by the omission in the gradient (3.13) of the partial

derivatives of Ŵ and τ̂ with respect to the expansion coefficients (ai)i. We presented
results which suggest that the martingale-based estimator has smaller variance, and
that the martingale-based gradient descent dynamics are more stable.

We believe that the martingale-based gradient descent method presents an inter-
esting addition to the existing methods for stochastic optimisation of high-dimensional
systems, such as policy iteration [1] or the cross-entropy method [26, 27, 30]. This is
because, in addition to features described earlier, the martingale-based method per-
mits the simultaneous estimation of the desired equilibrium average Ex[W] by free
energy estimation and importance sampling.
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