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ABSTRACT: The AdResS method in molecular dynamics (MD) allows, in a grand canonical (GC) fashion, to change on-the-fly
the number of degrees of freedom of a system, allowing to pass from atomistic (AT) to coarse-grained (CG) resolution and vice
versa as a function of the position of the molecule in the simulation box. The coupling of resolutions is made in a
thermodynamically consistent way, though in the current formulation, in the region where the molecule changes resolution,
neither thermodynamic nor structural properties can be preserved. Here we propose an extension of the method where basic
thermodynamic and structural properties can be systematically controlled also in the transition region; this assures a very smooth
change from one molecular representation to the other. Moreover, we provide a rigorous argument which shows that if in the
region where the molecules change resolution the radial distribution function (RDF) is the same as in the AT and CG region,
then the AT region is, from the statistical point of view, equivalent to a subsystem embedded in a larger full AT system, at least
up to a second order approximation.

1. INTRODUCTION
Bridging scales in condensed matter, material science or
chemical physics is equivalent to describing the connection
between local processes and the emerging global behavior of
the system. In this context, molecular simulation has the final
aim of understanding the molecular origin of large scale
properties, and this can be viewed as a sort of process of
zooming in (to the details) and zooming out (to the large scale
properties) as pictorially illustrated in the example of Figure 1.
Standard molecular simulation techniques do not allow the
zooming process in a concurrent fashion, that is considering
different resolutions at the same time. Rather, the zooming

process is done in a sequential hierarchical way in a bottom-up
or top-down fashion.1 Ideally, a computational magnifying glass
as in Figure 1 should be designed as an adaptive resolution
approach. This means that it should (1) change molecular
resolution in a region of space keeping the rest of the system at
lower resolution; (2) allow for the free exchange of molecules
between the different regions, so that natural particle number
fluctuations are not arbitrarily suppressed; and (3) points 1 and
2 must occur under conditions of thermodynamic equilibrium
which are the same as if the whole system was described at
higher resolution. This implies that (at least) the temperature
and particle density are the same in the AT and CG region, and
are the same for a full AT simulation of reference.1 The
computational advantages are obvious: simpler models requires
less computational energies and thus can be more efficient.
However, the real advantage of a method of this kind is in its
conceptual consequences: it can in principle identify the
essential degrees of freedom (DOFs) of a system and thus
avoid producing an excess of details which may overshadow the
essential physics or chemistry of the system. A method with the
characteristics outlined above is the adaptive resolution
simulation (AdResS) scheme2,3 whose basic aspects are
reported in the next section. Methods similar to AdResS or
dealing with mixed atomistic-coarse grained resolution have
also been presented in the literature in the past few years; for a
general overview see refs 4−9. In this work we propose an
extension of the AdResS method which allows an even
smoother transition from one resolution to the other. On the
basis of such an extension we then give theoretical arguments
which make the general theoretical framework more solid.
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Figure 1. Magnifying glass illustrates the idea of zooming in to the AT
scale to understand the molecular origin of the statistical properties of
a liquid which at larger scale can be viewed as a collection of spheres, a
resolution sufficient to represent the large scale behavior.
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2. ADRESS: BASIC ASPECTS
The AdResS method allows an on-the-fly interchange between
the AT and CG description (and vice versa) of the molecules
according to their position in space. The two resolutions are
coupled across scales by dividing the system into three parts
(see also Figure.2): (a) a high resolution region (AT) with

atomistic details; (b) a low resolution region (CG) with a
simple-sphere representation of molecules; and (c) a transition
region (Δ) within which molecules continuously adapt
resolution through a space dependent interpolation of the
high and low resolution intermolecular forces

= + −αβ α β αβ α β αβw x w x w x w xF F F( ) ( ) [1 ( ) ( )]AT CG
(1)

where α and β label two molecules, Fαβ
AT is the force derived

from the AT potential and Fαβ
CG is the force derived from the

CG potential acting on the centers of mass (COMs), w(x) is a
function with value zero in the CG region, one in the AT and
smooth and monotonic in the transition region Δ. The
standard form of w(x) currently used in the AdResS scheme is
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where dAT and dΔ are the size of the atomistic and hybrid
region, respectively, and x is the x-coordinate of the COM of a
molecule measured along the x-axis as defined in Figure 2. (In
the water simulation presented in Section 7, dAT = 0.5 nm and
dΔ = 2.75 nm.) Notice that throughout the paper we assume a
fixed volume and the application of periodic boundary
conditions. Therefore w(x) is also fixed and periodic. The
CG potential is derived from a reference full AT simulation and
is such that it reproduces structural or thermodynamic
properties of the reference full AT system; later we will discuss
the coarse-graining procedure in more detail. The way the force
of eq 1 acts between the molecules is illustrated in Figure 3.
The basic idea behind this approach is that the smooth force
interpolation minimally disturbs the dynamics in either of the
participating regions when a molecule changes side.
It is obvious that the approach is non-Hamiltonian; that is, it

does not exist a potential from which the force of eq 1 can be
derived. In practice, the energy drift of the system is taken care
by a Langevin thermostat with globally uniform parameters.
This has been shown both analytically10 and with detailed
computer experiments.9 The question which naturally emerges
at this point is how to ensure thermodynamic equilibrium if we

