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I. Introduction

Stochastic dynamical systems play an important role in many branches of mathematics
and applications. Loosely speaking, such a system is a superposition of a deterministic
dynamical system with random fluctuations, often called “noise“. A typical example is the
simulation of molecules (molecular dynamics, MD). In principle, one could model a molecule
as a classical physical system by assigning to each atom its three spatial and three momentum
coordinates and propagate these coordinates using some dynamical model. Since the molecule
can typically exchange heat with its surroundings, energy is not conserved, which means that
classical Hamiltonian dynamics is not a suitable dynamical model. Instead, the exchange of
heat is usually modelled by some random influence. As an example, one can use Smoluchowski
dynamics: If we denote the number of atoms by N and the 3N -dimensional position vector
by x, the time evolution is given by the stochastic differential equation

ẋ(t) =
1

mγ
∇V (x(t)) +

√
2DdWt. (I.1)

Here, V is the potential energy function of the system, D is the diffusion constant, γ denotes
friction and Wt is 3N -dimensional Brownian motion. We will come back to this model in
more detail at a later point, but note that this equation defines a stochastic process instead
of a deterministic dynamical system. Instead of asking for a deterministic position in the
3N -dimensional state space, we ask for the probability to find the system in a certain region
of the state space.
Molecular systems very often display so called conformations, or metastable states. This
means that while the system still oscillates and fluctuates, the overall geometry remains the
same for long times, [Schütte, Huisinga, Deuflhard, Fischer, 1999]. Only occasionally, tran-
sitions from one conformation to another can be observed. An example of this phenomenon
is shown in Figure I.1. A quantity of interest would be the average waiting time until such
a transition occurs, because it would help to understand the overall behaviour of such a
molecule.

It has also been shown by [Schütte, Huisinga, Deuflhard, Fischer, 1999] that the time evo-
lution of probability densities described above can be computed by the action of a linear
integral operator, called the propagator. Moreover, the spectral properties of this operator
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Figure I.1.: An internal coordinate of a small molecule transitioning between two different
conformations, [Weber, 2010, ch. 1.1].

can be related to average waiting times, the quantities of interest. Therefore, estimating
eigenvalues and eigenfunctions of the propagator is an interesting task. Markov state mod-
els, [Prinz et al, 2011], have been frequently used to this end. The main idea is to discretize
the state space into a finite number of sets, and then approximate the true propagator by
a finite-dimensional matrix operator. The eigenvalues of this matrix can be used as an ap-
proximation of the real eigenvalues. However, the quality of such an approximation largely
depends on the choice of discretization. Finding a good discretization requires the use of
clustering techniques to group the data. In the following, we present a different approach to
approximating the dominant eigenvalues and eigenfunctions, not based on partition of unity
membership functions, but on the use of smooth functions in combination with a variational
principle. The main idea is to use the shape of the molecular energy function to choose the
basis functions needed for the approximation. We hope that this can be done without the
application of a clustering method to sampled data and thus help to avoid many numerical
instabilities. We will develop the theory in chapter II, then apply the method to one dimen-
sional examples of a diffusion process in chapter III, and finally tackle a higher dimensional
problem in chapter IV. In the end, we hope that this might lead to a robust and compu-
tationally affordable method to compute eigenvalues and relevant time scales of stochastic
processes stemming from real world examples.



II. The variational principle

II.1. The transfer operator

We consider a time-dependent stochastic process Xt, t ≥ 0, on a usually high-dimensional
and continuous state space Ω. Let the process satisfy the Markov property, that is, for all
x0, x1, . . . , xn and y ∈ Ω, t0 > t1 > . . . > tn ≥ 0 and τ > 0, we have

P (Xt0+τ = y|Xt0 = x0, Xt1 = x1, . . . , Xtn = xn) = P (Xt0+τ = y|Xt0 = x0) . (II.1)

In other words, the future behaviour of the process only depends on the current state and
not on the past. A more detailed and more precise formulation of the Markov property can
be found in [Behrends, 2011, ch. 2]. Let us consider processes which are time-homogeneous,
meaning that the conditional probability P(Xt0+τ = y|Xt0 = x) in the above equation does
not depend on t0, but only on the time difference τ and on the positions x, y. In this case,
the process allows us to define a function p:

p(x, y; τ) := P(Xt+τ = y|Xt = x) = P(Xτ = y|X0 = x). (II.2)

We shall call this function the transition kernel. It enables us to understand the evolution of
probability densities in time. Suppose that, at time t = 0, the system is distributed according
to a distribution ρ0. The probability that, after time τ > 0, the system transitioned from a
point x to another point y, is given by the product of the probability of being at x at time
t = 0 and the conditional probability to go from x to y in time τ . Consequently, the density
ρτ belonging to time τ , evaluated at y, is obtained from integrating this product over all
possible states x:

ρτ (y) =

�

Ω

dx p(x, y; τ)ρ0(x). (II.3)

Furthermore, we assume the process to be sufficiently ergodic, which means in essence that
the system cannot be decomposed into two dynamically independent components, and every
state of the system will be visited infinitely often over an infinite run of the process. In this
case, there is a unique probability distribution µ : Ω �→ R, which is invariant in time, i.e.

�

Ω

dx p(x, y; τ)µ(x) = µ(y), (II.4)
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regardless of τ , [Sarich, Noé, Schütte, 2010, ch. 2.2] The function µ is called the invariant
measure, the invariant density or the stationary distribution of the process.
Also, we assume the transition kernel to satisfy the detailed balance condition, i.e.

µ(x)p(x, y; τ) = µ(y)p(y, x; τ) ∀x, y ∈ Ω. (II.5)

Detailed balance is an important assumption that is justified in many applications from
physics. In a system not satisfying Equation II.5, there would be a pathway where one di-
rection is preferred compared to the other. This would allow the process to produce work,
that is, to convert thermal energy into work. This is impossible in physical systems due to
the second law of thermodynamics, [Prinz et al, 2011, sec. 2.A].

We see that Equation II.3 defines the action of a lag time dependent integral operator P(τ)

on suitable probability densities ρ. Let us call it the propagator of the system, which has
the following important property:

Lemma II.1 (Chapman-Kolmogorov equation): For any τ1, τ2 > 0, we have

P(τ1 + τ2) = P(τ1)P(τ2). (II.6)

Proof. First, we observe that the Markov property and time-homogeneity imply for x, z ∈

Ω,

p(x, z; τ1 + τ2) = P(Xτ1+τ2 = z|X0 = x) =
1

P(X0 = x)
P(Xτ1+τ2 = z,X0 = x) (II.7)

=
1

P(X0 = x)

�

Ω

dyP(Xτ1+τ2 = z|Xτ2 = y)P(Xτ2 = y,X0 = x) (II.8)

=

�

Ω

dy p(y, z; τ1)
P(Xτ2 = y,X0 = x)

P(X0 = x)
=

�

Ω

dy p(y, z; τ1)p(x, y; τ2).

(II.9)

Using this, we show that for a function ρ,

P(τ1 + τ2)ρ(z) =

�

Ω

dx p(x, z; τ1 + τ2)ρ(x) =

�

Ω

dx

�
dy p(y, z; τ1)p(x, y; τ2)ρ(x)

(II.10)

=

�

Ω

dy p(y, z; τ1)P(τ2)ρ(y) = P(τ1)P(τ2)ρ(z). (II.11)
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Let us additionally assume that P(τ)ρ → ρ for all suitable functions ρ, and let us define
P(0) := id. This means that Lemma II.1 is also valid for all τ1, τ2 ≥ 0. Before we go on
to study the propagator, let us introduce a slight modification to it. Denoting by L

2
µ(Ω)

the space of all functions v : Ω �→ R which are square-integrable with respect to the
weight function µ, i.e.

�
Ω v

2
(x)µ(x)dx is finite, with the weighted scalar-product �v | w�µ =�

Ω dx v(x)w(x)µ(x), we make the following definition:

Definition II.2 (Transfer operator): The transfer operator T (τ) acting on a function
u ∈ L

2
µ(Ω) is defined by:

T (τ)u(y) :=
1

µ(y)

�

Ω

dx p(x, y; τ)µ(x)u(x). (II.12)

The domain of definition is chosen to have this operator act on a Hilbert space. We note
the most important properties of T (τ):

Lemma II.3: If the transition kernel p(x, y; τ) is given by a smooth and bounded probability
density, the transfer operator T (τ) is linear, bounded, compact and self-adjoint.

Proof. Linearity follows directly from the definition. In order to prove boundedness, let us
first use detailed balance to find:

�T (τ)v | T (τ)v�µ =

�

Ω

dy [T (τ)v(y)]
2
µ(y) (II.13)

=

�

Ω

dy
1

µ(y)2

��

Ω

dx p(x, y; τ)µ(x)v(x)

�2
µ(y) (II.14)

=

�

Ω

dy
1

µ(y)
µ(y)

2

��

Ω

dx p(y, x; τ)v(x)

�2
. (II.15)

Before we proceed, we make the following general observation. If π is some probability
density on Ω and f : Ω �→ R a function, we have

0 ≤ ω
2
[f ]π = E

�
f
2
�
π
− (E [f ]π)

2
, (II.16)

where we use ω2
[ · ]π to denote the variance of f with respect to the distribution π. Hence,

��

Ω

dx f(x)π(x)

�2

= (E [f ]π)
2
≤ E

�
f
2
�
π
=

�

Ω

dx f
2
(x)π(x). (II.17)
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In Equation II.15, p(y, x; τ) is, by assumption, a smooth probability density in x. We can
consequently apply the above estimate to the squared integral and obtain

�T (τ)v | T (τ)v�µ ≤

�

Ω

dy µ(y)

�

Ω

dx p(y, x; τ)v
2
(x) (II.18)

=

�

Ω

dx v
2
(x)

�

Ω

dy µ(y)p(y, x; τ) =

�

Ω

dx v
2
(x)µ(x) = �v�

2
µ. (II.19)

We have thus found that T (τ) is a well-defined and bounded operator on L
2
µ(Ω) with

operator norm less or equal to one. By inserting the constant function 1 which satisfies
1(x) = 1 ∀x ∈ Ω, Equation II.4 immediately yields that T (τ)1 = 1 and consequently,
�T (τ)� = 1. As p(x, y; τ) is bounded for all x, y, we also have p(x, y; τ) ∈ L

2
µ×µ(Ω × Ω),

therefore T (τ) is a Hilbert-Schmidt operator and thus compact, [Werner, 2002, ch. 6, p.
272]. Finally, self-adjointness also follows from the detailed balance condition:

�T (τ)u | v�µ =

�

Ω

dy
1

µ(y)

��

Ω

dx p(x, y; τ)µ(x)u(x)

�
µ(y)v(y) (II.20)

=

�

Ω

�

Ω

dx dy p(y, x; τ)µ(y)u(x)v(y) (II.21)

=

�

Ω

dx
1

µ(x)

��

Ω

dy p(y, x; τ)µ(y)v(y)

�
µ(x)u(x) = �u | T (τ)v�µ . (II.22)

The transfer operator defines a compact and self-adjoint map on the Hilbert space L
2
µ(Ω).

From functional analysis, we know that it has rich spectral properties, see [Werner, 2002,
ch. 6, p. 241] : The spectrum is real-valued and, because of �T (τ)� = 1, contained within
the interval [−1, 1]. All non-zero spectral values are discrete and are indeed eigenvalues
with corresponding eigenfunctions. The eigenvalues can be ordered into a series λi with
λi → 0 as i → 0. The Hilbert space L

2
µ(Ω) can be decomposed into the direct sum of

the eigenfunctions’ linear span and the operator’s kernel. If one extends the linear span by
an orthonormal basis of the kernel, we obtain an orthonormal basis ψi of the full Hilbert
space such that the action of T (τ) completely decomposes into the action on each of these
functions. If we write v ∈ L

2
µ(Ω) as v =

�∞
i=1 �v | ψi�µ ψi, we then find that

T (τ)v =

∞�

i=1

�v | ψi�µ T (τ)ψi =

∞�

i=1

λi �v | ψi�µ ψi, (II.23)

where possibly λi = 0 holds from some index i on. As we have already noticed in the course
of proving Lemma II.3, λ1 = 1 is an eigenvalue with corresponding eigenfunction ψ1 = 1. In
many applications, it turns out that this eigenvalue is simple and dominant, meaning that its
multiplicity is one and that −1 is not an eigenvalue of T (τ). Additionally, there usually is a
number of further eigenvalues 1 > λ2 > . . . > λm, which are strictly smaller but ”close” to
one, whereas the remaining spectrum is contained in a ball around zero which is essentially
bounded away from these eigenvalues, see again [Sarich, Noé, Schütte, 2010, ch 2.2]. Let
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us from now on assume this to be the case, and let us call these eigenvalues the dominant

eigenvalues and their corresponding functions ψ2, . . . ,ψm the dominant eigenfunctions.

Consider now the map M : L
2
µ(Ω) �→ L

2
µ−1(Ω) defined by Mψ(x) := µ(x)ψ(x) for any

function ψ ∈ L
2
µ(Ω). Here, L2

µ−1(Ω) is the L
2-space with weight function µ

−1
(x) =

1
µ(x) ,

where we assumed the stationary density to be non-zero, having in mind that in our later
contexts, it will always be given by the Boltzmann distribution. M is linear and well-defined,
indeed, if ψ ∈ L

2
µ(Ω), then �Mψ | Mψ�µ−1 =

�
Ω dxµ(x)ψ(x)µ(x)ψ(x)µ

−1
(x) = �ψ�2µ.

Moreover, M is a bijective map, which can rapidly be checked, and because of

�Mψ | φ�µ−1 =

�

Ω

dxµ(x)ψ(x)φ(x)µ
−1
(x) =

�
ψ | M

−1
φ
�
µ
, (II.24)

M is also unitary. Looking back at Equation II.3 and Definition II.2, we find that on
L
2
µ−1(Ω), P(τ) = MT (τ)M−1. The propagator differs from the transfer operator by no

more than a unitary transformation, and it thus inherits the self-adjointness and compactness
properties we have just derived for T (τ). In particular, if ψi ∈ L

2
µ(Ω) is a transfer operator

eigenfunction, then φi := Mψ = µψ is a propagator eigenfunction corresponding to the
same eigenvalue, and vice versa. The Hilbert space L

2
µ−1(Ω) decomposes in the same way

as L2
µ(Ω) does, only replacing the orthonormal basis {ψi} by {φi}.

Example 1: If Ω = {x1, . . . , xN} is finite, it is enough to specify the conditional transition
probabilities pij(τ) = P(Xτ = xj|X0 = xi). A probability density simply becomes a vec-
tor pτ = (p1(τ), . . . , pN(τ)), assigning a probability pi(τ) to each state xi, and satisfying�N

i=1 pi(τ) = 1. Probability vectors are propagated in time by multiplication with the matrix
P(τ) = (pij(τ)) from the left, since

pi(τ) = P(Xτ = xi) =

N�

j=1

P(Xτ = xi|X0 = xj)P(X0 = xj) =

N�

j=1

pji(τ)pj(0). (II.25)

Consequently, pτ = p0 P(τ). The linear propagator simply becomes the matrix P(τ)
T . The

eigenfunctions φi are the left-hand eigenvectors of the matrix P(τ), in particular, the sta-
tionary distribution is a vector π := φ1, which satisfies π P(τ) = π. Since the transformation
M acts on a function by point wise multiplication with the stationary density, M can be
written as a matrix Π, which is diagonal and carries the vector π on its diagonal. Since, with
this notation, reversibility can be written as ΠP(τ) = P(τ)

T
Π, we find that

T (τ) = M
−1
P(τ)M = Π

−1
P(τ)

T
Π = Π

−1
ΠP(τ) = P(τ). (II.26)

We see that propagator eigenvectors, which are left-hand eigenvectors of the P-matrix, be-
come transfer operator eigenvectors upon transposing and multiplication with Π

−1, and thus
become right-hand eigenvectors of the P-matrix. In the finite-dimensional case, the differ-
ence between the propagator and the transfer operator is just a matter of left-hand and
right-hand eigenvectors of the same matrix.
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The spectral decomposition, the Chapman-Kolmogorov equation Lemma II.1 and the as-
sumption P(τ)φ → φ for all φ ∈ L

2
µ−1(Ω) show us that the i-th eigenvalue λi(τ) is a

continuous function of τ and satisfies λi(τ1+τ2) = λi(τ1)λi(τ2) as well as λi(0) = 1. There-
fore, it can be written as λi(τ) = e

−κiτ for some κi > 0, that is, it has an exponential decay
rate. Clearly, κ1 = 0 and κ2, . . . ,κm are close to zero. Looking at the action of P(τ) on
some function ρ once more shows that

P(τ)ρ =

∞�

i=1

�ρ | φi�µ−1 P(τ)φi =

∞�

i=1

e
−κiτ �ρ | φi�µ−1 φi. (II.27)

If the time lag τ is very close to zero, almost all terms in the above sum will contribute. If
τ becomes larger, however, there is a range of time lags τ where, for i > m, all exponential
decay terms e−κiτ have essentially vanished, whereas all terms with i ≤ m still contribute. If
τ increases even further, namely if τ �

1
κ2
, there are no contributions except the very first

term. For a probability distribution ρ, we have �ρ | φ1�µ−1 = �ρ | µ�µ−1 = 1, so P(τ)ρ ≈ µ.
The system is then distributed according to its equilibrium distribution and has basically
“forgotten“ the initial deviation from equilibrium expressed by ρ. Each dominant eigenvalue
defines a time scale 1

κi
and a corresponding slow process which equilibrates only if one waits

much longer than this time scale. The slow processes are the link between eigenvalues and
metastable states. A slow process usually corresponds to an equilibration process between two
metastable regions, and the implied time scale 1

κi
= −

τ
log λi(τ)

defines an average transition
time. For this reason, the approximation of dominant eigenvalues is of such importance.

Example 2: Consider a four state system with stochastic transition matrix

P =





0.7571 0.2429 0 0

0.1609 0.8306 0.0085 0

0 0.0084 0.8294 0.1622

0 0 0.2413 0.7587



 . (II.28)

Clealy, most of the transitions will occur either between states x1 and x2 or between x3 and
x4, whereas a transition from x2 to x3 will be a very rare event. Grouped together, x1, x2 and
x3, x4 form two metastable states. The eigenvalues are λ1 = 1, λ2 = 0.9900, λ3 = 0.5964

and λ4 = 0.5894. Clearly, there is one dominant eigenvalue related to the slow transition
process between the two metastable states.

Example 3: In chapter 2, we will discuss the diffusion process of a one-dimensional particle
in an energy landscape V . The particle is subject to a force F , which equals the derivative of
the energy function, but is additionally perturbed by random fluctuations. For the potential
function V shown in Figure II.1a, the particle will spend most of the time around one of the
two minima of V , and will just occasionally cross the barrier separating them. Figure II.1b
shows a trajectory of the process, where the metastable behaviour is clearly visible. This is
another typical example of metastable states, we will investigate it in more detail in the next



II.2. Markov state models 11

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

V
(x

)

(a)

0 2 4 6 8 10

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time step t

X
t

(b)

Figure II.1.: The potential energy function V displaying two metastable states around x = −1

and x = 1, and a sample trajectory of the corresponding diffusion process.

chapter.

II.2. Markov state models

Markov state models (MSMs), [Prinz et al, 2011], are a widely used technique to approx-
imate the eigenvalues of stochastic processes. The idea is to partition the state space into
finitely many disjoint sets A1, . . . , As with

�s
i=1 Ai = Ω, and only consider the transitions

between any two of these sets. This means that instead of noticing every transition between
any two points of the full continuous state space, we only take care of transitions between
the sets Ai. Let us compute the conditional transition probability pij(τ) between two sets
Ai and Aj, over time τ :

pij(τ) = P(Xτ ∈ Aj|X0 ∈ Ai) =
P(Xτ ∈ Aj, X0 ∈ Ai)

P(X0 ∈ Ai)
(II.29)

=

�
Ai

�
Aj

dx dy µ(x)p(x, y; τ)
�
Ai

dxµ(x)
. (II.30)

The matrix P(τ) with entries pij(τ) is a row-stochastic matrix which defines a Markov process
on the finite state space A1, . . . , As, and it is called the MSM transfer matrix. Probability
densities on this space, i.e. probability vectors p = (p1, . . . , ps) with

�s
i=1 pi = 1, are

transported by multiplication with P(τ) from the left, i.e. pτ = p0 P(τ). As an approximation
to the true eigenvalues of the continuous propagator, one simply computes the eigenvalues of
P(τ). To this end, one has to find the matrix entries pij(τ). These are usually estimated from
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simulation trajectories: Let X0, . . . , XN be a trajectory of length N , with a simulation time
step ∆t = τ . One estimates µi :=

�
Ai

dxµ(x) as the number of simulation steps Xk with
Xk ∈ Ai, divided by N . The transition probability

�
Ai

�
Aj

dx dy µ(x)p(x, y; τ) is estimated
by the number of transitions from Ai to Aj, divided by the total number of transitions, in
this case N−1. In practice, it is often useful to choose τ as some general integer multiple of
the simulation window ∆t, i.e. τ = n∆t, with n not necessarily equal to one. In this case,
only transitions over n simulation time steps are taken into account, which usually leads to
a higher approximation quality, as we shall see later.
It is very important to note that the Markov process defined by the MSM transfer matrix
is an approximation of the continuous dynamics: The definition of the transfer matrix in
Equation II.30 overlooks all transitions within one of the sets Ai. But these transitions are
important, because the probability to cross over to some other set Aj very much depends on
the current position within set Ai. Making use of the MSM therefore automatically results in
a systematic error that effects the accuracy of the estimated eigenvalues. It is quite easy to
show that this error decays exponentially proportional to the second eigenvalue. In their 2010
paper, Sarich, Noé and Schütte show that the pre-factor can be split up into two independent
components. One of them depends on the lag time only, whereas the other one comes from
the choice of discretization, [Sarich, Noé, Schütte, 2010, theorem 3.1]. The discretization is
therefore of great importance, and a good choice can increase the approximation quality a
lot.

Example 4: The four state system Equation II.28 shows the MSM approximation of the
diffusion process shown in Figure II.1. We chose the four sets to be the intervals [−2,−1],
[−1, 0], [0, 1] and [1, 2]. The transition matrix P = P(τ) was estimated from a sample trajec-
tory of 20 million steps. The lag time dependent improvement of the approximation quality
can be visualized by looking at the second implied time scale t2 = −

τ
log(λ2(τ))

. The faster
the estimated time scale converges, the higher the quality of the approximation. Figure II.2
shows how the estimated time scale improves upon increasing the time lag. The four state
discretization is a very simple one. We will achieve much faster convergence towards the
correct time scale in the next chapter.

We would like to make use of two more aspects emphasized in this work. First, the con-
struction of the MSM can be seen as the projection of the transfer operator T (τ) onto a
finite subspace of the Hilbert space L

2
µ(Ω), namely the linear span of indicator functions

corresponding to the sets Ai. Second, as pointed out in chapter 3.4 of that article, it is not
necessary to restrict this projection to indicator functions, but the error estimate is still true
if T (τ) is projected onto a much more general subspace of L2

µ(Ω). This is, in a sense, the
starting point of our work. Knowing that the discretization is crucial to the approximation
quality, we will try to use the linear span of smooth functions as the subspace referred to
above, and hope that this might work equally well or even better in some cases. In order to
formulate our method, we will need a variational principle, which will be derived in the next
section.
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Figure II.2.: Improvement of estimated time scale t2 upon increasing the lag time τ , displayed
in multiples of the simulation length.

II.3. Variational principle

We start with the following definition:

Definition II.4: Let f and g be observables of the state space, i.e. functions f, g : Ω → R.
The autocorrelation function acf(f, g; τ) is defined by:

acf(f, g; τ) :=

�

Ω

�

Ω

dx dy f(x)p(x, y; τ)µ(x)g(y). (II.31)

The autocorrelation function of f and g is the expectation value of the product f(x)g(y)
with respect to the transition density µ(x)p(x, y; τ). Furthermore, we see from Equation II.31
that it also equals the Rayleigh coefficient �T (τ)f | g�µ = �f | T (τ)g�µ =: �f | T (τ) | g�,
because of

�f | T (τ) | g� = �T (τ)f | g�µ =

�

Ω

dy
1

µ(y)

��

Ω

dx p(x, y; τ)µ(x)f(x)

�
µ(y)g(y) (II.32)

=

�

Ω

�

Ω

dx dy f(x)p(x, y; τ)µ(x)g(y) = acf(f, g; τ). (II.33)
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For a symmetric operator like T (τ), the Rayleigh coefficient is also called matrix element or
simply expectation value. The next two results will reveal to us the significance of autocor-
relation functions when it comes to approximating eigenvalues and -functions, [Noé, 2011,
sec. 2.3]:

Lemma II.5: The transfer operator’s eigenfunctions ψi satisfy the relation:

acf(ψi,ψi; τ) = λi. (II.34)

Proof. All we have to do is recognize the action of T (τ) on its eigenfunctions and use the
orthogonality relation between those:

acf(ψi,ψi; τ) = �T (τ)ψi | ψi�µ = λi �ψi | ψi�µ = λi. (II.35)

Theorem II.6 (Variational principle): For any function ψ ∈ L
2
µ(Ω) which is orthogonal

to ψ1, we have:
acf(ψ,ψ; τ) ≤ λ2. (II.36)

Proof. First, expand ψ in terms of the orthonormal basis {ψi}. Note that there is no overlap
with ψ1:

acf(ψ,ψ; τ) = �T (τ)ψ | ψ�µ =

∞�

i,j=2

cicj �T (τ)ψi | ψj�µ , (II.37)

where ci = �ψ | ψi�µ. Like in the previous proof, we use the action of the transfer operator
on its eigenfunctions:

acf(ψ,ψ; τ) =

∞�

i,j=2

cicjλi �ψi | ψj�µ =

∞�

i=2

c
2
iλi. (II.38)

Finally, we recall that the eigenvalues are sorted in decreasing order, and that in an orthonor-
mal basis expansion, the squares of the coefficients sum up to unity:

acf(ψ,ψ; τ) ≤ λ2

∞�

i=2

c
2
i = λ2. (II.39)
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Remark II.7: Likewise, we can prove that for any function ψ which is orthogonal to the
first k eigenfunctions, the expression acf(ψ,ψ; τ) is bounded from above by λk+1.

Among all candidate functions, namely those which are orthogonal to the first eigenfunction
ψ1, the true second eigenfunction maximizes the Rayleigh coefficient. For some function ψ,
�T (τ)ψ | ψ�µ can be viewed as a measure of how well it approximates the second eigen-
function, and that is what we will be trying to do: Maximize the Rayleigh coefficient among
a number of ansatz functions, and compare different choices of candidate functions. Vari-
ational methods of that sort are used in a number of different fields as well, e.g. for the
approximation of electronic wavefunctions in quantum mechanics. In the next section, we
show how the Rayleigh coefficient can be maximized within the linear span of some given
test functions.

II.4. The Ritz method and the Roothan-Hall method

For all of the upcoming results, we follow [Szabo, Ostlund, 1989, ch. 1.3].

Theorem II.8 (Ritz method): Let χ1, . . . ,χm ∈ L
2
µ(Ω) be mutually orthonormal. The

Rayleigh coefficient is maximized among these function by the eigenvector b1 corresponding
to the greatest eigenvalue ξ1 of the matrix eigenvalue problem

Hb1 = ξ1b1, (II.40)

where H is the density matrix with entries

hij = acf(χi,χj; τ) =

�

Ω

�

Ω

dx dyχi(x)p(x, y; τ)µ(x)χj(y). (II.41)

More precisely, the maximal Rayleigh coefficient is found by taking the linear combination of
the functions χi with coefficients taken from b1.

Proof. Let us first, for a function ψ̂ =
�m

i=1 biχi, express the Rayleigh coefficient in terms
of the bi:

acf(ψ̂, ψ̂; τ) =

�
ψ̂ | T (τ) | ψ̂

�
=

m�

i,j=1

bibj �χi | T (τ) | χj� =

m�

i,j=1

bibjhij. (II.42)



16 II. The variational principle

Since the matrix-elements hij are fixed, acf(ψ̂, ψ̂; τ) can be seen as a differentiable function
of the coefficients bi. We now need to maximize this function with respect to a constraint,
namely, that the solution has unit norm:

1 = �ψ̂�
2
=

�
ψ̂ | ψ̂

�

µ
=

m�

i,j=1

bibj �χi | χj�µ =

m�

i=1

b
2
i , (II.43)

as the basis functions χi were assumed to be orthonormal. In summary, we need to maximize
the function

F (b1, . . . , bm) =

m�

i,j=1

bibjhij − ξ(

m�

i=1

b
2
i − 1), (II.44)

where ξ is a Lagrange multiplier, with respect to the coefficients bi. