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It has recently become practical to construct Markov state

models (MSMs) that reproduce the long-time statistical

conformational dynamics of biomolecules using data from

molecular dynamics simulations. MSMs can predict both

stationary and kinetic quantities on long timescales (e.g.

milliseconds) using a set of atomistic molecular dynamics

simulations that are individually much shorter, thus addressing

the well-known sampling problem in molecular dynamics

simulation. In addition to providing predictive quantitative

models, MSMs greatly facilitate both the extraction of insight into

biomolecular mechanism (such as folding and functional

dynamics) and quantitative comparison with single-molecule

and ensemble kinetics experiments. A variety of methodological

advances and software packages now bring the construction of

these models closer to routine practice. Here, we review recent

progress in this field, considering theoretical and methodological

advances, new software tools, and recent applications of these

approaches in several domains of biochemistry and biophysics,

commenting on remaining challenges.
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Introduction
The study of biomolecular systems by molecular

dynamics simulations is by no means straightforward.

Aside from a myriad of issues related to the accurate

treatment of intramolecular and intermolecular inter-

actions and appropriate modeling of the chemical envi-

ronment, the timescales relevant to biomolecular folding

and function (often microseconds to seconds) are enor-

mously long compared to the timesteps required for

stable integration (generally femtoseconds) [1]. Even

with expensive special-purpose hardware such as Anton
www.sciencedirect.com 
[2], simulation trajectories can barely reach biomolecular

timescales of typical interest, let alone exceed to permit

their statistical characterization beyond simple anecdotal

observation.

While various solutions to the timescale problem have

been explored, many practitioners have now adopted a

practice of extracting stochastic kinetic information from

multiple simulations that are shorter than the timescales of

interest to build a discrete-state stochastic model capable

of describing long-time statistical dynamics. These Markov
state models (MSMs) describe the stochastic dynamics of a

biomolecular system using two objects: firstly, a discretiza-
tion of the high-dimensional molecular state space, usually

into n disjoint conformational sets S1, . . ., Sn; and secondly,

a model of the stochastic trasitions between these discrete

states, usually described by a matrix of conditional

transition probabilities estimated from the simulation

trajectories xt, and termed the transition matrix P � ( pij):

pijðtÞ ¼ Probðxtþt 2 S j jxt 2 SiÞ: (1)

Here, t is the lag time or observation interval for which the

transition matrix is constructed. As recent literature

(reviewed below) highlights, this lag time t turns out

to be an important parameter in determining the approxi-

mation quality and utility of the MSM, with larger t
providing models of higher fidelity but coarser temporal

resolution.

A transition matrix P gives rise to a stationary distribution

p by virtue of the simple eigenvalue problem:

p>P ¼ p> : (2)

This is a key property of MSMs: While the matrix

P � ( pij) only contains conditional transition probabilities

(which can be computed from short trajectories of length

�t, usually orders of magnitude shorter than the longest

relaxation timescales), the global stationary distribution

p can still be computed from P. The MSM correctly

recovers the equilibrium thermodynamic and kinetic prop-

erties of the system, even if the short trajectories used to

construct it were not initiated from equilibrium. Addition-

ally, while identifying a suitable state space discretization

is by no means trivial, MSMs offer the advantage over

many other methods addressing sampling problems that

slow order parameters do not need to be defined a priori.

Another important feature of MSMs is that many

quantities of interest can be easily calculated from them.

A conceptually simple approach is to use the transition

matrix P to generate discrete trajectories with time

resolution t, sampling a molecular configuration from
Current Opinion in Structural Biology 2014, 25:135–144
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Schematic illustrating important properties of MSMs and their construction. (a) A metastable four-well potential. (b) Eigenfunctions of the Markov

operator (solid) and eigenfunctions approximated by the eigenvectors of a MSM using four states separating the four basins. (c) Implied timescales

plot. The MSM timescales (solid) converge to the true relaxation timescales with increasing observation interval, or lag time, t, but may do so only

slowly. PMM timescales [3] (dashed) converge rapidly. (d) MSM construction. Using some state space discretization, the simulation trajectories are

mapped to discrete trajectories. From these, the transition matrix P is estimated whose largest eigenvalues/eigenvectors approximate the true largest

eigenvalues/eigenfunctions. P is then analyzed for molecular observables of interest.
the configurations associated with each discrete state.