Figure 2. Schematic representation of the adaptive simulation box.
Molecules moving from the atomistic region (AT) region slowly lose
their resolution passing through continuous level of hybrid resolution
in the transition region, Δ, and then becoming spheres in the coarse-
grained region (CG) (and vice versa). The example shown here
consists of a liquid of tetrahedral molecules, that is, the toy model used
for developing the AdResS method.2 The region Δ in realistic
applications should be much smaller than the AT and CG region; here,
Δ is enlarged in order to make pictorially clear the hybrid resolution
and the shape of w(x).

Figure 3. How Fα,β acts between the molecules. Two AT molecules (i.e., w(x) = 1) interact as standard AT molecules, that is, each atom i of α with
each atom j of β. Two GC molecules, w(x) = 0, interact via the COM (no atomistic DOFs present). Each molecule interacting with a CG molecule
must interact only via the COM because the CG molecule does not have other DOFs. Technically the force acting on the COM for a hybrid or AT
molecule is then redistributed on the atoms according to the mass of each. For the case of the tetrahedral molecule shown here, it means that the
force is redistributed in a uniform way since the atoms have all the same mass. Two hybrid molecules or one hybrid and one AT molecule will
interact partially via atom−atom interaction and partially via CG interaction on the COM, the amount of which is decided by the w(x). As above, the
force on the COM is then redistributed on the atoms.
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cannot define a Hamiltonian of the system. This aspect is
discussed in the next section.

3. THERMODYNAMIC EQUILIBRIUM

The principle used in this case to build a conceptual framework
to ensure equilibrium is the following: there must be a process
of acquiring (releasing) some sort of thermodynamic
information associated with acquiring (releasing) DOFs. An
explicit example can clarify the idea; let us suppose that a
molecule moves from the CG to the AT region. The molecule
will be leaving a local environment of equilibrium; it will slowly
acquire vibrational and rotational DOFs (as it acquires the AT
resolution) and tries to enter in the AT region where other
molecules are in local instantaneous equilibrium. At this point if
the vibrational and rotational DOFs of the molecule are not
compatible with those of the AT environment, it is likely that
the molecule is sent back because it would perturb the local
equilibrium in a massive way. In a similar way, thought less
evident, a molecule going from the AT to the CG region should
lose vibrational and rotational energy in order to properly
accommodate with the CG environment (spheres). In this
context the thermodynamic information consists of the free
energy per DOFs (let us define it as ϕ(x)) which the molecule
needs to acquire (or remove) in order to equilibrate with the
AT (CG) environment once it has changed resolution. In order
to allow the process of molecular equilibration related to the
transition from one region to another, three options have been
explored so far. (i) The first is to employ a thermostat which
acts locally and provides/removes this energy per DOFs. The
accuracy of this approach is highly satisfactory from the
numerical point of view (for example, the density in the most
critical region, i.e., the transition region, has an accuracy of 5%
wrt the target value). However, from the conceptual point of
view this approach is not satisfactory since the amount of
energy per DOFs is not distributed according to some
controllable, physical principles, but it is distributed in a
stochastic manner. A numerically as well as conceptually well
founded approach is that based on the idea of thermodynamic
force, that is, a force derived on the basis of thermodynamic
relations. This idea gave rise to the following procedures. (ii)
One can define ϕ(x) = μatom − μ(w(x)); that is the difference
between the chemical potential (effectively a free energy per
particle) which characterizes the AT resolution and the
chemical potential corresponding to the resolution defined by
w(x). In a previous work11 it has been shown that this quantity
can be calculated and the thermodynamic force, defined as the
gradient of ϕ(x), applied to the COM of the molecule (in
addition to the coupling force of eq 1). The accuracy regarding
the particle density is higher than that obtained with approach i.
However, the calculation of μ(w(x)) is rather demanding, and
thus ii, though conceptually better founded, would be
computationally not efficient. Finally a new approach, here
referred as iii, has been proposed, based on the idea of the
adaptive scheme as an open system MD in an effective grand
canonical framework.12 The description of the latter approach
is given in the next section; the current work proposes an
extension of the computational procedure employed in
procedure iii.

