
cluster incorporates also the cost for right location of

the substrate.

These theoretical results are quite consistent

with the experimental indications about the reduced

catalytic activity of the metal-depleted enzyme

(Scolnick et al. 1997).

Thus, arginase enzyme presents a higher catalytic

activity in alkaline medium. An intact binuclear manga-

nese cluster and a ligand field are required for optimal

catalysis. In fact, MnA cation favors the correct binding

and orientation of the substrate, as the higher activation

energy obtained for the MnA-depleted cluster confirms.

Cross-References

▶Quantum Mechanical Simulations of Biopolymer

Vibrational Spectra
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Introduction

Markov (state) models (MSMs) are an approach to

understand conformational dynamics of molecules

using computer simulations. An MSM consists of

(1) a subdivision of the state space into a discrete set

of microstates, often using some clustering method,

and (2) a Markovian model to describe the transition

dynamics amongst these microstates, usually

a transition probability matrix or rate matrix.

MSMs are especially useful when studying com-

plex macromolecular changes, such as folding, native-

state transitions, and binding. Such systems are often

metastable, that is, the protein(s) fluctuate within a set

of structures for a long time before enough thermal

energy is accumulated to leave this set and transition to

another metastable set (Frauenfelder et al. 1991;

de Groot et al. 2001). It is the interest of chemical

physicists and biophysicists to identify the essential

metastable states, quantify their free energies or prob-

abilities, the kinetics arising from the transitions

between them, and the structural mechanisms

involved.
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In order to overcome the limitation of indirect

observability of experiments, molecular dynamics

(MD) simulations are becoming increasingly accepted

as a tool to investigate structural details of molecular

processes and relate them to experimentally resolved

features. MSMs are a systematic framework for ana-

lyzing and also for driving molecular dynamics simu-

lations. Compared to standard analyses of molecular

dynamics simulations, MSMs have a number of useful

features:

1. Long-term molecular kinetics may be predicted

from short-time simulations.

2. Great amounts of simulation data can be analyzed

with relatively little subjectivity of the analyst.

3. Stationary and kinetic quantities can be calculated,

such as conformational free energy differences,

metastable states, and the ensemble of transition

pathways.

4. Simulation data and measurement data can be

reconciled in a rigorous and explicit way.

5. Statistical information contained in MSMs can be

used to allocate new simulations adaptively.

Due to the advent of large-scale distributed com-

puting frameworks and the recent performance

increase of computer clusters, large numbers of short

trajectories are becoming more and more easy to gen-

erate (Voelz et al. 2010; Noé et al. 2009; Shaw et al.

2010). MSMs and other methods based on trajectory

ensembles are thus increasingly useful and important

in the process of investigating conformational dynam-

ics with simulations. There are currently two relatively

complete software packages for building and analyz-

ing MSMs: MSMbuilder (Beauchamp et al. 2011) and

EMMA (Senne et al. 2012).

Markov Model Theory

Basics

The dynamics of the molecular system considered is

given by trajectories of a stochastic process x(t) in the

continuous state space consisting of positions and

momenta. The stochasticity of x(t) comes through cou-

pling the system to a thermostat. Following properties

are assumed for x(t): (1) x(t) is Markovian in full state

space, (2) x(t) is ergodic and states are visited with

a frequency given by the Boltzmann distribution

m(x) ¼ Z(b)�1 exp(�bH(x)) (3) the dynamics are in

thermal equilibrium and thus x(t) fulfills microscopic

detailed balance. See Prinz et al. (2011) for a more

extensive description. These conditions are fulfilled by

not all, but many dynamical models frequently used to

simulate molecular dynamics. Even for setups violat-

ing these conditions, MSMs are often useful, although

they are then not justified by a solid theory.