Alternatively, any molecular observable amenable to

such a treatment can also be computed  by algebraic

equations involving P without the need to resort to such

sampling schemes. The latter approach avoids trajectory

sampling, and can often yield additional insight into the

dominant contributions of the observed temporal beha-

vior of a given experiment. Key ingredients are the

eigenvalues li and eigenvectors ri of the transition

matrix:

Pri ¼ rili; (3)

where the eigenvalues translate to molecular relaxation

timescales, ti = � t/ln jli(t)j, and the eigenvectors

indicate which structural changes occur at this timescale

(Figure 1). This duality is crucial for the interpretation of

kinetic molecular experiments via MSMs.

Recently, two books have been produced on MSM theory

and use. The first is a reasonably comprehensive survey of

the current theory and practice of Markov state model
Current Opinion in Structural Biology 2014, 25:135–144 
construction [4��], while the second focuses on advanced

mathematical and theoretical aspects [5�].

While a number of literature reviews and overview

articles cover the fundamentals of Markov state models

(e.g. [6,7], the present review focuses on theoretical

advances and applications that have been published since

these earlier reviews were written.

Recent theoretical and methodological
advances
Paradigm shift: from maximizing metastability to

approximating eigenspaces

For many years, MSM construction techniques were

driven by the goal of attempting to construct a state space

discretization that was maximally metastable, based on the

intuition that the discrete state dynamics should be

approximately Markovian (memoryless). To achieve this,

most schemes attempted to maximize quantities related

to the lifetimes of the projected discrete states, ensuring
www.sciencedirect.com
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that subsequent state transitions were maximally decorre-

lated from their previous transition history.

Recent theoretical work has shown it is more useful to

instead consider the MSM as a discrete approximation to

the dynamics of the Markov operator (transfer operator or

dynamical propagator) in the full state space of positions

and velocities [5�,7,8]. As a result, the fundamental goal of

state discretization has shifted from maximizing lifetimes

to minimizing approximation error of the statistical long-

time dynamics.

As an example, consider a double-well potential. Max-

imizing the lifetimes would lead one to construct a two-

state model, with a single partition placed at the transition

state between the two wells. Introducing additional

partitions near the transition state will reduce the discrete

state lifetimes but actually increase the approximation

accuracy of the model by allowing it to better approximate

the slow eigenspace of the Markov operator [7]. In

addition, selected dynamical processes of interest can

be approximated to arbitrary accuracy [9].

Eigenvalues and eigenvectors

A key finding is that good MSMs are able to accurately

approximate long-time molecular kinetics because their

eigenvectors closely approximate the corresponding

eigenfunctions of the Markov operator associated with

large eigenvalues [5�,7,8]. These eigenvalues li(t) for a

Markov operator of observation time t are related to

intrinsic molecular relaxation timescales, while the eigen-

functions describe the associated structural reconfigura-

tions.

This perspective has also facilitated the exposure of

fundamental connections between MSMs and related

approaches. For instance, the construction of diffusion

maps — which aim to approximate these eigenfunctions

for overdamped Langevin dynamics — have been

extended to model biomolecular dynamics, despite being

originally introduced as a general data analysis tool [10].

Diffusion maps have been used for adaptive exploration

of the conformation space along the slow-process eigen-

functions [11].