4. EFFECTIVE GRAND CANONICAL APPROACH

The starting point on which this idea is based is the coarse-
grained procedure we employ, that is, the iterative Boltzmann

inversion (IBI). For a detailed description of the IBI, see ref 13;
here, we report only the necessary aspects which are of interest
in the development of the procedure of this paper. The IBI is a
so-called “structure based” CG procedure; that is, it matches
the RDF, g(r), of the CG model to that of the reference full AT
simulation. In this way by construction the isothermal
compressibility of the AT and CG is the same: κAT = κCG
(up to a very high accuracy)14 and as a consequence particle
number fluctuations are the same. However, the pressure is
different: PAT ≠ PCG (for a detailed description of the relation
between the IBI procedure with g(r), κ, the particle number
fluctuation and pressure see, e.g., ref 14). At this point there are
two possible strategies: (a) add a pressure correction within the
IBI procedure at the price of a less accurate match of the g(r)
(and thus → κAT ≠ κCG, and in turn the number particle
fluctuations are not preserved); (b) keep κAT = κCG, and deal
with a CG model where PAT ≠ PCG. In this case strategy b is
more appropriate; in fact, in an adaptive framework it is crucial
to keep the particle number fluctuations correct so that they are
not arbitrarily suppressed. If instead they are suppressed, then
there is no assurance that the properties obtained, above all for
liquids and soft matter systems characterized by strong local
density fluctuations, are not a product of numerical artifacts.
Next, the approach to deal with different pressures is explained.
In Figure 4 it is pictorially shown the adaptive resolution set up
and the consequences of interfacing an AT and a CG model
characterized by different pressures.

As the simulation proceeds (t > 0) the initial condition of
uniform density would not be kept because particles are pushed
by the high pressure region to the low pressure region by a
pressure-induced drift force. This, as a consequence, leads to a
nonuniform, unphysical density profile. The solution to this
problem is the derivation of a “thermodynamic force”, that is, a
force derived on the basis of thermodynamic principles, which
compensates for the pressure-induced drift force. The
thermodynamic principles employed here are the following;
interfacing AT and CG models in terms of grand potential
means: PATV ≠ PCGV; κAT = κCG; ρ ≠ ρ0. The reasons to write

Figure 4. Adaptive resolution initial condition, for AT and CG with
different pressure (top). As the simulation proceeds a pressure-
induced force produces a drift of particle from the high pressure region
to the low pressure region leading to an unphysical density profile.
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the thermodynamic relation in terms of grand potential are the
following: (I) the grand potential is the natural thermodynamic
potential when interfacing open systems, that is, systems which
can exchange particles (the AT and CG are open to each
other); (II) one can deal directly with the pressure (to which
we have direct access) as a natural thermodynamic quantity to
correct/adjust in order to obtain equilibrium. In this context a
thermodynamic force Fth(x) which restores equilibrium must
be such that

∫ρ

κ κ ρ ρ

+ =
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α Δ
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The relation above expresses the situation of a subsystem (e.g.)
AT, in equilibrium with a reservoir (e.g.) CG, despite PAT ≠
PCG and (most likely) μAT ≠ μCG (but with no need of
specifying either μAT or μCG). In essence, the thermodynamic
work generated or adsorbed by Fth(x) removes the differences
and ensures equilibrium. The explicit expression of Fth(x) is

ρ
= ∇x

M
P xF ( ) ( )th

0 (4)

That is, at ρ = ρ0, eq 4 expresses the force on a molecule with
mass M balancing the pressure-induced force, −∇P(x).
However P(x) is not directly accessible from the simulation
and would require a large number of additional runs which
would make the procedure computationally not efficient (or as
efficient as that of determining μ(x) in procedure ii). For this
reason a linear approximation for P(x) is used instead:
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where ρ(x) is the density of particles generated by the pressure-
induced drift-force. Next the thermodynamic force is obtained
via an iterative (fastly converging) procedure, as
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with ρk(x) density profile obtained by the application at the kth
iteration of the Fk

th (x). Therefore, for every iteration, an
AdResS simulation is required to calculate the density profile.
As a consequence, the adaptive coupling, in terms of force
acting on the molecule, e.g., α is modified, from Fα = ∑βFαβ of
eq 1 to

∑= +α
β

αβ αxF F F ( )th

(7)

where xα is the COM position of molecule α. The molecular
force Fα is further mapped onto each atom (if necessary) by the
weight of the atomic mass over the molecular mass, namely, Fαi