Let the state space with coordinates x be discretized

into “microstates” {S1,. . .,Sn}. Tij(t) represents the

time-stationary probability to find the system in state

j at time t + t given that it was in state i at time t:

TijðtÞ ¼  ½xðtþ tÞ 2 Sj j xðtÞ 2 Si	;

defining a transition matrix TðtÞ 2  n� n. Note that t
can be orders of magnitude shorter than the longest

timescales of the system. The transition matrix can also

be written in terms of correlation functions (Swope

et al. 2004):

TijðtÞ ¼
ccorrij ðtÞ

pi
; (1)

where pi is the stationary probability to be in set Si:

pi ¼  ½xðtÞ 2 Si	

and cij
corr(t) ¼ piTij (t) is an unconditional transition

probability. Suppose that pðtÞ 2 n is a column vector

whose elements denote the probability to be within

a set j 2 {1, . . ., n} at time t. After time t, the proba-
bilities will have changed according to:

pTðtþ tÞ ¼ pTðtÞTðtÞ (2)

The stationary probabilities of discrete states, pi,
yield the unique discrete stationary distribution of T:

pT ¼ pT TðtÞ (3)

Clustering, Estimation and Statistics

The transition probabilities Tij are usually estimated from

molecular dynamics simulations. Suppose a trajectory

x(t) is given. The simulation data is first discretized

onto a microstate discretization (S1,. . ., Sn). This is usu-

ally done with clustering methods such as density-based

clustering, k-medoids or k-means, using RMSD, Euclid-

ean positions, or internal coordinates as metric (Voelz

et al. 2010; Chodera et al. 2007; Prinz et al. 2011).
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The count matrix C(t) is then defined by counting

the number of transitions between discrete sets along

the trajectory:

cij ðtÞ ¼ jfxðtÞ 2 Si; xðtþ tÞ 2 Sj; gj: (4)

If multiple trajectories are available, then the count

matrices of these trajectories are simply added up.

Based on C(t), the transition matrix can be estimated

with maximum likelihood by Prinz et al. (2011):

T̂ij ¼ cij
Sn
k¼1 cik

; (5)

Provided that the trajectories x(t) are started from

a local equilibrium within the set Si that contains the

starting structure x(0) (Prinz et al. 2011), the estimator

Eq. 5 is asymptotically unbiased, that is, for a long

enough trajectory, T̂ðtÞ will converge to the correct

transition matrix T(t). It is important to note that T̂ij as
given by Eq. 5 does not necessarily fulfill the detailed

balance equations: piTij ¼ pjTji; but generally

piT̂ij 6¼ pjT̂ji: This is a result of limited statistics and

is usually accounted for by using a maximum likeli-

hood estimator that makes sure that the detailed bal-

ance equations are fulfilled (Prinz et al. 2011).

Since simulation data is finite, all validation pro-

cedures (either consistency checks or comparisons to

experimental data) need to account for statistical

uncertainties. Standard deviations or confidence inter-

vals of the transition matrix elements and of properties

computed from the transition matrix can be calculated

from the count matrix C(t). See Singhal and Pande

(2005), Noé (2008) for details (Fig. 1).

Predicting Long-Term Kinetics from Short

Simulations and the Systematic Error Caused by

This

Markov models are an approximation of molecular

kinetics. The discretization of state space into sets

(S1,. . ., Sn) erases the information where exactly the

continuous process x(t) was. As a result, the jump

process on (S1,. . ., Sn) is no longer Markovian even if

x(t) was; nevertheless, it is approximated by a Markov

chain. What are the consequences of this approxima-

tion? The following two quantities are obtained from

Markov models without systematic error:

1. The propagation of transition probabilities by one

step t; pTðtþ tÞ ¼ pTðtÞTðtÞ.

