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OPTIMAL ESTIMATION OF FREE ENERGIES AND STATIONARY
DENSITIES FROM MULTIPLE BIASED SIMULATIONS∗

HAO WU† AND FRANK NOÉ†

Abstract. When studying high-dimensional dynamical systems such as macromolecules, quan-
tum systems, and polymers, a prime concern is the identification of the most probable states and
their stationary probabilities or free energies. Often, these systems have metastable regions or phases,
prohibiting the estimation of the stationary probabilities by direct simulation. Efficient sampling
methods such as umbrella sampling, metadynamics, and conformational flooding have been devel-
oped that perform a number of simulations where the system’s potential is biased so as to accelerate
the rare barrier crossing events. A joint free energy profile or stationary density can then be ob-
tained from these biased simulations with the weighted histogram analysis method. This approach
(a) requires a few essential order parameters to be defined in which the histogram is set up, and (b)
assumes that each simulation is in global equilibrium. Both assumptions make the investigation of
high-dimensional systems with previously unknown energy landscape difficult. Here, we introduce
the transition matrix based unbiasing method (TMU), a simple and efficient estimation method
which dismisses both assumptions. The configuration space is discretized into sets, but these sets
are not only restricted to a preselected slow coordinate but can be clusters that form a partition of
high-dimensional state space. The assumption of global equilibrium is replaced by requiring only
local equilibrium within the discrete sets, and the stationary density or free energy is extracted from
the transitions between clusters. We prove the asymptotic convergence and normality of TMU, give
an efficient approximate version of it, and demonstrate its usefulness in numerical examples.
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Notation. For convenience, we summarize some notation used throughout the paper as follows:
1ω Indicator function of event ω, taking value 1 if ω holds and 0 otherwise
x̄, x̂, x̃ “True” value, estimate obtained from simply “counting,” and maximum likelihood

estimate of an unknown variable x (except if stated otherwise)
0,1 Vectors of zeros and ones in appropriate dimensions
I Identity matrix
N (u,Σ) Multivariate normal distribution with mean u and covariance matrix Σ
V(G) Vector (G11, G12, . . . , Gmn)T which consists of elements of G = [Gij ] ∈ Rm×n

V(G1, . . . , Gm) (V(G1)T, . . . ,V(Gk)
T)T

tr(G) Trace of square matrix G
µ(v) Arithmetic mean of elements of vector v, i.e., µ(v) = 1

m

∑
i vi for v = [vi] ∈ Rm

∇xy Jacobian matrix [∂yi/∂xj ] of y = [yi] with respect to x = [xi]
∇yxz ∇y(∇xz)T for z ∈ R
G > 0(≥ 0) Each element of matrix G is positive (nonnegative)
G ≺ 0(% 0) Matrix G is negative-definite (negative-semidefinite)
G & 0(' 0) Matrix G is positive-definite (positive-semidefinite)
G+ Moore–Penrose pseudoinverse of G

xn
d→ x xn converges in distribution to x w.r.t. n; i.e., limn→∞ Pr(xn ∈ B) = Pr(x ∈ B)

for all continuity sets B
xn

p→ x xn converges in probability to x w.r.t. n; i.e., limn→∞ Pr(‖xn − x‖ ≥ ε) = 0 for
all ε > 0
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‖G‖ Frobenius norm of G
‖G‖max maxi,j |Gij | for G = [Gij ]

1. Introduction. Stochastic simulations of chemical, physical, or biological pro-
cesses often involve rare events that render the exploration of relevant states, or the
calculation of expectation values by direct numerical simulation, difficult or impossi-
ble. Examples include phase transitions in spin systems [24, 3], transitions between
different chemical states in quantum dynamics simulations [14], and conformational
transitions in biomolecules [8]. For this reason, many enhanced sampling techniques
have been developed to modify the dynamics of the original simulation system such
that the relevant rare events become more frequent and can be accessed by direct
numerical simulation of the modified simulation system. Such an approach is, of
course, reasonable only if there exists a way to reliably compute at least some quanti-
ties of interest of the original simulation system from the realizations of the modified
simulation system.

In this paper we focus on processes that are asymptotically stationary and ergodic,
and on enhanced sampling approaches that use bias potentials (or, equivalently, con-
servative bias force fields) that attempt to modify the original system’s dynamics so
as to avoid rare events. Well-known examples of such approaches are umbrella sam-
pling [29], conformational flooding [10], and metadynamics and its variants [13, 1].
These approaches assume that one has some prior knowledge of coordinates or order
parameters which are “slow”; i.e., the rare event dynamics of the system is resolved
by state transitions in these selected coordinates.

Umbrella sampling defines a series of biased simulations, each of which uses the
forces from the original dynamics and the forces arising from a specific harmonic po-
tential. These potentials restrain the biased simulations to stay close to positions in
the selected coordinates which are the centers of the umbrella potentials. The force
constant(s) of these potentials must be chosen such that the corresponding biased
stationary densities overlap significantly and the unification of all biased stationary
densities covers the part of state space in which the original stationary density is
significantly greater than zero. In this case, all the biased simulations, together with
the knowledge of the umbrella potentials, can be used in order to estimate the orig-
inal stationary density in the selected coordinates (or the corresponding free energy
landscape).

Metadynamics is based on an opposite philosophy. Rather than constraining the
simulation to a set of points, it adds bias potentials to drive the simulation away from
regions that it has sampled sufficiently well. In practice this is often done by adding
Gaussian hat functions to the biased potential every constant number of simulation
steps, centered at the current simulation state. We consider that this happens a set
number of times, leading to the same number of simulation snippets, each with a
different biasing potential. Due to limitations of filling high-dimensional space vol-
umes, these bias potentials also usually live in a few predefined coordinates. Since the
sequence of added bias potentials depends on the simulation history, metadynamics
is usually used to first “fill up” the free energy wells until the states that cause the
rare event waiting times have been destabilized and the corresponding free energy
landscape is approximately “flat.” It can be shown that at this point continuing the
metadynamics simulation will sample bias potentials that are the negative free energy
landscapes of the original system, up to an arbitrary additive constant. Since meta-
dynamics does not require the modeler to know the relevant states along the slow
coordinates, it not only is an approach to quantifying the stationary distribution/free
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energy landscape of the original system but has been very successful in terms of ex-
ploring the state space in complex systems [19]. Unfortunately, this approach of using
metadynamics also appears to suggest that all simulation effort that has been spent
until the free energy surface is approximately flat cannot be used for quantitative
estimations.

Here we concentrate on the step of unbiasing the modified dynamics so as to
obtain the stationary distribution of the original dynamical system. For both umbrella
sampling and metadynamics, the step of “unbiasing” is usually done with the weighted
histogram analysis method (WHAM) [7]. WHAM uses a discretization of the selected
coordinates in which the biased simulation was done and collects a set of histograms,
one for each of the biased simulations. These biased histograms are then combined into
a single unbiased histogram by solving a set of self-consistent equations to minimize
the statistical error. The assumption used by WHAM is that each of the biased
simulations done at different conditions is sufficiently long such that they generate
unbiased samples of the corresponding biased stationary density. In other words,
each subsimulation is assumed to be in global equilibrium at its conditions. We
will see that this assumption is unnecessary, and a method that does not rely on this
assumption can provide estimates that are substantially more precise (or, equivalently,
require substantially less simulation effort for a given level of precision), even in trivial
double-well examples.

This paper develops the transition matrix based unbiasing method (TMU), which
replaces the assumption that the biased simulations are in global equilibria by the
much weaker assumption that each simulation is only in local equilibrium in the
discrete states on which the stationary distribution is estimated. TMU has been
motivated by the recent progress in Markov modeling [28, 6, 18, 21] and constructs
the joint unbiased stationary distribution from a series of transition count matrices
estimated from the biased simulations. However, it is important to note that TMU
does not need the discrete dynamics to be Markovian.

Subsequently, we describe the basic mathematical assumptions underlying our
method, then describe TMU in its most general form and show that the method
always has a solution that is asymptotically normal and convergent. We then provide
an approximate TMU that is efficient for very large state spaces and a large number of
subsimulations. The method is demonstrated in conjunction with umbrella sampling
and metadynamics on double-well potentials, and its performance is compared with
that of the standard WHAM and a recently introduced method, the multiple Markov
transition matrix method (MMMM), that had a similar motivation [23].

2. Background. In this section, we briefly review the mathematical background
of biased simulation techniques. Let us consider a reference system on the finite state
space S = {1, . . . , n} with free energy V = [Vi], where Vi is the energy of state i. If we
denote the system state at time t by xt, the state sequence {xt} is then a stochastic
process. In this paper, we focus on processes {xt} with properties of asymptotic
stationarity, wide-sense ergodicity, and detailed balance, which are relevant for many
physical simulation processes. The detailed descriptions of these properties are listed
as follows:

1. Asymptotic stationarity means that the sequence {xt}t≥τ is approximately
stationary if τ is large enough. More formally, {xt} is said to be asymptoti-
cally stationary if the limits limt→∞ Pr(xt+1 = s1, . . . , xt+m = sm) exist for
all m ≥ 1 and s1, . . . , sm ∈ S. Specifically, the marginal distribution of xt
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converges to the Boltzmann distribution, i.e.,

(2.1) πi =
exp (−βVi)∑
j exp (−βVj)

,

where π = [πi] denotes the system stationary distribution defined by πi =
limt→∞ Pr(xt = i) and β is a constant and generally proportional to the
inverse temperature in physical systems. Furthermore, we define

(2.2) T = [Tij ] =
[
lim
t→∞

Pr (xt+1 = j|xt = i)
]
.

It is easy to see that the matrix T ∈ Rn×n represents the stationary state
transition probabilities and satisfies the condition that each row sums to 1,
so here, for simplicity, we call T the transition matrix of {xt} even if {xt} is
not a Markov chain.

2. Wide-sense ergodicity states that

1

τ + 1

τ∑

t=0

1xt=i
p→ πi

and

1

τ

τ−1∑

t=0

1xt=i · 1xt+1=j

p→ πiTij as τ → ∞,

and implies that π and T can be consistently estimated by time averages of
1xt=i and 1xt=i · 1xt+1=j .

3. The detailed balance condition can be written as

lim
t→∞

Pr(xt = i, xt+1 = j) = lim
t→∞

Pr(xt = j, xt+1 = i)

or, equivalently, πiTij = πjTji for all i, j, which means that each state tran-
sition has the same unconditional probability as its reverse. Note that this
property clearly holds for systems that are time-reversible at equilibrium.