= (Mαi)/(Mα)Fα, whereMαi is the mass of ith atom on molecule
α. It is interesting to note that since (∂μ/∂ρ)V,T = (1)/([ρ]2κ),
we can conclude that this procedure is conceptually equivalent
to that labeled ii in the previous section, but with the advantage
of a much higher computational efficiency. The approach
outlined in this section has been named “effective grand
canonical” because it has the characteristic of a standard grand
canonical system regarding the coupling to a particle reservoir
and because the particle number fluctuations in the AT e CG
region are preserved. However, it is an “effective” approach

because one does not have a direct access to the chemical
potential μ (key quantity for a formal derivation of the partition
function in the Grand Canonical ensemble) and because the
particle reservoir is finite. The application to liquid water at
ambient conditions12 and to water−methanol mixtures15 has
proven that the method gives very accurate numerical results if
compared with the (by far more expensive) full AT simulations
of reference. This means that regarding the computational as
well as conceptual robustness of the method the level reached is
highly satisfying. However, in this work we attempt to define a
path to a further systematic improvement, focusing on the
reproduction of properties in the transition region Δ. This is
reported in the next section.

5. SECOND ORDER CORRECTION TO THE COUPLING
FORCE

The transition region Δ has a role of a filter that allows
molecules to transit from one region to the other without
perturbing the equilibrium of the AT and CG region. While
properties in the AT and CG region have a physical meaning, Δ
does not have any physical meaning but represents only a
computationally convenient tool. In this sense, what is relevant
is that quantities such as the g(r), κ, and the local particle
number fluctuations are the same in the AT and CG region
(and in turn equal to those of a reference full AT simulation),
but it is not necessary that they are the same in Δ. The only
significant requirement in Δ is that the average particle density
is the same as in AT and CG region; in fact depletion or
increasing of density in Δ would create artifacts in the AT and
CG region. The proper behavior of the density in Δ is assured
by the application of Fth(x). However, if there exists a
systematic procedure which allows, without massive additional
computational costs, also for the g(r), κ, and the local particle
number fluctuations to properly behave in Δ (that is to be as in
the AT and CG region) and assures global thermodynamic
equilibrium, then the coupling will be much smoother and
would avoid the possibility of any artifacts at the boundaries of
the various regions; moreover, by construction, the numerical
accuracy should be higher also in the AT and CG region. In the
following we show an approach which fulfills the requirements
above. To do so, we extend the coupling formula, Fα =∑βFαβ +
Fth (xα), by adding a further force, which assures that the g(r) in
Δ is the same as in the AT and CG region, thus preserving κ
and the particle number fluctuations without perturbing the
thermodynamic equilibrium. We will refer to such an approach
as “second order correction”; this is because while Fth(x) is
based on the correction of the first moment of the probability
distribution of the system in phase space ρ(x), the new
additional term is derived as a correction to the second
moment of the distribution, g(r). The technical details of the
procedure and the numerical results are shown in the next
sections. Finally, we show that the correction to the g(r)
represents also a conceptual advancement; in fact, it implies
that, at least at the level of the COM-COM g(r) (for the
conditional probability), the AT region is fully equivalent to a
subsystem embedded in a larger full AT bath. This represents a
natural step toward the grand canonical idea, and it gives more
solid formal basis to the approach along this direction. To
rigorously show that a subsystem in AdResS samples a grand
canonical distribution, one should show that the joint
distribution p(x,N) (that is the probability of finding a certain
configuration x for a given number of particles N) is the same
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as in a subsystem of a full atomistic simulation; this is the
subject of future work.

6. DETERMINATION OF THE FORCE

The additional force which should be added up to the
thermodynamic force in order to have a g(r) in Δ as in the AT
and CG region must satisfy the following requirements: (a) it
should act only in Δ; (b) it should not perturb the properties of
the AT and CG region and the overall equilibrium of the
system. In order to fulfill the requirements above we have
developed a scheme whose sequential steps are reported in the
following.
(1) We proceed to the determination of Fth(x) as reported in

the previous section, according to the procedure of ref 12. This
will ensure that we have the same ρ all over the simulation box,
and to have the same g(r) in the AT and CG region, but not in
the transition region Δ.
(2) We correct the interpolation formula on the force by a

force correcting the g(r) in Δ:

= + − + −αβ α β αβ α β αβ α β α β αβw w w w w w w wF F F F[1 ] (1 )AT CG rdf

(8)

The g(r) correction force Frdf is determined by the IBI scheme
which in this case is
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where Urdf(r) is the pairwise correction potential applied to the
molecule in Δ. The force is calculated by

= = −∇αβ αβ αβU rF F r( ) ( )r
rdf rdf

(10)

The gAT(r) is the target AT g(r) that the hybrid region should
reproduce, and gk(r) is the average hybrid RDF of the kth
iteration. It must be noticed that the RDF correction force Frdf

only depends on the relative position of two molecules, i.e., rαβ.
Even though the g(r) in Δ is actually a function of position x,
here it is assumed that the RDF correction does not have this
dependency. In the IBI scheme (eq 9), the RDF of the hybrid
region at kth step gk(r) is averaged over the hybrid region, so
that no spatial dependency exists in this iteration formula. The
spatial dependency is added later by the prefactor wαwβ(1 −
wαwβ) = w(xα)w(xβ)[1 − w(xα)w(xβ)]. The effectiveness of
such an approach will be demonstrated in the next section. The
initial guess of the potential is chosen as the potential of mean
force
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The prefactor wαwβ(1 − wαwβ) is chosen such that the force
acts only between molecules in Δ. In order to be sure that this
is indeed the case we have also slightly modified the switching
function w(x) from the expression of eq 2 to the following:
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The definitions of dAT, dΔ, and x are the same as in eq 2, while
rc is the cutoff radius (which is the same for the Lennard-Jones
interaction and the electrostatic interaction treated by the
reaction field method); in this work, dΔ ≥ 2rc. In the water
simulation presented in section 7, dAT = 0.5 nm, dΔ = 2.75 nm,
and rc = 0.9 nm. This new definition of w(x) essentially consists
of considering an extension (of size rc) of the hybrid region to
part of the AT region. In other words, the resolution of the
molecules in the range dAT < x < dAT + rc are still atomistic (w =
1), but those molecules are considered as part of the system of
the hybrid region Δ and not of the atomistic region. This
assures that Frdf(rαβ) acts only between molecules in the hybrid
region, so that it does not perturb the interactions in the
atomistic region. If not stated otherwise, the new weighting
function eq 12 is applied to all AdResS forces.
(3) Applying the force obtained by the IBI will correct the

g(r) in the hybrid region; however, the density profile of the
system will be disturbed. To fix this problem, we proceed by
performing an additional iteration on the thermodynamic force
(TFI) which corrects the density profile, followed by an IBI
step to correct the possible perturbation of the g(r) due to the
previous iteration of the thermodynamic force. Therefore, the
resulting scheme consists of an iterative Boltzmann inversion-
thermodynamic force iteration correction loop (IBI-TFI
correction loop) to reproduce the correct density profile and
g(r) in Δ at the same time, (see Algorithm 1).
In the next section we will show the application of the

method to the case of liquid water at ambient condition as in
ref 12. We will show that higher accuracy regarding the g(r) and
the particle number fluctuation in Δ can be reached and that
basic thermodynamic relations (as the grand potential) are not
perturbed by the additional correction on the forces.

7. APPLICATION TO LIQUID WATER
Figure 5 shows the AdResS set up for a system consisting of
liquid water at ambient conditions (as in ref 12) to which we
have applied the procedure reported in the previous section
(technical details of the simulation can be found in the
Appendix). Here we show the numerical results for liquid water
and prove that our approach represents a successful refinement
of the original method of ref 12. Figure 6 shows the g(r) in the
Δ region after the IBI-TFI iteration loop is applied. The
agreement with the reference all atom calculation is highly
satisfactory. Moreover, the comparison with the results
obtained employing the thermodynamic force only (as in ref
12) shows that the additional force, Frdf, proposed here allows
for a sizable improvement of the structural consistency across
the simulation box. The accuracy reached in this case becomes
more evident if one considers the g(r) calculated locally in
subregions of Δ across the box; this is shown in Figure 7. In the
situation where the disagreement on the g(r) in Δ between the
AdResS of ref 12 and the reference all atom simulation is larger,
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that is the central region of Δ (of about 9.0 nm extension,
bottom-left panel in Figure.7), the application of the IBI-TFI
correction loop instead significantly improves the situation.
Next we must show that the IBI-TFI correction loop does not
perturb the uniform density profile across the box. Figure 8
shows that, at the very first step of the procedure, when
Frdf(rαβ) is applied and Fth is not updated, the density is
perturbed. However, despite this initial perturbation, already at
the first step of the IBI-TFI iteration loop the density converges
toward a uniform profile and only four steps are required to

have a highly satisfied agreement with the results of the explicit
all atom reference simulation. The fast convergence of the
iteration loop is also shown in terms of the convergence of the
potential correcting the RDF in Figure 9. More important, the
inset shows the convergence of work done by Fth: ∫ ΔF

th dx, as
a function of the number of iteration steps. This is important
information because it tells us that the presence in the iterative
loop of Frdf(rαβ) does not perturb the role of the resulting F

th in
fulfilling the thermodynamic relation of eq 3 and thus in
providing the thermodynamic equilibrium. The difference now
is that also the structural transition occurs in a much smoother
way. A sizable effect of this smoother transition is shown in
Figure 10 where the molecular particle number fluctuation is
plotted as a function of the position in Δ. While the results of
the original method of ref 12 show an evident deviation from
the results of the reference all atom simulation, for the case
where the TFI-IBI loop is applied there is a satisfactory
agreement and basically the two curves overlap within the error
bar. This assures that particle number fluctuations are the same
as in the AT and CG region and that no artifact due to wrong
fluctuation properties can propagate into the AT and CG
region. It must be noticed that the accurate reproduction of the
particle number fluctuation also suggests that the compressi-
bility in the Δ region is accurately reproduced. However, there
is a subtle difference between these two concepts: they are
related to each other via an equation, only in the
thermodynamic limit, which is not the case of the small finite
system of Δ. This implies that we could perhaps argue that the
compressibility in Δ may not go particularly wrong; however,
we cannot make any precise statement regarding its accuracy.

8. THEORETICAL CONSIDERATIONS
Let us consider the dynamics of a system that is subject to the
Langevin equation (that is the thermostat usually employed in
the AdResS simulations):

= tvdr di i (13)

Figure 5. Schematic representation of the adaptive simulation box for
water where the new proposed w(x) is plotted. Essentially, the Δ
region includes a part with full AT resolution. This makes sure that
Frdf(rαβ) acts only between molecules which are interacting via hybrid
resolution. The new form of w(x) does not have any further
consequence on the system. The Δ region considered here is, for
technical reasons, larger than the AT and CG region; in fact, a Δ
region, larger than the AT and CG region, for the adaptive process is a
“worst case scenario”. This must be intended in the sense that if the
approach proposed here works well with a small AT and CG region
(for which a relatively larger Δ region is a strong perturbation), then it
will work well the case where such two regions AT and CG are much
larger than Δ.

Figure 6. g(r) in Δ after the IBI-TFI correction loop is applied. The
curves obtained after the first, second, and fourth iteration step are
represented in red, green, and blue solid lines, respectively. The curve
obtained from the reference explicit all atom calculation (EX) is
represented with a solid pink line. However, it must be noted that this
latter is overlapping with the other lines, and cannot be seen from the
plot. The curve obtained by applying simply the thermodynamic force
correction (only TF), thus without correction on the g(r), is in black.
The two insets show the details at the first peak and the first valley. As
can be seen, after only four iterations Frdf(rαβ) allows the reproduction,
in Δ, with high accuracy the g(r) of the reference full AT calculation.
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ξ σ= − + +m m tv v F Wd [ ]d 2 di i i i i i i t (14)

Here dWt is the standard Wiener process. If the system has a
potential, namely Fi = −∇riU, then it can be proven that the
Langevin dynamics generates the canonical ensemble

β··· ··· ∝ − ··· ···p r r v v r r v v( , , , , , ) exp[ ( , , , , , )]N N N N1 1 1 1
(15)

where is the Hamiltonian of the system:

∑··· ··· = + ···
=

m Ur r v v v r r( , , , , , )
1
2

( , , )N N
i

N

i i N1 1
1

2
1

(16)

Let us first consider the case where we have N1 molecules in the
atomistic region, N2−N1 molecules in the hybrid region.
Without loss of generality, we assume molecules 1, ..., N1 are in

the atomistic region, molecules N1 + 1, ..., N2 are in the hybrid
region, and N2 + 1, ..., N are in the coarse-grained region. The
pair {ri, vi} of the atomistic representation denotes the COM
position and velocity of the ith molecule. For convenience, we
only consider the COM coordinates of the AT molecule; all the
arguments employed here can be easily extended to treat each
atom of the molecule. We hereby consider the AT region as a
subsystem of the whole system, which is composed by the AT,
Δ, and CG regions. We must always keep in mind that our
reference system is the full AT case. Thus, the properties of the
AT subsystem in AdResS must be the same for the equivalent
subsystem in a full AT case. If we (hypothetically) fix the
coordinates of the molecules in Δ, according to the definition
of w(x) in eq 12, the Hamiltonian in the AT region can be
written as

Figure 7. Local g(r)’s. The red line is the curve corresponding to the reference explicit (all atom) simulation (EX). The curves corresponding to the
simulation where only the thermodynamic force is applied, for the case of the old weighting function eq 2 and the new weighting function eq 12, are
denoted by the green and blue lines, respectively. The curve obtained by employing the TFI-IBI method is represented in pink. The hybrid region is
equally divided into three parts, HY I, HY II, and HY III, the widths of which are roughly equal to the cutoff radius, i.e., 9 nm. The top part of each
panel shows the region where the g(r) is calculated. The top left panel corresponds to the AT and CG case, the top right to the subregion HY I of Δ,
closer to the AT region; the bottom left panel corresponds to the subregion HY II of Δ, where the level of hybridicity is the highest, and thus the
most delicate case. The bottom-right panel corresponds to the subregion HY III of Δ, that is closer to the CG region. The insets show the details at
the first peak and the first valley.
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Here we denote the phase space variables: x1 = (r1,..., rN1
, ν1,...,

νN1
), x2 = (rN1+1,..., rN2

, νN1+1,..., νN2
), and x3 = (rN2+1,..., rN,

νN2+1,..., νN). x3 denotes the coordinates and velocities of the
COM of the molecules in the CG region and for the moment
do not enter in our derivation. It must be noticed that the
writing of the formula 17 above is possible because the long-
range electrostatic interaction is treated by the reaction field
method; therefore, there is indeed no long-range interaction in
the system. This means that molecules in the AT region are
interacting only with those in the hybrid region, with the cutoff
radius rc. Second, by the new definition of w(x), i.e. eq 12, the
molecules in the AT region interact with the molecules in the
hybrid in an atomistic fashion, because every hybrid molecule
falling within the cutoff of an atomistic molecule actually has a
weighting function of w = 1, which means their nature is
atomistic though we treat them as hybrid. Here we can consider
x1 to be the variable and x2 a certain (fixed) external molecular
environment. According to the Langevin dynamics, we have the
conditional probability distribution:

| ∝ β−p x x( ) e x x
1 2

( ; )AT
1 2 (18)

Here under the hypothesis of fixed number of particles
(however the argument applies for any combination of N1,
N2), we want to derive a minimal consistency criterion for the
conditional probability; that is, under which conditions this
probability is the same as that of the equivalent region in a full
atomistic system of reference. We will show that matching the
g(r) also in the Δ region assures at basic level such a
consistency, and thus, it shows the importance of the criterion
based on the g(r) which we have developed in this paper.
Accordingly, the phase space distribution of the AT region
writes

∫= | ·p p px x x x x( ) ( ) ( ) d1 1 2 2 2 (19)

If the distribution p(x2) is equivalent to that of the
corresponding region in a full AT reference system, then one
can consider the AT region in AdResS to be the equivalent of a
subsystem embedded in a very large AT system. The crucial
question is if p(x2) is equivalent to that of a full AT system.
Most likely this is not the case, at least for the interpolation
scheme plus the thermodynamic force. In fact if one considers
p(x2) expanded in terms of its momenta, by performing
simulations using the coupling scheme of eq 7, the first order of
p(x2) is correct (i.e., the particle density), but already at the
second order, that is the COM-COM RDF, the hybrid region
deviates from the other two regions. However, as we have
shown in the previous sections, one can add a further corrective
force in the hybrid region and obtain a RDF as that of the AT
and CG region. This would mean that the idea of the AT
region as a subsystem of a very large AT system, at least at the
basic level corresponding to the hypothesis done here, is
correct up to the second order in terms of distribution. This we
have shown is more than sufficient for numerical accuracy.

Figure 8. Particle density across the simulation box. The reference
data from the all atom simulation (EX) are reported in pink. The red
broken line corresponds to the situation after the correction on the
g(r) is applied, but the thermodynamic force is not yet updated. The
solid red, green, and blue lines represent steps 1, 2, and 4 of the IBI-
TFI loop. The agreement with the reference data is highly satisfactory.

Figure 9. Plot shows the potential obtained by the IBI iteration to
correct the g(r) in Δ; the convergence is shown to be rather fast. The
inset shows the convergence toward the target value of the integral
∫ ΔF

th dx (i.e., the value obtained without correcting the g(r) in Δ) as a
function of the IBI-TFI iteration steps. This is an important result; in
fact, this quantity represents the work adsorbed or produced in order
to have thermodynamic equilibrium in the system. The result shows
that the correction force for the g(r) in Δ does not perturb the overall
thermodynamic relation of equilibrium.

Figure 10. Particle number fluctuation in Δ. The reference data from a
full atomistic simulation are reported in red (EX). The green line
represents results obtained with the original formulation, blue with the
new w(x) but without the application of the TFI-IBI loop, and pink
the results of the new method.
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9. CONCLUSIONS