2. Stationary properties, such as the stationary distri-

bution p and associated expectation of state func-

tions pðaÞ ¼ p; ah i.
However, state space discretization introduces sys-

tematic error in the reproduction of long-time kinetics,

that is, the prediction:

pTðtþ ktÞ � pTðtÞTkðtÞ; (6)

is only approximately true. However, good approxi-

mation of this equation is essential, because it repre-

sents one of the main advantages of Markov models,

namely, to predict long-time kinetics by using short

trajectories of length order t. Based on rigorous theo-

retical results (Sarich et al. 2010; Prinz et al. 2011), it is

now known that the error of Eq. 6 decreases toward

zero with increasingly fine discretization and increas-

ingly long lagtime t.
A practical way to test the quality of a specific state

space discretization is the Chapman-Kolmogorow Test

(Prinz et al. 2011), which tests the approximate valid-

ity of Eq. 6. Figure 2 shows the results of such a test for

a two- and a six-state partition of a diffusion in

a double well. The six-state partition clearly outper-

forms the two-state partition.

Eigenvalues and Eigenvectors

The transition matrix T(t) can be written as a linear

combination of its eigenvalues li and left eigenvectors li:

pTðktÞ ¼ pT þ
Xn
i¼2

lki ðtÞailTi : (7)

with coefficients ai that depend on the initial distribu-

tion p(0). The first eigenvector is equal to the station-

ary distribution l1 ¼ p and has the eigenvalue l1 ¼ 1.

All other eigenvalues are smaller than one, hence

limkt!1 pT(kt) ¼ p. The terms with i 
 2 indicate

exponential relaxation processes with a timescale

implied by the eigenvalues:

ti ¼ � t
ln li

(8)

Since the relaxation timescales ti are physical prop-

erties of the dynamics, they should be invariant

under change of the lag time t used to parametrize

the transition matrix (Swope et al. 2004). For large

enough t, ti should converge to their true value
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(assuming sufficient statistics). Therefore, the conver-

gence of ti with increasing t has often been employed

as an indicator for selecting t (Swope et al. 2004;

Chodera et al. 2007; Prinz et al. 2011) (see Fig. 3).

The relevance of the eigenvectors is illustrated in

Fig. 1d, showing the four dominant eigenvectors for

the diffusion in a four-well potential. The first eigen-

vector corresponds to the stationary distribution. The
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Markov Models of Molecular Kinetics, Fig. 1 (a) Potential

energy function with 100 microstates and four metastable sets

and corresponding stationary probabilities pi. (b) Density plot of
the transition matrix for a simple diffusion in the potential. The

matrix is nearly block-diagonal, with the transition probability

being large within blocks allowing rapid transitions within meta-

stable basins, and small or nearly zero for transitions between

different metastable basins. (c) Eigenvalues of the transition

matrix. The gap between the four slow processes ðli � 1Þ and
the fast processes is clearly visible. (d) The four dominant

eigenvectors, r1, . . .r4, which indicate the associated dynamical

processes. The first eigenvector is associated to the stationary

process, the second to a transition between Aþ B $ Cþ D and

the third and fourth eigenfunction to transitions between

A $ B and C $ D, respectively. (e) The left eigenvectors l1,
. . ., l4 (Figure adapted from Prinz et al. (2011))
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second eigenvector corresponds to the slowest process

and has positive signs in regions A and B and negative

signs in regions C and D, thus corresponding to the

transition between (A,B) and (C,D). The third eigen-

vector corresponds to the transition between A and B,

while the fourth corresponds to the transition between

C and D.

Metastable States

Markov models from clustered molecular dynamics

data often require thousands of microstates. It is

thus desirable to find a simplified representation that

communicates the essential properties of the kinetics.

Let us consider the coarse partition of state space

O ¼ {C1, C2, . . ., Cn} where each cluster Ci contains

multiple microstates Sj. We are interested in finding

a clustering that is maximally metastable. In other

words, each cluster Ci should represent a set of struc-

tures that the dynamics remain in for a long time before

jumping to another clusterCj. Thus, each clusterCi can

be associated with a free energy basin.