Remark 2.1. In the present study we work at constant thermodynamic tempera-
ture. For convenience, we measure energies Vi in units of thermal energy β−1 = kBT
with kB the Boltzmann constant and T the thermodynamic temperature, yielding
β = 1 in (2.1). Furthermore, we assume without loss of generality that all involved
free energies in this paper have zero mean. Then

∑
i Vi = 0, and we can construct

a bijection between stationary distributions and free energies with π(V ) defined by
(2.1) and

(2.3) V (π) = − logπ + µ (log π) ,

where log π = [log πi] ∈ Rn and µ (·) denotes the mean operator defined in the notation
list.

Remark 2.2. In general, the discrete state space S may correspond to a set
partition of an underlying dynamic system with a large-scale or continuous state
space. In this case, Vi corresponds to the configurational free energy difference of the
ith partition with respect to an arbitrary reference state.
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For now, our goal is to estimate V , or equivalently π, from simulations in the case
that it is unknown. Due to the wide-sense ergodicity, when sufficient simulation data
can be generated, we can simply carry out one or multiple simulations of the reference
system and get the estimate of V through computing the histogram of simulation data.
This approach, however, is very inefficient when the reference system has multiple
metastable states, because the simulation process is very likely to get stuck in some
local minima of the energy landscape for a long time. To alleviate this drawback,
biased simulation techniques, such as umbrella sampling [26] and metadynamics [13],
were developed to solve this problem; they perform simulations for a set of biased
potentials so that the energy landscape can be explored more efficiently.

Although many practical algorithms use a different approach, we can roughly
summarize the estimation of stationary distributions through biased simulations in
terms of the following pseudocode:

Step 1. Design a set of biasing potentials {U (k)}Kk=1, where U (k) = [U (k)
i ] ∈ Rn.

Step 2. Repeat Steps 2.1 and 2.2 for k = 1, . . . ,K:
Step 2.1. Change the system potential as

(2.4) V (k) = V + U (k) − µ
(
V + U (k)

)
,

where V (k) is called the biased potential and the last term is used to
shift the mean of V (k) to zero.

Step 2.2. Perform a biased simulation with length M using the same simu-
lation model as the reference system except that the potential energy is

changed from V to V (k), and record the simulation trajectory {x(k)
t }Mt=0.

Step 3. Estimate the reference (unbiased) free energy V or stationary distribution π
from K biased simulation trajectories.

In this paper, we will focus on the estimation problem in Step 3. We start with

the assumption that each simulation {x(k)
t }Mt=0 is a Markov chain, and the developed

estimation method will then be proved to be applicable to more general simulation
models.

3. Maximum likelihood estimation from multiple simulations.

3.1. Maximum likelihood estimation. In this section, we investigate a max-
imum likelihood approach to the estimation problem described in section 2 under the
assumption of the Markovity of biased simulations. For the description of the estima-
tion method, it is convenient to denote the biased stationary distribution, transition

matrix, and count matrix of the kth simulation by π(k) = [π(k)
i ], T (k) = [T (k)

ij ], and

C(k) = [C(k)
ij ], where

(3.1) C(k)
ij :=

M∑

t=1

1(k)xt−1=i · 1
(k)
xt=j ;

i.e., C(k)
ij is the number of transitions from state i to state j in the kth simulation,

and the relationship between π(k) and π can be written as

(3.2) π(k)
i =

exp
(
−U (k)

i

)
πi

∑n
j=1 exp

(
−U (k)

j

)
πj

.
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Suppose that each simulation {x(k)
t } is a time-homogeneous and reversible Markov

chain. The maximum likelihood estimation (MLE) of the unbiased stationary distri-
bution π can then be obtained by solving the following optimization problem:

(3.3)

max
π,T (1),...,T (K)

L =
∑

k

L(k)
(
T (k)|C(k)

)

subject to (s.t.) ∀i, j = 1, . . . , n, k = 1, . . . ,K,
π is a probability vector,
T (k) is a transition matrix,

π(k)
i T (k)

ij = π(k)
j T (k)

ji ,

where

(3.4) L(k)
(
T (k)|C(k)

)
= logPr

(
x(k)
1 , . . . , x(k)

M |x(k)
0 , T (k)

)
=
∑

i,j

C(k)
ij logT (k)

ij

denotes the log-likelihood function of the kth simulation, and the last constraint is
the detailed balance constraint. (Here we set 0 log 0 = 0 and a log 0 = −∞ if a > 0.)
After performing the MLE of π, the optimal estimate of V can also be obtained by
using (2.3).

Remark 3.1. It is a nontrivial task to solve (3.3) even if the problem is of small
size because the detailed balance constraint is a highly nonlinear equality constraint.
To overcome this difficulty, we can replace the detailed balance constraint by the
following equivalent expression:

(3.5) exp
(
−U (k)

i

)
πiT

(k)
ij = exp

(
−U (k)

j

)
πjT

(k)
ji .

(The equivalence can be simply proved by (3.2).) Note that both sides of (3.5)

can be represented as a difference of two convex functions by using πiT
(k)
ij =

1
4 (πi + T (k)

ij )2 − 1
4 (πi − T (k)

ij )2. Therefore the constrained concave-convex procedure
[25] can be used to perform the MLE.

For the MLE problem (3.3), we have the following theorem.
Theorem 3.2. The optimization problem (3.3) has at least one optimal solution

satisfying

1. T (k)
ij = 0 for (i, j, k) ∈

{
(i, j, k) |C(k)

ij + C(k)
ji = 0 and i '= j

}
;

2. 1
T (k)
ij >0

≡ 1
C(k)

ij >0
if C(k)

ii > 0 and 1
C(k)

ij >0
= 1

C(k)
ji >0

for all i, j, k.

Proof. See Appendix A.
According to Theorem 3.2, the dimension of the optimization variable of (3.3) can

be significantly reduced by setting T (k)
ij = 0 for (i, j, k) belonging to {(i, j, k)|C(k)

ij +

C(k)
ji = 0, i '= j} when count matrices are sparse. However, even if each C(k) is sparse

with O(n) nonzero elements, the reduced problem involves O(nK) decision variables
and nonlinear equality constraints. (Note that π and T (k) are both unknown in the
last constraint.) It is still inefficient to search the optimal solution by direct methods.
In section 4, we will adopt an approximate MLE method to improve the efficiency.

3.2. Convergence analysis. The MLE method of stationary distribution in

section 3.1 is motivated by the assumption that {x(k)
t } is a Markov chain. Inter-

estingly, it turns out that the Markov property is not necessary for the convergence
of MLE. In this section we will prove the convergence of MLE under more general
conditions.
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First, we discuss the relationship between the MLE and the counting based es-
timation by using the Kullback–Leibler (KL) divergence rate proposed in [22], and
we provide an intuitive explanation for why the MLE can work for non-Markovian
stochastic processes.

Definition 3.3. Let T ′ = [T ′
ij ] and T ′′ = [T ′′

ij ] be two transition matrices
of the same dimension; then the KL divergence rate between T ′ and T ′′ w.r.t. the
probability vector π′ = [π′

i] is

(3.6) KLRπ′ (T ′||T ′′) =
∑

i,j

π′
iT

′
ij (logT

′
ij − log T ′′

ij) .

Remark 3.4. It is easy to see that KLRπ′(T ′||T ′′) can be employed as a
“pseudo-metric” to measure the distance between T ′ and T ′′ with KLRπ′(T ′||T ′′) =
0 ⇔ T ′ = T ′′ in the case of π′ > 0. (The KL divergence rate is not a true metric be-
cause neither the symmetry nor the triangle inequality is satisfied.) Furthermore, for
two Markov chains {x′

t} and {x′′
t } with transition matrices T ′, T ′′, it can be proved

that KLRπ′(T ′||T ′′) = 1
t+1 limt→∞ KL(x′

0, . . . , x
′
t||x′′

0 , . . . , x
′′
t ) if π′ is the stationary

distribution of T ′ [22], where KL(·||·) denotes the KL divergence.
Generally speaking, if there is no other knowledge available, T (k) can be estimated

as T̂ (k) = [T̂ (k)
ij ] with T̂ (k)

ij being the fraction of observed transitions from the ith state
to the jth state:

(3.7) T̂ (k)
ij = C(k)

ij /

(
∑

l

C(k)
il

)
.

But the transition matrix estimates obtained from (3.7) generally do not satisfy the
detailed balance condition and do not share the same unbiased stationary distribution
for finite-time simulations. Therefore we search for the feasible transition matrices
which are the closest to T̂ (1), . . . , T̂ (K) based on the KL divergence rate:

(3.8)

min
π,T (1),...,T (K)

∑

k

KLRπ̂(k)

(
T̂ (k)||T (k)

)

s.t. ∀i, j = 1, . . . , n, k = 1, . . . ,K,
π is a probability vector,
T (k) is a transition matrix,

π(k)
i T (k)

ij = π(k)
j T (k)

ji ,

where π̂(k) = [π̂(k)
i ] is the counting estimate of π(k) given by

(3.9) π̂(k)
i =

(
∑

l

C(k)
il

)/


∑

j,l

C(k)
jl



 .

Note that the KL divergence rate KLRπ̂(k)(T̂ (k)||T (k)) can be decomposed as

(3.10) KLRπ̂(k)

(
T̂ (k)||T (k)

)
= − 1

M
L(k)

(
T (k)|C(k)

)
+

1

M
L(k)

(
T̂ (k)|C(k)

)

and the optimal solution of (3.8) is T (k) = T̂ (k) if T̂ (1), . . . , T̂ (K) satisfy all the con-
straints. Therefore (3.8) is equivalent to (3.3), and the MLE can be considered to
be a projector which projects the counting estimates (3.7) onto the feasible space.
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maximum likelihood estimates by (3.3)

estimates obtained by counting as (3.7)

true values
feasible space

(in
cre

ase
d s

tat
ist
ics
)

Fig. 3.1. Relationship between the estimates obtained by counting, the maximum likelihood
estimates, and the true values of transition matrices.

Figure 3.1 shows the relationship between different estimates and the true values of
(T (1), . . . , T (K)), where the estimates obtained by counting converge to their true val-
ues due to the wide-sense ergodicity of simulations. Obviously, if it can be shown that
the error of the MLE converges to zero when T̂ (1), . . . , T̂ (K) converge to their true
values, the consistency of the MLE can hold without assuming the Markov property.

We now present a formal analysis of the convergence of the MLE. Before proving
the main theorems, we make some assumptions and introduce some notation.

Unless stated otherwise, in this paper all convergence statements are made w.r.t.
M → ∞.

Assumption 3.5. U (1), . . . , U (K) and V̄ are finite, where V̄ denotes the true
value of V .

Assumption 3.6. {x(1)
t }, . . . , {x(K)

t } are all asymptotically stationary and wide-
sense ergodic processes with detailed balance.