We have proposed an extension of the effective grand canonical
formulation of the adaptive resolution method. In the adaptive
approach, it is important that structural properties and basic
thermodynamic quantities in the AT and CG region are the
same as in the reference full AT simulation, while the transition
region Δ has no physical meaning and represents only a
computational tool to favor the change of resolution keeping
the overall equilibrium of the system. In the original
formulation of the effective grand canonical AdResS, only the
particle density in Δ is assured to be the same as in the AT and
CG region. This requirement is crucial since depletion or excess
of particles in Δ implies a higher/lower density in the AT and
CG region and thus a situation different from the reference full
AT system. However if one constructs a systematic procedure
which preserves the thermodynamic equilibrium (as in the
current formulation) but goes beyond the requirement of
density in Δ and assures that further structural (radial
distribution function) as well as thermodynamic properties
(isothermal compressibility and the related particle number
fluctuations) are reproduced in this region, then the transition
from AT to coarse-grained resolution (and vice versa) would be
even smoother and avoid any possible artifact at the border of
the AT and CG region. In this work we have proposed such a
procedure. It is based on a loop consisting of correcting the g(r)
in Δ and refining the thermodynamic force for the overall
thermodynamic equilibrium. Though computationally more
demanding than the original formulation (due to this additional
loop), it shows that the smoothness of the transition from one
resolution to the other can be systematically improved. While
for adaptive resolution simulations of liquid water the accuracy
of the original formulation is already highly satisfactory, there
may exist systems where the importance of the particle number
fluctuations in Δ can play a central role for a smooth transition.
This is the case of larger molecules or polymers16 and certainly
for the quantum/path integral version of the adaptive
method,17−19 since this latter is based on the ring-polymer
representation of atoms and molecules. Moreover we have
given theoretical arguments that show how the agreement on
the g(r) in Δ justifies, up to the second order, the view of the
AT system in AdResS as an equivalent subsystem in a large full
AT system and thus gives more solid arguments toward the
interpretation of the AT region as an effective Grand Canonical
ensemble.

10. APPENDIX

The testing system contained 3456 SPC/E20 water molecules
in a 7.50 nm ×3.72 nm ×3.72 nm periodic box. The system was
divided along the x direction into one atomistic region of width
1.00 nm and one coarse-grained region of width 1.00 nm
connected by two hybrid region of width 2.75 nm. The
simulation was made at room temperature of 300 K. The time
step was Δt = 0.002 ps. The cutoff radius rc used for all
interactions was 0.90 nm. The electrostatic interaction method
used for the atomistic region was the reaction field method. All
simulations were performed by MD simulation software
Gromacs21 and VOTCA.22

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: luigi.dellesite@fu-berlin.de.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank Sebastian Fritsch for the help in guiding us in the use
of the AdResS code at the initial stage of the project.
This work was partially supported by the Deutsche

Forschungsgemeinschaft (DFG) with the Heisenberg grant
provided to L.D.S (grant code DE 1140/5-1) and by ITN
Nanopoly provided to H.W and C.S.

■ REFERENCES
(1) Praprotnik, M.; Delle Site, L.; Kremer, K. Multiscale simulation of
soft matter: From scale bridging to adaptive resolution. Annu. Rev.
Phys. Chem. 2008, 59, 545−571.
(2) Praprotnik, M.; Delle Site, L.; Kremer, K. Adaptive resolution
molecular-dynamics simulation: Changing the degrees of freedom on
the fly. J. Chem. Phys. 2005, 123, 224106.
(3) Praprotnik, M.; Delle Site, L.; Kremer, K. Adaptive resolution
scheme for efficient hybrid atomistic-mesoscale molecular dynamics
simulations of dense liquids. Phys. Rev. E 2006, 73, 066701.
(4) Ensing, B.; Nielsen, S. O.; Moore, P. B.; Klein, M. L.; Parrinello,
M. Energy conservation in adaptive hybrid atomistic/coarse-grain
molecular dynamics. J. Chem. Theory Comput. 2007, 3, 1100.
(5) Heyden, A.; Truhlar, D. G. Conservative algorithm for an
adaptive change of resolution in mixed atomistic/coarse-grained
multiscale simulations. J. Chem. Theory Comput. 2008, 4, 217.
(6) Shi, Q.; Izvekov, S.; Voth, G. A. Mixed atomistic and corase-
grained molecular dynamics: Simulation of a membrane-bound ion
channel. J. Phys. Chem. B 2006, 110, 15045.
(7) Izvekov, S.; Voth, G. A. Mixed resolution modeling of
interactions in condensed phase systems. J. Chem. Theory Comput.
2009, 5, 3232.
(8) Nielsen, S. O.; Moore, P. B.; Ensing, B. Adaptive multiscale
molecular dynamics of macromolecular fluids. Phys. Rev. Lett. 2010,
105, 237802.
(9) Praprotnik, M.; Poblete, S.; Delle Site, L.; Kremer, K. Comment
on adaptive multiscale molecular dynamics of macromolecular fluids.
Phys. Rev. Lett. 2011, 107, 99801.
(10) Delle Site, L. Some fundamental problems for an energy-
conserving adaptive-resolution molecular dynamics scheme. Phys. Rev.
E 2007, 76, 047701.
(11) Poblete, S.; Praprotnik, M.; Kremer, K.; Delle Site, L. Coupling
different levels of resolution in molecular simulations. J. Chem. Phys.
2010, 132, 114101.
(12) Fritsch, S.; Poblete, S.; Junghans, C.; Ciccotti, G.; Delle Site, L.;
Kremer, K. Adaptive resolution molecular dynamics simulation
through coupling to an internal particle reservoir. Phys. Rev. Lett.
2012, 108, 170602.
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