Sch€utte and coworkers proposed that the metastable

states could be identified by grouping microstates

according to the signs in the dominant eigenvectors

l2, l3 etc. (Sch€utte et al. 1999; Weber 2003). Based on

that, Weber (2003) developed PCCA+, an optimal

method for identifying metastable sets. When plotting

the values each microstate has in its m � 1 right
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Markov Models of Molecular Kinetics, Fig. 2 Chapman-

Kolmogorov-Test for MSMs of a diffusion in a double-well

potential (a). (b, c) compare the probability of being in the left

minimum over time, given that the dynamics starts in the left

basin. The test was done for the two-well potential using

a trajectory of length 106 steps. Tested are Markov models that

use lag times t ¼ 100, 500, 2000 and (b) 2-state discretization

(split at x¼ 50), (c) 6-state discretization (split at x¼ 40, 45, 50,
55, 60) (Figure adapted from Prinz et al. (2011))
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eigenvectors r2, r3, . . ., rm, these values lie in

a simplex whose vertices correspond to metastable

states and the most metastable partition is found by

assigning microstates to their closes vertices. See

Fig. 4 for an illustration, and Weber (2003) for

a more detailed description.

Note that metastable states are very useful for illus-

trative purposes. If the dynamics are very metastable,

they may even serve as MSMmicrostates because then

the dynamics loses memory before exiting to another

metastable state, yielding an effectively Markovian

partition de Groot et al. (2001). In general, this is not

the case, and for quantitatively modeling the system

kinetics, it is thus recommeded to maintain a fine

discretization as the MSM discretization error will

increase when states are lumped (see section “Long-

Term Kinetics from Short Simulations”).

Figure 5 shows metastable states of the folding

dynamics of Pin WW Noé et al. (2009).

Transition Pathways

Understanding the mechanisms of conformational

transitions, such as protein folding, RNA folding,

native conformational transitions in proteins, or

binding of ligands to proteins, is one of the grand

challenges in biophysics. Let A and B be two subsets

of state space (e.g., denatured and folded state), and

let all remaining states be “intermediate” states I. What

is the probability distribution of the trajectories leaving

A and continuing on to B? That is, what is the typical
sequence of states I used along the transition path-

ways? When an MSM is available, these questions

can be answered by Transition Path Theory (TPT)

(Weinan and vanden-Eijnden 2006; Metzner et al.

2009; Noé et al. 2009).

The TPT equations are derived for rate matrices in

Metzner et al. (2009) and for transition matrices in Noé

et al. (2009). The essential ingredient required to com-

pute the statistics of transition pathways is the

committor probability. qþi � qþi is the probability

when being at state i, the system will reach the set

B next rather than A (Du et al. 1998). The committor

can be calculated from the equations:

qþi ¼ 0 i 2 A
qþi ¼ 1 i 2 B

Sk2ITikqþk ¼ �Sk2BTik i 2 I

The backward-committor probability, q�i, is the

probability, when being at state i, that the system was

in set A previously rather than in B. For dynamics

obeying detailed balance:

q�i ¼ 1� qþi :

Consider the probability flux between two states

i and j, given by piTij. TPT only considers trajectories

that successfully move from A to B without recurring

to A beforehand. The flux pertaining to these reactive

trajectories only is given by multiplying the flux by the

probability to come from A and to move on to B:

fij ¼ piq�i Tijq
þ
j :

Furthermore, contributions from recrossings or

detours are removed. Thus, the net flux is defined by

fþij ¼ max f0; fij � fjig. Considering detailed balance

dynamics and when ordering states along the reaction

coordinate qþi such that qþi � qþj , an equivalent

expression is (Berezhkovskii et al. 2009):

fþij ¼ piTijðqþj � qþi Þ:
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Markov Models of Molecular Kinetics, Fig. 3 Convergence

of the slowest implied timescale t2 ¼ �t= ln l2ðtÞ of the diffu-
sion in a double-well potential depending on the MSM

discretization. The metastable partition (black, solid) has greater
error than the finer partitions (blue, green) (Figure adapted from
Prinz et al. (2011))
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fij
+ defines a network of fluxes leaving states A and

entering states B. It is similar to an electric network

where the “voltage” ðqþj � qþi Þ across a “conductivity”
piTij gives rise to a “current” fþij . The total flux created
in A and consumed in B is:

F ¼
X
i2A

X
j =2A

piTijqþj ¼
X
i =2B

X
j2 B

piTijð1� qþi Þ:

Of special interest is the reaction rate constant Noé

et al. (2009):

kAB ¼ F

,
t
Xm
i¼1

piq�i

 !
:

The fluxes fþ can be coarse grained by summing

fluxes crossing the boundaries of metastable states (see

Fig. 5). This yields a simplified view on the transition

investigated. The flux fþ can be decomposed into

individual pathways (Metzner et al. 2009) and their

relative contribution to the A ! B process can be

evaluated (Noé et al. 2009). As an example, the folding

pathways for the Pin WW protein are shown in Fig. 5.

Experimental Observables/Dynamical
Fingerprints

Biophysical experiments measure one or multiple

observables a(x) which are functions of the high-

dimensional macromolecular coordinates. a could be

a fluorescence or transfer efficiency in a fluorescence

experiment, an NMR chemical shift, the intensity of an

IR spectral peak, the distance in a pulling experiment,

etc. Let ai be the mean value of observable a over the

state Si. Given the observable vector a ¼ [ai], various
experimental measurements can be expressed in terms
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Markov Models of Molecular Kinetics, Fig. 4 Metastable

states of the one-dimensional dynamics (see Fig. 1a) identified

by PCCA+. (a), (c), (e): Plot of the eigenvector elements of one,

two, and three eigenvectors. The colors indicate groups of ele-

ments (and thus conformational states) that are clustered

together. (b), (d), (f): Clustering of conformation space into

two, three, and four clusters, respectively. Each of these parti-

tions is a valid selection in a hierarchy of possible decomposi-

tions of the system dynamics. Moving down this hierarchy

means that more states are being distinguished, revealing more

structural details and smaller timescales (Figure adapted from

Prinz et al., Phys. Chem. Chem. Phys. 13, p 16912 (2011))
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of the transition matrix T and linked to its eigenvalues

and eigenvectors (Noé et al. 2011).

In stationary equilibrium experiments, themean value

of anobservablea; p½a	; is recorded. Thismaybe either

done my measuring p½a	 directly from an unperturbed

ensemble ofmolecules, or by recording sufficientlymany

and long single molecule traces a(t) and averaging over

them. The expected measured signal is:

p ½a	 ¼
Xn
i¼1

aipi ¼ a; ph i: (9)

where x; yh i denotes the scalar product between two

vectors x and y.

Kinetic information is available from time-

correlation experiments. These may be realized by

Markov Models of Molecular Kinetics, Fig. 5 Flux of the folding transitions among the metastable states of the PinWW protein

(Figure adapted from Noé et al. (2009))
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computing time-correlation functions from single mol-

ecule trajectories (e.g., fluorescence correlation spec-

troscopy) or by scattering techniques (e.g., inelastic

neutron scattering). The time cross-correlation of two

observables a and b can be computed as:

 ½aðtÞ bðtþ ktÞ	 ¼
Xn
i¼1

Xn
j¼1

aipiaj ½TkðtÞ	ij

¼ a; ph i b; ph i þ
Xn
i¼2

exp � kt
ti

� �
a; lii b; lii:hh

(10)

For the autocorrelation of a:

 ½aðtÞ aðtþ ktÞ	 ¼ a; ph i2

þ
Xn
i¼2

exp � kt
ti

� � 

a; li

�2

In relaxation experiments, the system is allowed to relax

from a nonequilibrium starting state with probability

distribution p(0). Examples are temperature-jump, pres-

sure-jump, or pH-jump experiments, rapid mixing

experiments, or experiments where measurement at

t ¼ 0 starts from a synchronized starting state, such as

in processes that are started by an external trigger like

a photoflash. After time t ¼ 0 the conditions are

governed by a transition matrix T(t) with stationary

distribution p 6¼ p(0). The ensemble average p(0)[a

(t)] is recorded while the system relaxes from the initial

distribution p(0) to the new equilibrium distribution p:

pð0Þ ½aðktÞ	 ¼
Xn
i¼1

aipiðktÞ

¼ a; ph i þ
Xn
i¼2

exp � kt
ti

� �
p0 ð0Þ; lih i a;lih i: (11)

where p0ið0Þ ¼ pið0Þ=pi. Both Eqs. 10 and 11 have the

form of a multiexponential decay function with

implied timescales of the transition matrix. Each

timescale enters the observation with an amplitude

that depends on the overlap between the

corresponding eigenvector Eq. 9 and the observable

(s), and in relaxation experiments also on the initial

conditions of the experiment. For any given experi-

mental observable, many amplitudes will be near

zero; thus, even complicated kinetics may have the

signature of two- or three-state systems in a single

given kinetic experiment.

The ability to link experimentally measurable

relaxation timescales to individual eigenvalue/eigen-

vector pairs allows structural processes to be

assigned to these timescales via the eigenvector

(see “Interpretation of Eigenvectors” above). This

reconciliation of simulations and experiments is

described in detail via the concept of dynamical fin-
gerprints. Furthermore, this approach permits to

design experiments that are optimal to probe individ-

ual relaxations (Noé et al. 2011).

Summary

Markov modeling is a theoretical framework suitable

for analyzing molecular dynamics or any other sto-

chastic process that is ergodic and Markovian in full

state space. Markov (state) models (MSMs) approxi-

mate the complex original dynamics by transition

probabilities between discrete subsets of the possibly

high-dimensional state space. In molecular dynamics,

these subsets may correspond to molecular conforma-

tions, rotamers, foldamers, or binding states.

A sufficiently fine clustering in the MSM will retain

the relevant details of the complex energy landscape,

specifically the information which states are kineti-

cally connected and which are not. This allows rela-

tively detailed analyses such as using transition path

theory to calculate the ensemble of transition pathways

between two subsets of state space, or the assignment

of structural processes to the kinetic features of exper-

imental observables.

It has been intensively debated whether it is gen-

erally feasible to approximate the high-dimensional

continuous dynamics of macromolecules by

a discrete Markov process on relatively few (typi-

cally 102–105) discrete states. A number of theoret-

ical developments between 2000 and 2010 have

shown that this is indeed feasible if the system has

relatively few slow relaxation processes, typically

arising from the transitions between metastable

states. This makes MSMs especially interesting

to biological macromolecular processes, such as

conformational changes, folding, binding, and

oligomerization of peptides, proteins, and nucleic

acids. Whether MSMs can also be practically

useful to investigate processes with combinatorially
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exploding state spaces, such as spin systems,

remains a subject of ongoing research.

Current challenges of Markov model methodology

lie especially in the development of robust adaptive

methods for discretization and sampling: (1) The basic

mathematical relation between a state space

discretization and the quality of an MSMs is now

understood. The translation of the mathematical

insight of discretization quality into a robust adaptive

discretization algorithm is an important step toward

efficient construction of MSMs for complex systems.

(2) Enhanced sampling methods to explore the state

space such as metadynamics and multi-ensemble

methods are complementary to MSM modeling of the

equilibrium dynamics. Consistently integrating these

approaches is an important step toward efficient simu-

lation (Sriraman et al. 2005). (3) It has been demon-

strated on simulation models that the statistical

uncertainties of the MSM transition matrix and quan-

tities calculated from it can be used to allocate new

simulations so as to speed up the convergence (Singhal

and Pande 2005). These approaches need further

development and are likely to significantly influence

the molecular dynamics field.
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