Assumption 3.7. For any i, j, k, if there exists some t such that Pr(x(k)
t = i,

x(k)
t+1 = j) > 0, then limτ→∞ Pr(x(k)

τ = i, x(k)
τ+1 = j) > 0.

Assumption 3.8. π = π̄ is the unique solution of the following set of equations
and inequalities:

(3.11)

{
π(k)
i (π) · T̄ (k)

ij = π(k)
j (π) · T̄ (k)

ji for i, j = 1, . . . , n and k = 1, . . . ,K,
1Tπ = 1 and π ≥ 0,

where π̄ and T̄ (k) = [T̄ (k)
ij ] denote true values of π and T (k).

The above assumption means that the unbiased stationary distribution can be
uniquely determined if all the transition matrices are given.

Furthermore, here we let θ = V(π, T (1), . . . , T (K)) be the vector consisting
of elements of the unbiased stationary distribution π and transition matrices,

θ̃ = V(π̃, T̃ (1), . . . , T̃ (K)) be the solution of (3.3), X(k) = [X(k)
ij ] = [π(k)

i T (k)
ij ] be the

matrix of unconditional transition probabilities, X̄(k) = [X̄(k)
ij ] = [π̄(k)

i T̄ (k)
ij ] denote the

true value of X(k), and X̂(k) = [X̂(k)
ij ] = [π̂(k)

i T̂ (k)
ij ] be the estimate of X(k) obtained

by counting. (The definition of V(·) is given in the list of notation.)
Based on the above assumptions and notation, we have the following theorems

on the convergence of θ̃.
Theorem 3.9. If Assumptions 3.5–3.8 hold, then θ̃

p→ θ̄.
Proof. See Appendix B.
Theorem 3.10. If Assumptions 3.5–3.8 hold and the conditions
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1. for each k, there exists a Σ(k)
X such that

(3.12)
√
M
(
V
(
X̂(k)

)
− V

(
X̄(k)

))
d→ N

(
0,Σ(k)

X

)
;

2. T̃ (k)
ij = 0 if C(k)

ij + C(k)
ji = 0;

3. diagonal elements of X̄(1), . . . , X̄(K) are positive;
4. all K simulations are statistically independent;
5. H =

∑
k ∇θrθrL

(k)(T (k)(θ̄r)|X̄(k)) is nonsingular with θr the vector consisting

of {T (k)
ij |X̄(k)

ij > 0, i < j} and {π1, . . . ,πn−1} and θ̄r the corresponding true
value of θr

are satisfied, then

(3.13)
√
M
(
θ̃ − θ̄

)
d→ N

(
0,∇θrθ (θr) ·H−1ΣH−1 · (∇θrθ (θr))

T
)
,

where Σ = (∇θrΦ(θ(θ̄r)))
TΣX∇θrΦ(θ(θ̄r)), ΣX = diag(Σ(1)

X , . . . ,Σ(K)
X ), and Φ(θ) =

V(logT (1), . . . , logT (K)).
Proof. See Appendix C.

Remark 3.11. Note that X̂(k) can be expressed as X̂(k) = 1
M

∑M
t=1 ∆C(k)

t with

∆C(k)
t = [∆C(k)

t,ij ] = [1
x
(k)
t−1=i

· 1
x
(k)
t =j

], so condition 1 stated in Theorem 3.10 means

that the central limit theorem holds for {∆C(k)
t } and can be justified by using Markov

chain central limit theorems [12] in many practical situations. For example, if for each

simulation k, {x(k)
t } is obtained by coarse-graining a stochastic process {y(k)t } on a

large-scale or continuous state space as mentioned in Remark 2.2 and {y(k)t } is a
geometrically ergodic Markov chain, then (3.12) can be simply proved by Theorem
1.2 in [11].

Remark 3.12. In this section we only characterize the convergence of π̃. For
the MLE of free energy V , the consistency and asymptotic normality are immediate
consequences of Theorems 3.9 and 3.10 by considering that V is a smooth function of
π (see (2.3)). Here we omit the detailed description and proof as they are trivial.

4. Approximate MLE. In this section, we develop an approximate MLE
method based on a decomposition strategy in order to improve the efficiency of MLE,
and the convergence of the method is also shown.

For convenience of analysis and computation, here we introduce two new variables,

C(k) and Z(k). C(k) = [C(k)
ij ] is a modified count matrix used to replace C(k) to

avoid singularity in the approximate MLE and is assumed to satisfy the following
assumption.

Assumption 4.1. C(1), . . . , C(K) are irreducible matrices with positive diagonal
elements and satisfy 1

C(k)
ij >0

= 1
C(k)

ji >0
and 1C(k)=C(k)

p→ 1 for all i, j, k.

One way to perform the count matrix modification is as follows:

(4.1) C(k)
ij =

{
max

{
C(k)

ij , δ
}
, C(k)

ji > 0 or i = j,

C(k)
ij otherwise,

where δ ∈ (0, 1) is a small number. (This approach is similar to the so-called neighbor
prior used in [20, 2].)

Theorem 4.2. If Assumptions 3.5–3.7 hold, and if X̄(k)
ii > 0 and

∑M
t=0 1x(k)

t =i
>

0 for all i, k, then the modified count matrices defined in (4.1) satisfy Assumption 4.1.



34 HAO WU AND FRANK NOÉ

Proof. The proof is omitted because it is trivial by contradiction.

The variable Z(k) = [Z(k)
ij ] is defined by

(4.2) exp
(
−Z(k)

ij

)
∝ X(k)

ij ,

which can be interpreted as the “free energy matrix” of state transitions in the kth

simulation because exp(−Z(k)
ij ) ∝ limt→∞ Pr(x(k)

t = i, x(k)
t+1 = j), and the relationship

between the free energy matrix and the free energy can be expressed as

(4.3) VZ

(
Z(k)

)
= V (k)

with

(4.4) VZ

(
Z(k)

)
=
(
Z(k)
1 , . . . , Z(k)

n

)T
− 1

n

∑

i

Z(k)
i ,

where

(4.5) Z(k)
i = − log

∑

j

exp
(
−Z(k)

ij

)

denotes the potential of state i derived from Z(k). Like the free energy V , we also

assume that
∑

(i,j)∈{(i,j)|X(k)
ij >0} Z

(k)
ij = 0 such that all the finite elements of Z(k) have

zero mean and there is a one-to-one correspondence between Z(k) and X(k). (Note

that Z(k)
ij = ∞ if X(k)

ij = 0.)

Under the above assumption and variable definitions and replacing Ck by Ck,
(3.3) can be written as

(4.6)

max
V,{Z(k)

ij |C(k)
ij >0}

L =
∑

k

L(k)
Z

(
Z(k)|C(k)

)

s.t. ∀k = 1, . . . ,K,
Z(k) = Z(k)T,∑

(i,j)∈{(i,j)|C(k)
ij >0}

Z(k)
ij = 0,

1TV = 0,
VZ

(
Z(k)

)
= V (k) (V ) ,

where

(4.7) L(k)
Z

(
Z(k)|C(k)

)
= −

∑

i,j

C(k)
ij Z(k)

ij +
∑

i

C(k)
i Z(k)

i ,

0 ·∞ is set to be 0, and C(k)
i =

∑
j C

(k)
ij . A brief description of the objective function

and constraints of (4.6) follows.
1. Each term of the objective function is the log-likelihood of the free energy

matrix Z(k), given C(k) with L(k)
Z (Z(k)|C(k)) = L(k)(T (k)|C(k)), and the ob-

jective function is a concave function of since Z(k)
i is a “log-sum-exp” function

[5] of Z(k).

2. According to the second conclusion of Theorem 3.2, we set Z(k)
ij = ∞ when

C(k)
ij = 0.
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3. The first constraint is the detailed balance constraint which is equivalent to
the third constraint in (3.3).

4. The last constraint means that the state potential obtained from Z(k) is
consistent with V (k) = V (k)(V ), where V (k)(V ) is given by (2.4).

4.1. Approximate MLE problem and its solution. It is easy to see that
(4.6) is a convex optimization problem if we drop the free energy constraint VZ(Z(k)) =
V (k)(V ). This motivates an approximation method for solving (4.6) which is based on
Taylor expansions and consists of two steps: First, we solve (4.6) without consideration
of the free energy constraint and get the optimal solutions of free energy matrices

which are denoted by Ž(k) = [Ž(k)
ij ] with k = 1, . . . ,K. Then, we replace the free

energy constraint in (4.6) with its Taylor expansion around Ž(k) and search for the
corresponding approximate optimal solution of the reference free energy. In what
follows, we describe the two steps in more detail.

4.1.1. Optimization without the free energy constraint. Note that both
L and Z(k) are independent of V in (4.6) if the free energy constraint is omitted. Thus
we can eliminate the variable V from the entire problem and decompose (4.6) into K
subproblems:

(4.8)

max
{Z(k)

ij |C(k)
ij >0}

L(k)
Z

(
Z(k)|C(k)

)

s.t. Z(k) = Z(k)T,∑

(i,j)∈{(i,j)|C(k)
ij >0}

Z(k)
ij = 0

for k = 1, . . . ,K. It is clear that (4.8) is a convex optimization problem with linear

constraints, and the gradient and Hessian matrix of L(k)
Z (Z(k)|C(k)) can be simply

obtained by the following equations:

∂Z(k)
i

∂Z(k)
lj

=

{
T (k)
ij , l = i,

0, l '= i,
(4.9)

∂2Z(k)
i

∂Z(k)
jm∂Z(k)

lm′

=

{
T (k)
im T (k)

im′ − 1m=m′T (k)
im′ , j = l = i,

0 otherwise.
(4.10)

Therefore, (4.8) can be efficiently solved by standard convex optimization numerical
methods, and we will employ a conjugate gradient algorithm [30] to find the solution
Z(k) = Ž(k) of (4.8) in our numerical experiments.

Remark 4.3. It can be seen that Ž(k) is, in fact, the maximum likelihood estimate
of Z(k) given the data of the kth simulation and (4.8) can be solved independently
of the other simulations, which is also the reason why we select Ž(k) of (4.8) as the
central point of the Taylor expansions in the next step.

Remark 4.4. It is worth pointing out that the transition matrix estimation under
the reversibility constraint is a very important problem in the Markov state modeling
of stochastic simulations, but the existing MLE methods (see, e.g., [4] and [21]) often
suffer from undesirable local optima and slow convergence. Here we show that the
MLE of the reversible transition matrix can be formulated as a convex optimization
problem, where the global optimum can be found in polynomial time.
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4.1.2. Optimization with the approximate free energy constraint. The
first-order Taylor expansion of the free energy constraint around Ž(k) can be expressed
as

(4.11) V̌ (k) +∇V(Z(k))VZ

(
Ž(k)

)
· V
(
Z(k) − Ž(k)

)
= V (k) (V )

with V̌ (k) = VZ(Ž(k)), which is a linear equality. Through approximating the free
energy constraint by (4.11), (4.6) can be simplified to a convex problem. However,
the direct computation of the simplified problem is still too time consuming in many
practical cases because it involves a large number of decision variables and cannot be
decomposed into a set of small-sized subproblems as (4.8). Hence we use again the
Taylor expansion to approximate the objective function, and further simplify (4.6) to
a quadratic optimization problem with equality constraints:

(4.12)

max
V,{Z(k)

ij |C(k)
ij >0}

∑

k

Ľ(k)
Z

(
Z(k)|C(k)

)

s.t. ∀k = 1, . . . ,K,
Z(k) = Z(k)T,∑

(i,j)∈{(i,j)|C(k)
ij >0}

Z(k)
ij = 0,

1TV = 0,
V̌ (k) +∇V(Z(k))VZ

(
Ž(k)

)
· V
(
Z(k) − Ž(k)

)
= V (k) (V )

with

Ľ(k)
Z

(
Z(k)|C(k)

)
= Ľ(k)

Z

(
Ž(k)|C(k)

)
+∇V(Z(k))L

(k)
Z

(
Ž(k)|C(k)

)
· V
(
Z(k) − Ž(k)

)

+
1

2
V
(
Z(k) − Ž(k)

)T
∇V(Z(k))V(Z(k))L

(k)
Z

(
Ž(k)|C(k)

)
V
(
Z(k)−Ž(k)

)
.(4.13)

Applying a bilevel optimization procedure to (4.12), we can obtain the closed-form
solution of V :

(4.14) V̌ = Ξ(k)
(
C(k), ρ̌(k)

)
V̌ (k) + b(k)

(
C(k), ρ̌(k)

)
,

where ρ̌(k) is a vector which consists of elements of {Ž(k)
ij |C(k)

ij > 0, i ≤ j, (i, j) '=
(n, n)}, and Ξ(k)(C(k), ρ̌(k)) and b(k)(C(k), ρ̌(k)) are defined in (D.7) and (D.8). (The
detailed optimization procedure is given in Appendix D.)

Remark 4.5. We can now explain why variables Z(k), V are used instead of
T (k),π in the approximate MLE. First, the MLE problem w.r.t. T (k),π is a nonconvex
optimization problem even if we drop the free energy constraint. Second, the quadratic
approximation of the MLE problem w.r.t. T (k),π involves inequality constraints and
therefore has no analytic solution.

4.2. Convergence analysis. In this section, we will analyze consistency and
asymptotic normality of the approximate MLE as the exact MLE under the assump-
tions stated in section 3.2 and Assumption 4.1.

Before introducing the main theorem, some definitions and a lemma are needed.

Let ρ(k) be a vector consisting of {Z(k)
ij |X̄(k)

ij > 0, i ≤ j, (i, j) '= (n, n)} with ρ̄(k)

consisting of {Z̄(k)
ij |X̄(k)

ij > 0, i ≤ j, (i, j) '= (n, n)}, where Z̄(k) = [Z̄(k)
ij ] denotes the
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true value of Z(k). In this section both Z(k) and Z(k)
i are viewed as functions of ρ(k)

by considering the symmetry of Z(k) and the zero-mean property of finite elements of
Z(k).

Lemma 4.6. Provided that Assumptions 3.5–3.8 and 4.1 hold, we have the fol-
lowing:

1. ρ̌(k)
p→ ρ̄(k) and V̌ (k) p→ V̄ (k), where V̄ (k) = V (k)(V̄ ).

2.
√
M(V̌ (k) − V̄ (k))

d→ N (0,Σ(k)
V (Σ(k)

X , X̄(k), ρ̄(k))) if (3.12) is satisfied, where

Σ(k)
V (Σ(k)

X , X̄(k), ρ̄(k)) is defined in (E.5).
Proof. See Appendix E.
Theorem 4.7. Provided that Assumptions 3.5–3.8 and 4.1 hold, we have the

following:
1. V̌

p→ V̄ .
2.

√
M(V̌ − V̄ )

d→ N (0,ΣV ({Σ(k)
X }, {X̄(k)}, {ρ̄(k)})) if (3.12) is satis-

fied for all k and if K simulations are statistically independent, where

ΣV ({Σ(k)
X }, {X̄(k)}, {ρ̄(k)}) is defined in (F.3).

Proof. See Appendix F.

4.3. Error analysis. According to Theorem 4.7, the estimation error of V̌ fol-
lows approximately a multivariate normal distribution N (0,ΣV /M) when M is large

enough, and ΣV ({Σ(k)
X }, {X̄(k)}, {ρ̄(k)}) can be estimated by replacing X̄(k), ρ̄(k) with

X̂
(k)

, ρ̌(k) if Σ(k)
X is given. Therefore, the remaining key problem is how to estimate

Σ(k)
X . In this section we present an algorithm for estimating Σ(k)

X based on the fol-
lowing assumption, which is similar to the assumption proposed in Remark 3.11 and
implies that each simulation is driven by an underlying reversible Markov model.

Assumption 4.8. For each simulation k, x(k)
t can be expressed as a function of

a latent variable y(k)t with x(k)
t = f (k)(y(k)t ), and {y(k)t } is a stationary, irreducible,

and reversible Markov chain.
Under Assumption 4.8, it can be seen that {V(∆C(k)

t )} is also a stationary pro-

cess, where the definition of ∆C(k)
t = [∆C(k)

t,ij ] is the same as in Remark 3.11. To
describe the estimation algorithm, we also need some new notation. We denote by

κ(k) (h) = Cov(V(∆C(k)
t ),V(∆C(k)

t+h)) the autocovariance of {V(∆C(k)
t )} with lag h,

define Γ(k)(l) = κ(k)(2l+ 1) + κ(k)(2l+ 2), and let η(k)(l) be a sum of n2 elements in
Γ(k)(l), which can be represented as

(4.15) η(k) (l) =
∑

i,j

Cov
(
∆C(k)

t,ji,∆C(k)
t+2l+1,ij

)
+Cov

(
∆C(k)

t,ji,∆C(k)
t+2l+2,ij

)
.

Theorem 4.9. If Assumption 4.8 and (3.12) hold, and the series
∑∞

h=0 κ
(k)(h)

is convergent, then

1. Σ(k)
X = κ(k) (0) +

∑∞
l=0(Γ

(k) (l) + Γ(k) (l)T);

2. η(k) (l) ≥
∥∥Γ(k) (l)

∥∥
max

and η(k) (l) ≤ η(k) (l + 1) for l ≥ 0.
Proof. See Appendix G.

The above theorem provides an intuitive way to estimate Σ(k)
X :

(4.16) Σ̂(k)
X = κ̂(k) (0) +

*M−3
2 +∑

l=0

(
Γ̂(k) (l) + Γ̂(k) (l)T

)
,

where κ̂(k)(0) and Γ̂(k)(l) denote the estimates of κ(k)(0) and Γ(k)(l). We now inves-
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tigate the calculation of κ̂(k)(0) and Γ̂(k)(l).

Estimation of κ(k)(0). It is easy to verify that the ((i−1)n+j, (m−1)n+m′)th

element of κ(k)(0) equals 1(i,j)=(m,m′)X̄
(k)
ij − X̄(k)

ij X̄(k)
mm′ ; therefore we can calculate

the element in the same position in κ̂(k)(0) by 1(i,j)=(m,m′)X̌
(k)
ij − X̌(k)

ij X̌(k)
mm′ with

X̌(k)
ij ∝ exp(−Ž(k)

ij ).

Estimation of Γ(k) (l). For h > 0, κ(k)(h) can be estimated by the empirical
autocovariance:
(4.17)

κ̂′(k) (h) =
1

M − h

M−h∑

t=1

(
V
(
∆C(k)

t

)
− V

(
X̌(k)

))(
V
(
∆C(k)

t+h

)
− V

(
X̌(k)

))T
,

where X̌(k) is an estimate of E[∆C(k)
t ] = X̄(k). Then Γ(k)(l) can be estimated as

(4.18) Γ̂′(k) (l) = κ̂′(k) (2l+ 1) + κ̂′(k) (2l + 2) .

However, the estimation error (4.18) will increase substantially as l approaches .(M−
3)/2/. So here we modify Γ̂′(k)(l) by correcting the corresponding estimated value of
η(k)(l):

(4.19) Γ̂(k) (l) =






Γ̂′(k) (l) , l = 0,

min
{

η̂(k)(l−1)
η̂′(k)(l)

, 1
}
· Γ̂′(k) (l) , l > 1 and η̂′(k) (l) > 0,

0, l > 1 and η̂′(k) (l) ≤ 0,

where η̂′(k)(l) and η̂(k)(l) denote the values of η(k)(l) obtained from Γ̂′(k)(l) and Γ̂(k)(l).
It can be seen that η̂(k)(l) is nonnegative and decreasing with l, which is consistent
with the conclusion of Theorem 4.9. Besides, we can show that Γ̂(k)(l) ≡ 0 for l ≥ l′

if η̂(k)(l′) ≤ 0. Thus the estimator of Σ(k)
X in this section is, in fact, a time window

estimator [9], where the large-lag terms outside the window are set to be zero, and
the window size lw = min{l|η̂(k)(l) ≤ 0} implies that the curve of ‖Γ(k)(l)‖max goes
below the noise level at l = lw.

Remark 4.10. From the definition of Σ(k)
X we can deduce that Σ(k)

X 1 0 and

1TΣ(k)
X 1 = 0, but the Σ̂(k)

X obtained by (4.16) may not satisfy the constraints.

For this problem, we can correct the value of Σ̂(k)
X as Σ̂(k)

X := MP ◦ Σ̂(k)
X , where

MP ◦G = (I− 1
m1T1)(G−min{λmin(G), 0}I)(I− 1

m1T1) for a symmetric matrix
G ∈ Rm×m with the smallest eigenvalue λmin(G). It is easy to see that MP is
a mapping from the symmetric matrix set to the set {G|G 1 0,1TG1 = 0}, and
MP ◦G = G if G 1 0 and 1TG1 = 0 hold.