Given the above insights, it is not surprising that the

systematic estimation error of MSM-derived relaxation time-

scales (or rates) can be bounded in terms of how well the

MSM discretization approximates the Markov operator

eigenfunctions [12]. In Ref. [13], it was found that vir-

tually all rate theories trying to extract transition rates

from trajectory data — either from molecular dynamics

simulations or biophysical experiments — can be cast in a

similar manner in which the error intrinsic to many

classical rate theories could be computed in terms of this

eigenfunction approximation error.
www.sciencedirect.com 
Variational approach

Viewing MSMs as a method to approximate the eigen-

function of a Markov operator invokes parallels to quan-

tum chemistry, where the goal is to approximate the

eigenfunctions and eigenvalues of the Hamiltonian. It

was recently discovered that the Rayleigh-Ritz variational

principle — a fundamental concept in quantum chemistry

— has an analog in molecular conformation dynamics, and

that the eigenfunction approximation problem that

appears in constructing MSMs can be cast as a generalized

eigenproblem [14�]. This formulation implies that MSM-

derived relaxation timescales are always underestimated

except when the basis functions are linear combinations

of the true eigenfunctions of the Markov operator. Stan-

dard ‘crisp paritioning’ MSMs based on clustering simu-

lation data were shown to be a special case in which the

basis set used in variational optimization is chosen to be a

set of functions that are constant on the discrete MSM

states [14�].

This insight has far-reaching consequences. Just as better

basis sets led to better computational models in quantum

chemistry, alternative basis sets for MSM construction

could lead to better and more informative models of

molecular kinetics. Ref. [15] discusses differences and

similarities to quantum-mechanical approaches that may

be exploited and applies the variational principle to the

approximation of the peptide dynamics via Gaussian basis

sets. The variational approach is the keystone for search-

ing for more efficient and informative basis sets than

Voronoi partitions of high-dimensional coordinate space.

Coordinate spaces for discretization

A main difficulty in constructing accurate MSMs from

biomolecular simulation data is the need to balance

statistical error and systematic approximation error: while

a fine partitioning will minimize approximation error, the

limited quantity of trajectory data means that fine parti-

tionings will increase statistical error. An important ques-

tion in the field has been what combination of distance

metric and clustering method would provide a reprodu-

cibly good approximation of the dominant eigenfunctions

of the Markov operator. Earlier work employed torsion

angles, Cartesian coordinates (potentially following trans-

lation/rotation onto a reference structure), or principal

components of any of these coordinates. Another popular

approach has been the use of pairwise minimal root-

mean-square deviation (RMSD). Solvent degrees of free-

dom that play a critical role in defining kinetically distinct

states are also notoriously difficult to deal with [16].

A challenge in all these approaches is that they propose a

distance metric a priori. Because trajectory data is always

limited in quantity by practical simulation times, it is

essential that configurations that are highly similar by this

metric are actually kinetically related. Fixed distance

metrics suffer from the drawback that very small
Current Opinion in Structural Biology 2014, 25:135–144
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neighborhoods are generally required in order to guar-

antee this kinetic relatedness, which could then require

an unrealistically large quantity of data to build a high-

quality MSM. For this reason, the community sought out

data-adapted distance metrics that were able to enlarge

these neighborhoods of similarity by learning about

kinetic similarity from the trajectories. For example, a

scheme using kinetic discriminatory metric learning was

proposed in which a generalized weighted squared Eucli-

dean metric was optimized [17]. In a recent study [18], an

alternative approach to the discretization of the diffusion

operator relevant for transport of small molecules (e.g.

ions) in biological cells was proposed.

A major breakthrough followed in the exploitation of

time-delayed correlation analysis, also called time-lagged

or time-structure-based independent component analysis

(tICA or TICA) [19]. This approach, independently

rediscovered by two groups [20�,21�], linearly transforms

the input coordinates (e.g. torsions, distances, contacts)

into collective coordinates sorted by ‘slowness’, thus

providing an excellent dimension reduction method for

MSM construction. This can be understood as a gener-

alization of principal component analysis, as it solves a

generalized eigenvalue problem with the instantaneous

and time-lagged correlation matrices of the input coordi-

nates [20�,21�]. This approach can also be shown to solve

the variational problem for the specific choice of basis

functions identical to the input coordinates [21�].

Full partition versus cores

Several recent contributions have addressed the question

of how best to project from high-dimensional trajectory

data to a sequence of discrete state labels, from which the

MSM transition matrix is subsequently estimated. Most

of the recent MSM studies construct a Voronoi tessela-

tion to use in assigning configurations to discrete states.

An alternative approach is the core-based projection

method, long familiar to the transition path sampling

community but first introduced for MSM construction in

[22]. Here, one defines an incomplete partition of space

into highly metastable cores located within distinct meta-

stable basins. The continuous trajectory is discretized

by counting changes in state assignment only upon

encountering a different core, maintaining its association

with the previous core in the intermediate region be-

tween cores. This core discretization scheme was sub-

sequently shown to be equivalent to milestoning, with the

cores being milestones [23]. In the MSM framework, this

core projection method effectively uses the core com-

mittor functions as basis functions, which often provides

a superior approximation to the eigenfunctions of the

transfer operator when the number of cores is small [23].

However, a general procedure for identifying cores in

high-dimensional configuration space has not yet been

proposed.
Current Opinion in Structural Biology 2014, 25:135–144 
Estimation of MSMs

Once the high-dimensional trajectory has been projected

onto a discrete sequence of states, an MSM is obtained by

estimating a kinetic model of the discrete dynamics

between states. In most cases, a matrix of conditional

transition probabilities is estimated using some lag time t
from the trajectory data [7]. Early approaches estimated

transition probabilities in terms of state-state time-corre-

lation functions, while recent MSM methods have used

higher degrees of sophistication. Commonly, the tran-

sition matrix is only estimated over the largest connected

subset of states [24,25] and proceeds via an iterative

maximum likelihood estimator that respects detailed

balance [26,7].

To assess the statistical uncertainty of the MSM model

and its predictions, it is important to consider not only the

most likely transition matrix, but all such matrices stat-

istically consistent with the data. This can now be effi-

ciently achieved (including the use of detailed balance

constraints) through Markov chain Monte Carlo (MCMC)

techniques [27]. A recent publication has shown how

knowledge of the stationary distribution (from, say, a

long parallel tempering simulation) can be used to further

constrain the space of transition matrices [28].

MSMs can also be constructed directly from parallel

tempering simulations using the short trajectory seg-

ments generated between exchange attempts, provided

the discretization is sufficiently good to permit the use of

very short lag times [29]. This approach was subsequently

improved upon [24] by the introduction of a dynamical

reweighting method [30] that permits use of data from all

temperatures, which also allows the resulting MSM to

capture the continuous dependence on temperature.

Coarse-graining of MSMs

An MSM that closely approximates the statistical

dynamics of a biomolecular system may have hundreds

or thousands of discrete states. To obtain an interpretable

model from this, some form of coarse-graining is often

necessary. Such a lumping operation — unless made in a

specific mathematical form — should only serve the

better understanding of an MSM, for example, for the

sake of a visualization of structures in kinetically distinct

states. While useful for illustration purposes, re-estimat-

ing the transition matrix on a coarser state space is not

trivial, as lumping of states will degrade the approxi-

mation quality of the MSM, and potentially lead to vastly

underestimated timescales.

The foundational work on coarse-graining MSMs was the

development of PCCA [31] and PCCA+ [32]. These

spectral clustering methods use the sign structure of

the leading eigenvectors of the MSM transition matrix

to relate conformational transitions among metastable
www.sciencedirect.com
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states with dynamical relaxation processes and kinetic

experimental observables.

However, when used for simple lumping of states,

PCCA(+) operates on only a single estimate of the tran-

sition matrix, resulting in choices of set boundaries that

can be dominated by statistically uncertain features.

Recent methods such as the Bayesian agglomerative

clustering (BACE) method [33], a hierarchical Nyström

method [34], flux PCCA+ [35] and HMM-based coarse-

graining [3] have proposed clustering methods to address

this statistical reliability issue. The performance of sev-

eral such methods have been compared [36], although we

note that the result of such a comparison depends on the

choice of benchmark. Ref. [37] proposed a network-based

approach to lumping MSM states into metastable sets,

and observed near-exponential exit time distributions

when applied to peptide dynamics.

Projected Markov models and Hidden Markov models

The fundamental approximation of MSMs is that the

statistical dynamics on discrete sets can be accurately

approximated by a Markov chain. Many of the methods

described above aim at reducing the discretization errors

due to this decision, by good choices of the input coordi-

nates and the discretization metric and method used.

However, the discretization error made by the Markov

approximation can be large. While it is known that the

molecular relaxation timescales are better estimated at

large lag times t, Ref. [13] shows that the discretization

error behaves as t�1, explaining the slow convergence

observed in implied timescale plots of recent papers.

Ref. [3] proposes a different approach, the Projected

Markov model (PMM), in which discretized molecular

dynamics trajectories can be exactly described by a simple

mathematical structure consisting of two matrices — an

eigenvalue matrix (corresponding to the relaxation time-

scales) and a projection matrix (corresponding to eigen-

functions that have been projected onto the cluster states,

and are therefore different from MSM eigenvectors). It

was shown that PMMs can be efficiently estimated by

Hidden Markov model techniques (HMMs), and that the

resulting HMM is as easy to interpret as an MSM. Future

research will have to address the question how PMMs can

be generally estimated, without making the HMM

approximation. Ref. [13] gives an optimal estimation

method for two-state PMMs, which is also expected to

be useful for the analysis of single-molecule experimental

data.

Software. A number of software packages have been

developed to aid in the construction, validation, and

interpretation of Markov state models, and have now

reached relative maturity. Both the EMMA [38]

[https://simtk.org/home/emma] and MSMBuilder [25]

[http://msmbuilder.org/] software packages facilitate the
www.sciencedirect.com 
construction and validation of Markov state models from

molecular simulation data in various trajectory formats.

The MSMExplorer software package [https://simtk.org/

home/msmexplorer] allows for the visualization of MSMs

using graph and network diagrams, scatterplots of state

properties, and interactive structure visualization [39].

Applications
MSM methodologies have now been applied to a wide

variety of problems in biomolecular dynamics to study

the folding of proteins, the dynamics of intrinsically

disordered peptides and proteins, ligand binding pro-

cesses, native-state and functional dynamics, and the

connection between molecular dynamical processes

and their experimentally resolved single-molecule and

ensemble kinetics. Below, we review a few notable

recent examples.

Protein folding

The study of how unfolded or disordered proteins reach

their native states has long been one in which simulation,

with its ability to resolve dynamics in atomistic detail,

could provide critical insight difficult to extract from bulk

or single-molecule experiments, which are inherently

limited in either time or structural resolution. However,

numerous challenges have traditionally stood in the way

of simulations reaching experimentally relevant time-

scales and gathering sufficient statistics to make definitive

statements about protein folding mechanism [1]. While

computational advances have ushered in a new era of

molecular simulation software accelerated by graphics

processing hardware [40–42] or even custom ASICs [2],

raw advances in computational power are insufficient to

produce more than anecdotal observations of protein

folding or unfolding events [43]. By contrast, the MSM

approach has led to the construction of extremely detailed

statistical models of folding mechanism and unfolded

state dynamics for some small peptides and proteins

(e.g. [44,45]).

Applications of MSM methodology to model systems in

protein folding have generally revealed a surprising com-

plexity to the apparently simple dynamics observed in

experiments, in defiance of the ‘Occam’s Razor’

interpretation (but still consistent with the experimental

observations). For example, a combined experimental

and computational study of Acyl-CoA binding protein

(ACBP) examined the MSMs constructed from over

30 ms of aggregate molecular simulation data to probe

the unfolded state dynamics, intermediate states, and

native state formation rates, concluding that a previously

characterized fast kinetic phase did not correspond to

population of a specific intermediate structure (as had

previously been assumed), but was instead due to hetero-

geneous structure acquisition within the unfolded state

[46,47], a phenomenon also observed in a fast-folding

protein [48].
Current Opinion in Structural Biology 2014, 25:135–144
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Even more surprisingly, an examination of fourteen mas-

sive protein simulation datasets suggested that there are

significant, experimentally detectable deviations from the

two-state behavior generally believed to describe the

folding of many simple model protein systems, suggesting

a previously unappreciated complexity [35]. A folding

study of ubiquitin has revealed the existence of several

intermediates and misfolded states [49]. The dominant

experimentally observable slow processes appear to also

be robust to perturbations in intrinsic rates that would be

expected from variations in experimental conditions,

suggesting this behavior should be relatively universally

observable [50]. In fact, an examination of the well-

studied fast-folding HP35 domain by simulation ident-

ifies an intermediate state whose existence was only

recently revealed by triplet-triplet energy transfer experi-

ments [51].

MSMs have also been used to examine the role of glassy

dynamics in protein folding, finding that true glass tran-

sitions appear to be absent in atomistic models of solvated

protein dynamics [52]. In fact, sidechains of residues

within the cores of folded proteins appear to show some

degree of liquid-like behavior [53].

Protein–ligand binding

Markov state models also have been used to illuminate

the mechanism of small molecule binding and unbinding

from protein targets, often with the aim of discovering

new putative binding sites that could be exploited for the

design of novel inhibitors. While direct simulation can

achieve timescales sufficient to observe ligand binding

events [54], the bound half-lives of typical drugs is often

on the hours timescale, far out of reach of drug binding

studies. Additionally, by aggregating statistical infor-

mation from many trajectories, a more detailed (and less

anecdotal) mechanistic understanding of binding can be

obtained.

The viability of using MSMs to study small molecule

ligand binding in atomistic detail was established in an

initial study of the binding kinetics of the trypsin inhibi-

tor benzamidine was described by an MSM constructed

from a collection of short trajectories, revealing the exist-

ence of long-lived binding intermediates [55]. A related

network-based method using a scheme for enforcing

detailed balance was able to describe the multiple

unbinding pathways of ligands dissociating from FKBP

[56]. A study that used the simplifying assumption of

fixed receptor geometry used the framework transition

path theory to extract descriptions of binding pathways

and how these changed in response to receptor point

mutations [57]. More recently, the often significant

effects of rebinding on modulating effective dissociation

kinetics of multivalent ligands has been illuminated

through the use of MSMs [58].
Current Opinion in Structural Biology 2014, 25:135–144 
Intrinsically disordered proteins

Studies of intrinsically disordered proteins have recently

benefited from a number of technical advances to better

deal with conformationally and dynamically hetero-

geneous dynamics, such as the aforementioned tICA

scheme. This proved critical in enabling the construction

of MSMs for the intrinsically disordered KID peptide,

which was found to adopt a conformation that may

precede its KIX-bound geometry even in the absence

of its binding partner [21�]. Studies of the unfolded

dynamics of the intrinsically disordered hIAPP peptide

(found in 95% of type II diabetes patients) also found a

surprising quantity of structure in these intrinsically

unfolded states, suggesting these metastable confor-

mations may seed aggregation processes [59]. A similar

study on Ab peptides implicated in Alzheimer’s disease

found similar propensities for disease-promoting trunca-

tions or mutations to populate structures that likely

promote aggregation [60].

Native state conformation changes

With increasing simulation power, the possibility to study

conformational changes of native proteins associated with

function — which often have timescales in the microsecond

to millisecond range — have become possible through the

use of MSMs. The intrinsic fluctuations of b-lactamase in

its native state reveals a multitude of potential allosteric

binding sites that could potentially be exploited in the

design of allosteric modulators of activity [61]. Recent

MSM studies of the activation pathways of kinases [62�]
or GPCRs [63�] has similarly revealed the potential for

identifying putative allosteric binding sites or distinguish-

ing between agonists and antagonists using structural infor-

mation along putative functional pathways.

Other MSMs studies have revealed putative mechanisms

for the autocatalytic step in HIV maturation of HIV

protease [64�] and the release of phosphate from bacterial

RNA polymerase II during transcription elongation [65].

A combined experimental-computational study of dyna-

min tetramers was able to propose feasible oligomeric

structures using MSM techniques [66].

Connecting simulation with experiment
The ability of MSMs to describe the statistical dynamics

of a single biomolecule or the deterministic time-evolu-

tion of an ensemble of noninteracting biomolecules pre-

pared in a nonequilibrium state affords enormous power

in the ability to connect models derived from atomistic

simulation with a multitude of biophysical experiments.

By coupling the atomistic resolution within conformation-

al states with a spectroscopic model of the appropriate

experimental technique, experimental observables can

be compared directly with their computed counterparts,

rather than resorting to interpretation through some

intermediate-scale model that might suffer from a loss

of potentially critical information.
www.sciencedirect.com
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Reconciling MSMs and kinetic experiments

While temperature-jump IR/fluorescence and fluores-

cence correlation measurements have seen widespread

use in probing multiple kinetic timescales in biomole-

cular systems, it is not always straightforward to identify

the structural relaxation processes associated with these

timescales.

More recently, the framework of dynamical fingerprints has

been developed as a principle way of separating both

experimental and MSM-derived kinetic data into relaxa-

tion processes with distinct amplitudes and timescales,

and associating specific observed structural relaxation

processes with each [67,68]. It was found that individual

experimental observables can often pick up only few (1–
2) relaxation processes even if many are present,

suggesting a resolution to the apparent contradiction

between simple experimental and complex simulated

kinetics. However, it was suggested that MSMs and

dynamical fingerprints could be used to design kinetic

experiments so as to optimally probe selected relaxation

timescales [67].

A number of concrete successes in connecting MSMs

derived from atomistic simulations to biophysical exper-

iments have been reported. NMR relaxation and order

parameters are inherently dynamical quantities, and their

computation from MSMs can be made straightforward

through the use of the model-free framework approach of

Lipari and Szabo, as recently demonstrated for HIV-1

protease [69]. Similar work has been carried out in devel-

oping a theory for the reconstruction of inelastic neutron

scattering spectra from MSMs derived from atomistic

simulations [70,71]. An elegant framework for the simu-

lation of spin-labeled continuous-wave electron spin

resonance (cw-ESR) experiments from molecular simu-

lations using MSMs has also been developed, as

described recently in chapter 10 of [4��].

MSMs have also found use in interpreting temperature-

jump data using a variety of spectroscopic probes. Using

exciton methods, MSMs were able to illuminate the

processes giving rise to temperature-jump infrared

(IR) and 2DIR data, providing physical insight into

the observed spectroscopic signatures of distinct states

in the trpzip2 peptide [72] and an a/b fragment of NTL9

[73]. Dynamical fingerprints were used to reconcile

fluorescence correlation spectroscopy (FCS) measure-

ments in glycine-serine peptides with molecular

dynamics simulations [67]. MSMs were also used to

interpret temperature-jump fluorescence measure-

ments, once again in a spectroscopic study of the trpzip2

peptide [74].

Markov models from single-molecule experiments

While there is a long history of the use of hidden Markov

models (HMMs) to identify kinetically metastable states
www.sciencedirect.com 
in single-molecule biophysical experiments, only recently

have sophisticated analysis techniques developed to the

point of reliably resolving many states within experimen-

tally observed traces, such that some of the theoretical

pathway analysis tools described earlier (such as transition

path theory) can be applied to models derived solely from

experiment. A detailed six-state model of the folding/

unfolding kinetics of adenylate kinase was constructed

from a large quantity of single-molecule FRET data,

permitting the application of transition path theory for

the analysis of folding pathways [75]. Optical force spec-

troscopy experiments of calmodulin extrapolated to zero

force also yielded a multistate MSM describing exchange

among on-pathway and off-pathway intermediates [76].

The complex MSM obtained from single-molecule

FRET studies of the Diels-Alderase ribozyme permitted

the use of transition path theory and transition matrix

eigenvector analysis for describing the Mg2+-dependent

folding pathway [77].

Challenges and potential solutions
The MSM field has virtually exploded in the last few

years, and has started to make significant impact in basic

problems of biomolecular modeling and simulation.

Despite advances in computational power, the sampling

problem is still a major bottleneck in molecular simu-

lation. It has been suggested that MSMs have the poten-

tial to solve this problem by using the statistical

information encoded in the model in order to direct

the simulation effort where new conformational states

can be found with high probability or where statistics are

still poor. However, an automatic and unsupervised

realization of such an adaptive sampling procedure that

works reliably for complex biomolecular systems remains

elusive.

A key ingredient of such an adaptive approach is that the

construction and estimation of MSMs must be fully

automated. This will require additional theoretical

advances to provide insight into the selection of

approrpiate system-appropriate and data-appropriate

parameters for the construction of MSMs. A particularly

important aspect of this is balancing the statistical and

the systematic error of MSMs — in the simplest case, the

selection of an appropriate number of states that is not

too small to cause major discretization errors and not too

large to incur enormous statistical uncertainties or

biases. It is likely that unsupervised MSM construction

will also only be solved by an approach that is itself

adaptive.

Both of the above aspects (adaptive sampling and fully

automated MSM construction) must also be accompanied

by software development that makes these methods

available to public use. We have already seen the rapid

progress in this field that has been enabled by the open

software tools already available.
Current Opinion in Structural Biology 2014, 25:135–144
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A third aspect is the use of MSMs in force field para-

meterization. Force field development has steadily

moved to include thermodynamic data, such as free

energies of transfer or hydration [78]. With the compu-

tational power available to generate well-converged mol-

ecular dynamics simulations of sizable protein systems,

thermodynamic and kinetic data on larger systems could

be systematically included in the next generation of force

field development. MSMs provide a systematic approach

to calculate these quantities in a way that is largely

independent of subjective decisions of the modeler.
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Optimal use of data in parallel tempering simulations for the
construction of discrete-state Markov models of biomolecular
dynamics. J Chem Phys 2011, 134:244108.

25. Beauchamp KA, Bowman GR, Lane TJ, Maibaum L, Haque I,
Pande VS: MSMBuilder2: modeling conformational dynamics
at the picosecond to millisecond scale. J Chem Theory Comput
2011, 7:3412-3419 http://dx.doi.org/10.1021/ct200463m.

26. Bowman GR, Beauchamp KA, Boxer G, Pande VS: Progress and
challenges in the automated construction of Markov state
models for full protein systems. J Chem Phys 2009, 131:124101
http://dx.doi.org/10.1063/1.3216567.
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Neumann M, Schütte C.Linear Algebra Appl.. New York: Elsevier;
2005:161-184.

33. Bowman GR: Improved coarse-graining of Markov state
models via explicit consideration of statistical uncertainty. J
Chem Phys 2012, 137:134111.

34. Yao Y, Cui RZ, Bowman GR, Silva D-A, Sun J, Huang X:
Hierarchical Nyström methods for constructing Markov state
models for conformational dynamics. J Chem Phys 2013,
138:174106.

35. Beauchamp KA, McGibbon R, Lin Y-S, Pande VS: Simple few-
state models reveal hidden complexity in protein folding. Proc
Natl Acad Sci U S A 2012, 109:17807-17813.

36. Bowman GR, Meng L, Huang X: Quantitative comparison of
alternative methods for coarse-graining biological networks. J
Chem Phys 2013, 139:121905.

37. Jain A, Stock G: Identifying metastable states of folding
proteins. J Chem Theory Comput 2012, 8:3810.

38. Senne M, Trendelkamp-Schroer B, Mey ASJS, Schütte C, Noé F:
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ligand association and its modulation by protein mutations.
Biophys J 2010, 100:701.

58. Weber M, Bujotzek A, Haag R: Quantifying the rebinding effect
in multivalent chemical ligand-receptor systems. J Chem Phys
2012, 137:054111.

59. Qiao Q, Bowman GR, Huang X: Dynamics of an intrinsically
disordered protein reveal metastable conformations that
potentially seed aggregation. J Am Chem Soc 2013, 135:16092.

60. Lin Y-S, Bowman GR, Beauchamp B: Investigating how peptide
length and a pathogenic mutation modify the structural
ensemble of amyloid beta monomer. Biophy J 2012, 102:315-
324.

61. Bowman G, Geissler P: Equilibrium fluctuations of a single
folded protein reveal a multitude of potential cryptic allosteric
sites. Proc Natl Acad Sci U S A 2012, 109:11681-11686.

62.
�

Shukla D, Meng Y, Roux B, Pande VS: Activation pathway of Src
kinase reveals intermediate states as targets for drug design.
Nat Commun 2014, 5:3397.

A recent demonstration of the utility of Markov state models in studying
functional native-state biomolecular dynamics, illustrating the potential
for revealing allosterically targetable binding sites.

63.
�

Kohlhoff KJ, Shukla D, Lawrenz M, Bowman GR, Konerding DE,
Belov D, Altman RB, Pande VS: Cloud-based simulations on
Google Exacycle reveal ligand modulation of GPCR activation
pathways. Nat Chem 2014, 5:3397.

Two milliseconds of molecular dynamics simulations of a major drug-
target G-protein-coupled receptor were aggregated using Markov state
models providing an atomistic description of GPCR ligand-modulated
activation pathways.

64.
�
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