4.4. Comparison to related work. It is interesting to compare the approxi-
mate MLE with the weighted histogram analysis method (WHAM), which estimates
πi as

(4.20) π̂WHAM
i ∝

∑

k

c(k)i π̂(k)
i ,

where π̂(k) = [π̂(k)
i ] is the estimate of π(k) obtained from the histogram of simulation

k, which has the same definition as in (3.8), and c(k)i is the weight of π̂(k)
i , which
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is selected so as to minimize the statistical error (see [26] for more details). From
(4.14) and (4.20), it can be observed that both the approximate maximum likelihood
estimator and the WHAM estimator can be expressed as linear combinations of K
“local” estimators. The differences between them are the following: (1) In WHAM,
the biased estimate π̂(k) of each simulation k is a “valid” estimate only if the global
equilibrium is reached in the simulation. The approximate MLE overcomes this limi-
tation by using a transition matrix based algorithm to get biased estimates of {V (k)},
where the dynamic information contained in simulation trajectories can be exploited
to improve the estimation accuracy and only the local equilibrium assumption is re-
quired. (2) The combination weights in the approximate MLE are designed under
the Markov assumption, which is more “reasonable” than the independent and iden-
tically distributed (i.i.d.) assumption used in WHAM because the biased simulations
are autocorrelated in most practical cases. (The statistical error in WHAM is derived

under the assumption that all {x(k)
t } are i.i.d. processes.)

Another Markov modeling motivated method for the estimation problem of mul-
tiple biased simulations is the multiple Markov transition matrix method (MMMM)
developed in [23], which performs the estimation of T (k),π(k) and the combination
of biased estimation results in an approximate Bayesian manner. In contrast to the
proposed approximate MLE, MMMM suffers from the following disadvantages: (1)
The detailed balance condition is not considered in MMMM, which might lead to
relatively poor estimates in local estimations. (The influence of the detailed bal-
ance condition on the Bayesian inference of Markov models was studied in [17, 15].)
(2) The combination operation in MMMM involves a highly nonlinear and noncon-
vex optimization problem and is therefore numerically unstable, which is caused by
the nonlinear relationship between π and π(k). The approximate MLE avoids this
problem by constructing the optimization model w.r.t. Z(k), V instead of T (k),π (see
Remark 4.5). Furthermore, the convergence and the estimation error of MMMM in
non-Markovian cases have not been analyzed.

5. Extension to the general case. In previous discussions, we have described
the MLE of the reference stationary distribution or free energy from multiple biased
simulations under the condition that all simulations share the same state space and
simulation length. Actually, this restriction can be removed easily by extension of the
proposed methods and results.

In this section, we consider a more general case where simulation trajectories are
generated in the same way as in section 2, except that here we run a biased simulation
from time 0 to time M (k) on a state space S(k) ⊆ S with |S(k)| = n(k) for each k,
and we do not assume that S(1) = · · · = S(K) or M (1) = · · · = M (K). Then the K
simulation trajectories can be represented as {x(1)

t }M(1)

t=0 , . . . , {x(K)
t }M(K)

t=0 , where we

use x(k)
t = i (i ∈ {1, . . . , n(k)}) to denote that the ith state in S(k) is observed at time

t in the kth simulation (all S(k) are assumed to be ordered sets), and the relationships
between V (k),π(k) and V,π can be written as

(5.1) V (k)
i = Vji + U (k)

ji
− 1

n(k)

n(k)∑

m=1

(
Vjm + U (k)

jm

)

and π(k)
i ∝ exp(−U (k)

ji
)πji if the ith state in S(k) corresponds to the state ji in S.

With the above notation and results, (3.3), (4.8), and (4.14) can be directly used to
perform the MLE and approximate MLE of π and V .
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We now investigate the convergence of the results of the MLE and approximate
MLE in the general case. For convenience of analysis, we let M = (

∑
k M

(k))/K such
that the convergence still can be stated w.r.t. M → ∞. Moreover, here we make a
new assumption on simulation lengths.

Assumption 5.1. The limit ŵ(k) p→ w̄(k) exists and w̄(k) > 0 for all k = 1, . . . ,K,
where ŵ(k) = M (k)/M .

Based on Assumption 5.1 and assumptions considered in sections 3.2 and 4.2, we
can prove the following theorems on the MLE and approximate MLE in the general
case.

Theorem 5.2. If Assumptions 3.5–3.8 and 5.1 hold, then θ̃
p→ θ̄.

Theorem 5.3. If Assumptions 3.5–3.8 and 5.1 hold and the conditions

1. for each k, there exists a Σ(k)
X such that

(5.2)
√

M (k)
(
V
(
X̂(k)

)
− V

(
X̄(k)

))
d→ N

(
0,Σ(k)

X

)
;

2. conditions 2–5 in Theorem 3.10 hold;
3.

√
M(ŵ(k) − w̄(k))

p→ 0

are satisfied, then (3.13) holds with ΣX = diag
(
w̄(1)Σ(1)

X , . . . , w̄(K)Σ(K)
X

)
.

Theorem 5.4. Provided that Assumptions 3.5–3.8, 4.1, and 5.1 hold, we have
the following:

1. V̌
p→ V̄ .

2.
√
M(V̌ − V̄ )

d→ N (0,ΣV ({w̄(k)Σ(k)
X }, {X̄(k)}, {ρ̄(k)})) if (5.2) is satisfied for

all k and if K simulations are statistically independent, where ρ̄(k) is a vector

consisting of {Z̄(k)
ij |X̄(k)

ij > 0, i ≤ j, (i, j) '= (n(k), n(k))} and ΣV (·) has the
same definition as in Theorem 4.7.

Remark 5.5. Detailed optimization algorithms and proofs of theorems are all
omitted in this section because they are similar to those in sections 3 and 4.

6. Numerical experiments. In this section, the approximate MLE proposed
in this paper will be applied to some numerical examples of multiple biased simula-
tions, and the performance will be compared to that of WHAM and MMMM. For
convenience, here we denote a set of multiple biased simulations described in section
2 by MBS (K,M).

6.1. Umbrella sampling with Markovian simulations. Umbrella sampling
is a commonly used biased simulation technique, where each biasing potential (also
called “umbrella potential”) is designed to confine the system around some re-
gion of state space and achieve a more efficient sampling, especially at transi-
tion states which the unbiased simulation would visit only rarely. In this exam-
ple, the umbrella sampling simulations are employed on a reference system with
state set S = {si = −5 + 10 (i− 1) /99|i = 1, . . . , 100} and free energy V = [Vi] =
[0.25s4i−5s2i−9.9874]. As shown in Figure 6.1, the reference system has two metastable
states centered at A and B, and the switching between metastable states is blocked
by an energy barrier with peak position O.

For umbrella sampling simulations, we design the following 15 different biased

potentials: U (k) = [U (k)
i ] = [4(si + 15

14k − 60
7 )2] for 1 ≤ k ≤ 15. Note that these

potentials will be repeatedly used if the simulation number is larger than 15; i.e.,

U (k) = U ((k−1) mod 15+1) if k > 15. The simulation trajectory {x(k)
t }Mt=0 is generated

by a Metropolis simulation model, which is a reversible Markov chain with initial

distribution Pr(x(k)
0 = si) ∝ exp(−U (k)

i ), stationary distribution π(k)
i ∝ exp(−Vi −
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Fig. 6.1. Free energy profile of the reference system, which has two potential wells with minima
at A and B separated by an energy barrier. The highest energy position O of the barrier represents
the transition state, and the energy barrier heights for transitions A → B and B → A are defined
as ∆VAB = |VO − VA| and ∆VBA = |VO − VB | with VA, VB , and VO the potentials of A, B, and
O.

U (k)
i ), and transition probability

(6.1) Pr
(
x(k)
t+1 = sj |x(k)

t = si
)
=






min

{
exp

(
−Vj−U

(k)
j

)

exp
(
−Vi−U(k)

i

) qji, qij

}
, i '= j,

1−
∑

l ,=i

Pr
(
x(k)
t+1 = sl|x(k)

t = si
)
, i = j,

where qij satisfies qij ∝ 1|i−j|≤2 and
∑

j qij = 1.
The comparisons between the estimation methods are based on the mean error

of approximations of energy barrier heights:

(6.2) e∆V =
1

2
(|∆VAB −∆V approx

AB |+ |∆VBA −∆V approx
BA |) ,

where the definitions of ∆VAB and ∆VBA are given in Figure 3.1, and the superscript
“approx” represents the approximate value obtained from the estimated V .

We first set K = 15 and M = 500, 910, 1657, 3017, 5493, 10000, and perform
30 independent runs of MBS (K,M) for each value of M . Figure 6.2(a) displays the
average e∆V of the approximate MLE, MMMM, and WHAM for differentM , and Fig-
ures 6.2(c) and 6.2(d) show the estimates of V obtained from a run of MBS (15, 500)
and MBS (15, 10000). It can be seen that the estimation errors of all three methods
decrease with increasing simulation length, and the proposed approximate MLE per-
forms significantly better than the other two methods. Note that MMMM is also a
Markov chain model based method, but its performance turns out to be worse than
WHAM in this numerical experiment, especially for large simulation lengths M .

Next, we validate whether the estimation methods can reconstruct the free en-
ergy V from very short simulations. Here we fix the total simulation time MK, and
set M = [22500/K] with K = 45, 90, 135, 180, 225, 270. The estimation results are
summarized in Figures 6.2(b), 6.2(e), and 6.2(f). (The 1σ confidence intervals in Fig-
ure 6.2(f) are provided by using the sample standard deviation of V̌ calculated from
the 30 independent runs of MBS (270, 83) because the simulation length is too short
such that the error analysis approach in section 4.3 is not applicable.) It should be
noted that the equilibrium assumption used by WHAM does not hold if M is too
small, because the initial distributions of simulations differ from the biased stationary
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(a) Average e∆V calculated over 30 indepen-
dent runs of MBS (K,M) for K = 15 and
M = 500, 910, 1657, 3017, 5493, 10000.
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(b) Average e∆V calculated over 30 in-
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(c) Estimates of V generated by the different
estimators on a run of MBS (15, 500), where
the e∆V of approximate MLE = 3.5015, e∆V

of MMMM = 6.3153, and e∆V of WHAM
= 6.3500.
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(d) Estimates of V generated by the differ-
ent estimators on a run of MBS (15, 10000),
where the e∆V of approximate MLE =
0.3060, e∆V of MMMM = 0.6002, and e∆V

of WHAM = 0.3397.
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(e) Estimates of V generated by the different
estimators on a run of MBS (45, 500), where
the e∆V of approximate MLE = 0.4570, e∆V

of MMMM = 1.5012, and e∆V of WHAM
= 1.8948.
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(f) Estimates of V generated by the different
estimators on a run of MBS (270, 83), where
the e∆V of approximate MLE = 3.1939, e∆V

of MMMM = 4.2559, and e∆V of WHAM
= 7.2764.

Fig. 6.2. Estimation results of umbrella sampling with Markovian simulations. The 1σ confi-
dence intervals in (c), (d), and (e) are obtained by the approach described in section 4.3, and those
in (f) are obtained from the sample standard deviation of V̌ in the 30 independent runs.
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distributions. Therefore the estimation accuracy of WHAM is reduced when the in-
dividual simulation lengths are shorter, although the total data size stays almost the
same. In contrast, the proposed approximate MLE and MMMM are less affected by
the change in the length of individual simulations. This is because these methods rely
on having local rather then global equilibrium assumptions. Furthermore, the pro-
posed method outperforms both WHAM and MMMM in this numerical experiment.

6.2. Umbrella sampling with non-Markovian simulations. We now con-
sider the estimation problem from an umbrella sampling simulation in the case
that the Markov assumption does not hold, i.e., the bins used to estimate the
free energy do not correspond to the Markov states of the underlying simulation.
The simulation model and the other settings in this section are basically the same
as in section 6.1 except that the state set is defined as S = {s̄1, . . . , s̄10} with
s̄1 = {s1, . . . , s10}, s̄2 = {s11, . . . , s15}, s̄3 = {s16, . . . , s20} , . . . , s̄17 = {s86, . . . , s90},
and s̄18 = {s91, . . . , s100}. It is clear that the observed state sequences in simulations
do not satisfy the Markov property with this definition of states.

We utilize the three methods to approximate the free energy V by using the
non-Markovian simulation data, and the estimation results with different (K,M) are
shown in Figure 6.3, where e∆V is defined in the same way as in section 6.1 with A,B
and O the local minimum and peak positions in S. As observed from the figures, the
estimates obtained from the approximate MLE are more precise than those obtained
from the other estimators for various values of (K,M).

6.3. Metadynamics with Markovian simulations. Metadynamics is an-
other biased simulation technique often employed in computational physics and chem-
istry, which is able to escape local free energy minima and improve the search-
ing properties of simulations through iteratively modifying the biasing potential.
Given K,M and a reference system as in section 6.1, a metadynamics procedure

can also be expressed as a run of MBS (K,M) with U (k)
i = 0 for k = 1 and

U (k)
i = U (k−1)

i + uc(si|x(k−1)
M ) for k > 1, where uc (s|x) denote a Gaussian function of

s centered at x. Thus, for each of the K simulations in an MBS run, a Gaussian hat
is added to the potential at the last point of the previous simulation. This effectively
fills up the potential energy basins with increasing k. Ultimately the effective poten-
tial becomes approximately flat. Here we define uc (s|x) = 5 exp(− (s− x)2), and the

simulation data {x(k)
t }Mt=0 is also generated by the Metropolis sampling model with

x(k)
0 = x(k−1)

M .
The three estimation methods are applied to reconstruct the free energy of the

reference system by data generated by metadynamics with different (K,M), and the
estimation results are shown in Figure 6.4. The superior performance of the presented
method is clearly evident from the figures.

6.4. Metadynamics with non-Markovian simulations. In this example, the
free energy estimation problem of metadynamics with non-Markovian simulations is
investigated. We generate the simulation data as in section 6.3 and convert the state
sequences to non-Markovian processes as in section 6.2. Then the three methods can
be used to estimate the unbiased free energy of states s̄1, . . . , s̄18.

All the estimation results are displayed in Figure 6.5. It is obvious that the
approximate MLE does a much better job in the free energy estimation than the
other two methods.
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(a) e∆V calculated over 30 independent runs
of MBS (K,M) for K = 15 and M = 500,
910, 1657, 3017, 5493, 10000.

45 90 135 180 225 270
0

1

2

3

4

5

6

7

K

A
ve

ra
ge

e ∆
V

 

 

Approximate MLE
MMMM
WHAM

(b) Average e∆V calculated over 30 inde-
pendent runs of MBS (K,M) for K = 45,
90, 135, 180, 225, 270 and M = [22500/K].
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(c) Estimates of V generated by the different
estimators on a run of MBS (15, 500), where
the e∆V of approximate MLE = 2.4208, e∆V

of MMMM = 6.2008, and e∆V of WHAM
= 6.1413.
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(d) Estimates of V generated by the differ-
ent estimators on a run of MBS (15, 10000),
where the e∆V of approximate MLE =
0.4532, e∆V of MMMM = 0.6289, and e∆V

of WHAM = 0.4711.
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(e) Estimates of V generated by the different
estimators on a run of MBS (45, 500), where
the e∆V of approximate MLE = 0.4989, e∆V

of MMMM = 1.6107, and e∆V of WHAM
= 0.6257.
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(f) Estimates of V generated by the different
estimators on a run of MBS (270, 83), where
the e∆V of approximate MLE = 2.5862, e∆V

of MMMM = 3.6059, and e∆V of WHAM
= 4.7896.

Fig. 6.3. Estimation results of umbrella sampling with non-Markovian simulations. The 1σ
confidence intervals in (c), (d), and (e) are obtained by the approach described in section 4.3, and
those in (f) are obtained from the sample standard deviation of V̌ in the 30 independent runs.
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(a) Average e∆V calculated over 30 indepen-
dent runs of MBS (K,M) for K = 15 and
M = 500, 910, 1657, 3017, 5493, 10000.
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(b) Average e∆V calculated over 30 inde-
pendent runs of MBS (K,M) for K = 40,
80, 120, 160, 200 and M = [2000/K].
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(c) Estimates of V generated by the different
estimators on a run of MBS (15, 500), where
the e∆V of approximate MLE = 6.2858, e∆V

of MMMM = 11.9022, and e∆V of WHAM
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(d) Estimates of V generated by the differ-
ent estimators on a run of MBS (15, 10000),
where the e∆V of approximate MLE =
0.8246, e∆V of MMMM = 3.1642, and e∆V

of WHAM = 5.7601.
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(e) Estimates of V generated by the different
estimators on a run of MBS (40, 50), where
the e∆V of approximate MLE = 1.6589, e∆V

of MMMM = 3.6707, and e∆V of WHAM
= 7.5342.

−5 0 5
−30

−20

−10

0

10

20

30

40

50

state
 

 

True value
Approximate MLE
MMMM
WHAM
1σ intervals

(f) Estimates of V generated by the different
estimators on a run of MBS (200, 10), where
the e∆V of approximate MLE = 2.8518, e∆V

of MMMM = 6.5913, and e∆V of WHAM
= 10.9540.

Fig. 6.4. Estimation results of metadynamics with Markovian simulations. The 1σ confidence
intervals in (c) and (d) are obtained by the approach described in section 4.3, and those in (e) and
(f) are obtained from the sample standard deviation of V̌ in the 30 independent runs.
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500 910 1657 3017 5493 10000
0

2

4

6

8

10

12

M0

A
ve

ra
ge

e ∆
V

 

 

Approximate MLE
MMMM
WHAM

(a) Average e∆V calculated over 30 indepen-
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M = 500, 910, 1657, 3017, 5493, 10000.
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(c) Estimates of V generated by the different
estimators on a run of MBS (15, 500), where
the e∆V of approximate MLE = 2.6950, e∆V
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(d) Estimates of V generated by the differ-
ent estimators on a run of MBS (15, 10000),
where the e∆V of approximate MLE =
0.2325, e∆V of MMMM = 2.5563, and e∆V

of WHAM = 3.7233.
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(e) Estimates of V generated by the different
estimators on a run of MBS (40, 50), where
the e∆V of approximate MLE = 2.4020, e∆V

of MMMM = 4.0281, and e∆V of WHAM
= 6.3157.
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(f) Estimates of V generated by the different
estimators on a run of MBS (200, 10), where
the e∆V of approximate MLE = 2.5255, e∆V

of MMMM = 8.0936, and e∆V of WHAM
= 8.6291.

Fig. 6.5. Estimation results of metadynamics with Markovian simulations. The 1σ confidence
intervals in (c) and (d) are obtained by the approach described in section 4.3, and those in (e) and
(f) are obtained from the sample standard deviation of V̌ in the 30 independent runs.
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7. Conclusions. We have presented a transition matrix based estimation
method for stationary distributions or free energy profiles using data from biased
simulations, such as umbrella sampling or metadynamics. In contrast to existing
estimators such as the weighted histogram analysis method (WHAM), the present
estimator is not based on absolute counts in histogram bins, but rather is based on
the transition counts between an arbitrary state space discretization. This discretiza-
tion may be in a single or a few order parameters, e.g., those order parameters in
which the umbrella sampling or metadynamics simulations are driven, or they may
come from the clustering of a higher-dimensional space, such as is frequently used
in Markov modeling. The only condition is that the energy bias used in the biased
simulations can be associated to the discrete states, suggesting that at least the order
parameters used to drive the umbrella sampling/metadynamics simulation should be
discretized finely. The stationary probabilities or free energies are then reconstructed
on the discrete states used. The estimator presented here has a number of advantages
over existing methods such as WHAM. Most importantly, in all scenarios tested here,
the estimation error of the transition matrix based estimator was significantly smaller
than that of existing estimation methods. The reason for this is that the estimator
does not rely on the biased simulation to fully equilibrate within one simulation condi-
tion, but asks only for local equilibrium in the discrete states, which is a much weaker
requirement. As a consequence, the present method can also be used to estimate free
energy profiles and stationary distributions from metadynamics simulations using all
simulation data. Previously, metadynamics simulations could only be analyzed using
the fraction of the simulation generated after the free energy minima have been filled
and the simulation samples from an approximately flat free energy landscape. These
advantages may lead to very substantial savings of CPU time for a given system and,
in addition, permit the simulation of systems that were otherwise out of reach.

Appendix A. Proof of Theorem 3.2. For convenience, here we define Θ to be
the solution set defined by constraints in (3.3), Θ1 to be the set of feasible solutions

which satisfies T (k)
ij = 0 for (i, j, k) ∈

{
(i, j, k) |C(k)

ij +C(k)
ji = 0 and i '= j

}
, and Θ2 to

be the set of feasible solutions which satisfies 1
T (k)
ij >0

= 1
C(k)

ij >0
for all i, j, k.

Part (1). In this part, we will prove the optimal solution existence of

(3.3). Suppose that (π′, T ′(1), . . . , T ′(K)) is a feasible solution with objective value
L′ > −∞. We can define a new objective function L+(π, T (1), . . . , T (K)) =
max{L(π, T (1), . . . , T (K)), L′ − a}, where a > 0 is a constant. It is easy
to verify that L+ is a continuous function on Θ. Thus, the optimization
problem max(π,T (1),...,T (K))∈Θ L+(π, T (1), . . . , T (K)) has a global optimal solution

(π′′, T ′′(1), . . . , T ′′(K)) with L+(π′′, T ′′(1), . . . , T ′′(K)) = L′′ because Θ is a closed set.

Noting that L′′ ≥ L′ > L′ − a, we have L(π′′, T ′′(1), . . . , T ′′(K)) = L′′. Therefore, for
any (π, T (1), . . . , T (K)) ∈ Θ, we have L(π, T (1), . . . , T (K)) ≤ L+(π, T (1), . . . , T (K)) =

L(π′′, T ′′(1), . . . , T ′′(K)).
Part (2). In this part, we will prove the first conclusion of the theorem. Sup-

pose that (π′, T ′(1), . . . , T ′(K)) is an optimal solution. We can define a new solution

(π′, T ′′(1), . . . , T ′′(K)) with

(A.1) T ′′(k)
ij =

{
1
C

(k)
ij +C

(k)
ji >0

· T ′(k)
ij , i '= j,

1−
∑

l ,=i T
′′(k)
il , i = j.

Obviously, (π′, T ′′(1), . . . , T ′′(K)) is a feasible solution belonging to Θ1, and T ′′(k)
ii ≥



48 HAO WU AND FRANK NOÉ

T ′(k)
ii . We have

L
(
π′, T ′′(1), . . . , T ′′(K)

)
= L

(
π′, T ′(1), . . . , T ′(K)

)
+
∑

i,k

C(k)
ii

(
logT ′′(k)

ii − logT ′(k)
ii

)

≥ L
(
π′, T ′(1), . . . , T ′(K)

)
.(A.2)

Therefore, (π′, T ′′(1), . . . , T ′′(K)) is also an optimal solution.
Part (3). We now prove the second conclusion. Suppose there is an optimal

solution (π′, T ′(1), . . . , T ′(K)) belonging to Θ1\Θ2. Then there exist i, j, k such that

T ′(k)
ij = 0 and C(k)

ij > 0, and L(π′, T ′(1), . . . , T ′(K)) = −∞. This leads to a contradic-

tion with the optimality of (π′, T ′(1), . . . , T ′(K)). Thus, the optimal solution belonging

to Θ1 must be an element of Θ2 if C(k)
ii > 0 and 1

C(k)
ij >0

= 1
C(k)

ji >0
for all i, j, k.

Appendix B. Proof of Theorem 3.9. Let Θ be the feasible set of θ defined
by constraints in (3.3), Q̂(θ) =

∑
k L

(k)(T (k)|X̂(k)), and Q̄(θ) =
∑

k L
(k)(T (k)|X̄(k)).

From Assumption 3.7, we have X̂(k)
ij = 0 if X̄(k)

ij = 0. Then Q̂(θ̄), Q̄(θ̄) > −∞,

and we can define the following new functions: Q̂+(θ) = max{Q̂(θ), Q̂(θ̄) − a} and
Q̄+(θ) = max{Q̄(θ), Q̄(θ̄)− a}, where a > 0 is a constant.

Part (1). First, we will prove that θ̄ is the unique solution of maxθ∈Θ Q̄(θ). We
note that

(B.1) Q̄ (θ) = −
∑

k

KLRπ̄(k)

(
T̄ (k)||T (k)

)
+
∑

i,j,k

X̄(k)
ij log T̄ (k)

ij .

According to the property of the KL divergence rate and Assumption 3.5, Q̄(θ) can
achieve the maximal value if and only if T (k) = T̄ (k) for all k. Then we can conclude
from Assumption 3.8 that θ = θ̄ is the unique solution of maxθ∈Θ Q̄(θ).

Part (2). It is easy to verify that

(B.2) θ = argmax
θ∈Θ

Q̂ (θ) ⇔ θ = argmax
θ∈Θ

Q̂+ (θ)

and θ̄ = argmaxθ∈Θ Q̄+(θ). The proof is omitted because it is trivial.

Part (3). In this part, we will prove that supθ∈Θ |Q̂+(θ) − Q̄+(θ)|
p→ 0. Define

the event

(B.3) ω : X̂(k)
ij ≥ ε ∀ (i, j, k) ∈ SI and Q̂

(
θ̄
)
≥ Q̄

(
θ̄
)
− ε,

and set

(B.4) Θ1 =

{
θ|T (k)

ij ≥ exp

(
Q̄
(
θ̄
)
− ε− a

ε

)
for (i, j, k) ∈ SI

}
∩Θ,

where SI = {(i, j, k)|X̄(k)
ij > 0} and ε ∈ (0,min(i,j,k)∈SI

X̄(k)
ij ). According to the

definitions of Q̂+(θ) and Q̄+(θ), we can get

1ω · sup
θ∈Θ

∣∣∣Q̂+ (θ)− Q̄+ (θ)
∣∣∣ ≤ max

{
1θ∈Θ1 ·

∣∣∣Q̂ (θ)− Q̄ (θ)
∣∣∣ ,
∣∣∣Q̂
(
θ̄
)
− Q̄

(
θ̄
)∣∣∣
}

≤

∣∣∣∣∣
Q̄
(
θ̄
)
− ε− a

ε

∣∣∣∣∣
∑

(i,j,k)∈SI

∣∣∣X̂(k)
ij − X̄(k)

ij

∣∣∣ .(B.5)



OPTIMAL ESTIMATION OF MULTIPLE BIASED SIMULATIONS 49

Moreover, considering that X̂(k)
ij

p→ X̄(k)
ij , we have 1ω

p→ 1. Therefore

(B.6) sup
θ∈Θ

∣∣∣Q̂+ (θ)− Q̄+ (θ)
∣∣∣ p→ 0.

According to the definitions of Q̂+(θ) and Q̄+(θ) and the conclusions of Parts (1)–
(3), it can be easily verified that Q̂+(θ) satisfies the following conditions: (i) Q̄+(θ)

is uniquely maximized at θ̄; (ii) Θ is compact; (iii) Q̄+(θ) is continuous; (iv) Q̂+(θ)

converges uniformly in probability to Q̄+(θ); and (v) θ̃ = argmaxθ∈Θ Q̂(θ). Then we

have θ̃
p→ θ̄ by using Theorem 2.1 in [16] and (B.2).

Appendix C. Proof of Theorem 3.10. Let Θr be the feasible set of θr defined

by constraints in (3.3), where T (k)
ij and πn which do not belong to θr can be treated

as functions of θr. It is easy to see that θ̄r is an interior point of Θr, and that

(C.1) Θ1 =
{
θr|T (k)

ij (θr) ≥ ε for (i, j, k) ∈ SI and πi (θr) ≥ ε∀i
}
∩Θr

is a closed neighborhood of θ̄r, where ε ∈ (0,min{min(i,j,k)∈SI
T̄ (k)
ij ,mini π̄i}) and SI

has the same definition as in Appendix B.
It is easy to verify that

√
M
(
∇θr Q̂

(
θ
(
θ̄r
))

−∇θrQ̄
(
θ
(
θ̄r
)))T

=
√
M∇θrΦ

(
θ
(
θ̄r
))T (

V̂X − V̄X

)

d→ N (0,Σ)

and supθr∈Θ1
‖∇θrθr Q̂(θ(θr)) − ∇θrθrQ̄(θ(θr))‖

p→ 0, where Q̂(θ) and Q̄(θ) have the

same definition as in Appendix B, and VX = V(X(1), . . . , X(K)). Then by Theorem
3.1 in [16], (3.13) holds.

Appendix D. Bilevel optimization procedure for (4.12). Here we define

ρ(k) as a vector consisting of the elements of {Z(k)
ij |C(k)

ij > 0, i ≤ j, (i, j) '= (n, n)}.
(Note that ρ(k) is different from the ρ(k) defined in section 4.2 because 1

C(k)
ij >0

=

1
X̄

(k)
ij >0

may not hold for all i, j, k.) Then we can eliminate the first two constraints of

(4.12) by using the substitution method and regarding Z(k) and Z(k)
i as functions of

ρ(k), and express (4.12) as a bilevel optimization problem consisting of an upper-level
problem

(D.1)
max
V

∑

k

Ľ(k)
V

(
V (k) (V )

)

s.t. 1TV = 0

and K lower-level problems
(D.2)

Ľ(k)
V

(
V (k)

)
= max

ρ(k)
Ľ(k)
Z

(
Z(k)

(
ρ(k)

)
|C(k)

)

s.t. VZ

(
Ž(k)

)
+
∑

i,j ∇V(Z(k))VZ

(
Ž(k)

)
· V
(
Z(k)

(
ρ(k)

)
− Ž(k)

)
= V (k)

for k = 1, . . . ,K. Note that Ž(k) = Z(k)(ρ̌(k)) with

(D.3) ρ̌(k) = argmax
ρ(k)

Ľ(k)
Z

(
Z(k)

(
ρ(k)

)
|C(k)

)
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and both sides of the constraint of (D.2) are zero-mean. Then (D.2) can be simplified
as
(D.4)

L(k)
V

(
V (k)

)
= max

ρ(k)
L(k)
Z

(
Ž(k)|C(k)

)
+ 1

2

(
ρ(k) − ρ̌(k)

)T
H(k)

ρ

(
C(k), ρ̌(k)

) (
ρ(k) − ρ̌(k)

)

s.t.
[
I 0

]
∇ρ(k)VZ

(
ρ̌(k)

) (
ρ(k) − ρ̌(k)

)
=
[
I 0

] (
V (k) − V̌ (k)

)
,

where H(k)
ρ (C(k), ρ̌(k)) =

∑
i C

(k)
i ∇ρ(k)ρ(k)Zk

i (ρ̌
(k)) ≺ 0 and where we denote

VZ(Z(k)(ρ(k))) by VZ(ρ(k)) for convenience of notation. (The negative-definiteness

of H(k)
ρ (Ck, ρ(k)) can be easily verified according to its definition and Assumption

4.1.) It is easy to verify that [ I 0 ]∇ρ(k)VZ(ρ̌(k)) is full row rank. Then, using the
Lagrange multiplier method, we get

Ľ(k)
V

(
V (k)

)
= L(k)

Z

(
Ž(k)|C(k)

)

+
1

2

(
V − V (k)

)T
Ξ′(k)

(
C(k), ρ̌(k)

)(
V − V (k)

)
,(D.5)

where

Ξ′(k)
(
C(k), ρ̌(k)

)
=

[
I
0T

]([
I 0

]
∇ρ(k)VZ

(
ρ̌(k)

)(
Hk

ρ

(
Ck, ρ̌(k)

))−1

·
([

I 0
]
∇ρ(k)VZ

(
ρ̌(k)

))T)−1 [
I 0

]
(D.6)

is negative-semidefinite and satisfies [ I 0 ]Ξ′(k)(C(k), ρ̌(k))[ I 0 ]T ≺ 0. Substi-
tuting (D.5) into (D.1) and applying the KKT conditions, it is easy to verify that the
solution of (4.12) is (4.14) with

Ξ(k)
(
C(k), ρ̌(k)

)
=

(
K∑

m=1

(
∇V V

(m) (V )
)T

Ξ′(m)
(
C(m), ρ̌(m)

)
∇V V

(m) (V )

)+

·
(
∇V V

(k) (V )
)T

Ξ′(k)
(
C(k), ρ̌(k)

)
(D.7)

and

(D.8) b(k)
(
C(k), ρ̌(k)

)
= Ξ(k)

(
C(k), ρ̌(k)

)
∇V V

(k) (V )U (k).

Appendix E. Proof of Lemma 4.6. First we define Q̌(k)(ρ(k)) =

L(k)
Z (Z(k)(ρ(k))|X̂

(k)
) and Q̌(k)(ρ(k)) = L(k)

Z (Z(k)(ρ(k))|X̄(k)) with X̂
(k)

= [X̂
(k)

ij ] =

C(k)/M . It is clear that there is a function Φ(k)(·) such that Q̌(k)(ρ(k)) and

Q̄(k)(ρ(k)) can be written as Q̌(k)(ρ(k)) = V(X̂
(k)

)TΦ(k)(ρ(k)) and Q̄(k)(ρ(k)) =
V(X̄(k))TΦ(k)(ρ(k)).

Under Assumptions 3.5–3.8 and 4.1, it is easy to see that X̄(k) is irreducible and
its diagonal elements are positive, which implies that T̄ (k) is an ergodic transition
matrix with unique stationary distribution. Thus V̄ (k) = VZ(ρ̄(k)). (VZ(ρ(k)) denotes
VZ(Z(k)(ρ(k))).)

Define the event

(E.1) ω(k) : 1
C

(k)
ij >0

= 1
X̄

(k)
ij >0

∀ i, j
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and

(E.2) ρ̌(k) =

{
ρ̌(k), 1ω(k) = 1,

0, 1ω(k) = 0.

It is clear that the functions 1ω(k) · Q̌k(ρ(k)) and Q̄k(ρ(k)) satisfy the following:
(i) ρ̌(k) = argmaxρ(k) 1ω(k) · Q̌k(ρ(k)) and Q̄k(ρ(k)) is uniquely maximized at ρ̄(k);

(ii) 1ω(k) · Q̌k(ρ(k)) is concave for ∇ρ(k)ρ(k)Q̌k(ρ(k)) = H(k)
ρ (X̂

(k)
, ρ(k)) ≺ 0 if ω(k)

holds; (iii) 1ω(k) · Q̌k(ρ(k))
p→ Q̄k(ρ(k)) for any ρ(k) because 1ω(k)

p→ 1. Then we have

ρ̌k
p→ ρ̌k

p→ ρ̄k according to Theorem 2.7 in [16], and V̌ k p→ V̄ k since VZ(ρ(k)) is a

continuous function of ρ(k).
We now show the second conclusion of the lemma. Because it holds that ρ̄(k) =

argmaxρ(k) Q̄(k)(ρ(k)), it follows that ∇ρ(k)Q̄(k)(ρ̄(k)) = 0T. Then we have

√
M
(
∇ρ(k)

(
1ω(k) · Q̌(k)

(
ρ̄(k)

)))T p→ 1ω(k) ·
(
∇ρ(k)Φk

(
ρ̄k
))T ·

(
V
(
X̂k
)
− V

(
X̄k
))

d→ N
(
0,
(
∇ρ(k)Φk

(
ρ̄k
))T

Σ(k)
X

(
∇ρ(k)Φk

(
ρ̄k
)))

.(E.3)

Furthermore, the Hessian matrices of 1ω(k) · Q̌(k)(ρ(k)) and Q̄(k)(ρ(k)) satisfy

∇ρ(k)ρ(k)(1ω(k) · Q̌(k)(ρ(k)))
p→ ∇ρ(k)ρ(k)Q̌(k)(ρ(k)) for any ρ(k). Using the mean

value theorem and Theorem 3.1 in [16], we can conclude that
√
M(ρ̌(k) − ρ̄(k))

d→
N (0,Σ(k)

ρ (Σ(k)
X , X̄(k), ρ̄(k))) and

(E.4)
√
M
(
V̌ (k) − V̄ (k)

)
d→ N

(
0,Σ(k)

V

(
Σ(k)

X , X̄(k), ρ̄(k)
))

with

Σ(k)
V

(
Σ(k)

X , X(k), ρ(k)
)
= ∇ρkVZ

(
Z(k)

(
ρ(k)

))

·Σk
ρ

(
Σ(k)

X , X(k), ρ(k)
)(

∇ρkVZ

(
Z(k)

(
ρ(k)

)))T
,(E.5)

where

Σk
ρ

(
Σ(k)

X , X(k), ρ(k)
)
=
(
H(k)

ρ

(
X(k), ρ(k)

))−1 (
∇ρ(k)Φ(k)

(
ρ(k)

))T
Σ(k)

X

·∇ρ(k)Φ(k)
(
ρ(k)

)(
H(k)

ρ

(
X(k), ρ(k)

))−1
(E.6)

and H(k)
ρ (X(k), ρ(k)) =

∑
i,j X

(k)
ij ∇ρ(k)ρ(k)Z

(k)
i (ρ(k)).

Appendix F. Proof of Theorem 4.7. Since the value of V̌ will not be affected

if we replace C(k) with X̂
(k)

= C(k)/M , V̌ can be expressed as

V̌ =

(
K∑

k=1

ATΞ′(k)
(
X̂

(k)
, ρ̌(k)

)
A

)+

·
(

K∑

k=1

ATΞ′(k)
(
X̂

(k)
, ρ̌(k)

)(
V̌ (k) −AU (k)

))
(F.1)
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with A = I − 1
n11

T ∈ Rn×n and Ξ′(k)(·) defined by (D.6), and V̌ =

argmax1TV=0 Qq(V ; {V̌ (k)}) with

Qq

(
V ;
{
V̌ (k)

})
=

K∑

k=1

1

2

(
A
(
V + U (k)

)
− V̌ (k)

)T
Ξ′k
(
X̂

(k)
, ρ̌(k)

)

·
(
A
(
V + U (k)

)
− V̌ (k)

)
.(F.2)

Part (1). We first prove that V̄ is the unique maximum point of Qq(V ; {V̄ (k)})
under the constraint 1TV = 0. It is clear that V̄ is a maximum point since
Qq(V̄ ; {V̄ (k)}) = 0 and Qq(V ; {V̄ (k)}) ≤ 0. We now show the uniqueness of
V̄ by contradiction. Suppose that V ′ is another maximum point which satisfies
Qq(V ′; {V̄ (k)}) = 0 and V ′ '= V̄ . Then [ I 0 ](A(V ′ + U (k)) − V̄ (k)) = 0 for

any k because [ I 0 ] · Ξ′(k)(X̂
(k)

, ρ̌(k)) · [ I 0 ]T ≺ 0, which implies that the

first n − 1 elements of A(V ′ + U (k)) − V̄ (k) are zero. Further, considering that
1TA(V ′ + U (k)) = 1TV̄ (k) = 0, we can conclude that A(V ′ + U (k)) = V̄ (k) for
each k. Therefore the probability distribution π′ = [π′

i] with π′
i ∝ exp(−V ′

i) sat-
isfies (3.11), which contradicts Assumption 3.8. Thus V̄ is the unique solution of
argmax1TV=0 Qq(V ; {V̄ (k)}).

Part (2). In this part we will prove that null(
∑K

k=1 A
TΞ′(k)(X̂

(k)
, ρ̌(k))A) =

span (1) for any X̂
(k)

, ρ̌(k). It is clear that span(1) ⊆ null(
∑K

k=1 A
TΞ′(k)(X̂

(k)
, ρ̌(k))A)

since A1 = 0. Suppose that v /∈ span(1) is another vector which belongs to

null(
∑K

k=1 A
T · Ξ′(k)(X̂

(k)
, ρ̌(k))A) and satisfies 1Tv = 0; then V̄ + v '= V̄ is also

a maximum point of argmax1TV=0 Qq(V ; {V̄ (k)}). This is a contradiction to the

result of Part (1). Therefore null(
∑K

k=1 A
TΞ′(k)(X̂

(k)
, ρ̌(k))A) = span(1).

Part (3). Combining the result of Part (2) and Theorem 5.2 in [27] leads to the
conclusion of the theorem with

ΣV

(
{Σ(k)

X }, {X(k)}, {ρ(k)}
)
=

K∑

k=1

Ξ(k)
(
X(k), ρ(k)

)
Σ(k)

V

(
Σ(k)

X , X(k), ρ(k)
)

·
(
Ξ(k)

(
X(k), ρ(k)

))T
.(F.3)

Appendix G. Proof of Theorem 4.9. Let G(·) be a function of y(k)t

with G(y(k)t ) = [Gij(y
(k)
t )] = [1

f(k)(y(k)
t )=i

Pr(x(k)
t+1 = j|y(k)t )], and let κ(k)

G (h) =

Cov(V(G(y(k)t )),V(G(y(k)t+h))) be the h lag autocovariance of {V(G(y(k)t ))}. It is easy

to verify that κ(k)
G (h) and κ(k)(h + 1) are composed of the same elements but in

different arrangements for h ≥ 0, and that η(k)(l) = tr(κ(k)
G (2l) + κ(k)

G (2l + 1)).

From the above results, we can conclude that η(k)(l) = tr(κ(k)
G (2l)+κ(k)

G (2l+1)) is

a nonnegative and decreasing function of l for l ≥ 0, and that κ(k)
G (2l)+κ(k)

G (2l+1) 1 0
by using Theorem 3.1 in [9]. Therefore the second conclusion of the theorem can be
shown.

We now show the first conclusion. According to Theorem 2.1 in [9] and considering
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that
∑∞

h=0 κ
(k)
G (h) is convergent, we have

NVar

(
1

N

N∑

t=1

V
(
∆C(k)

t

))
= κ(k) (0) +

N−1∑

h=1

N − h

N

(
κ(k) (h) + κ(k) (h)T

)

→ κ(k) (0) +
∞∑

h=1

(
κ(k) (h) + κ(k) (h)T

)
(G.1)

as N → ∞, and Σ(k)
X = κ(k)(0) +

∑∞
l=0(Γ

(k)(l) + Γ(k)(l)T).
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[18] F. Noé, I. Horenko, C. Schütte, and J. C. Smith, Hierarchical analysis of conformational
dynamics in biomolecules: Transition networks of metastable states, J. Chem. Phys., 126
(2007), 155102.

[19] S. Piana and A. Laio, A bias-exchange approach to protein folding, J. Phys. Chem. B, 111
(2007), pp. 4553–4559.



54 HAO WU AND FRANK NOÉ
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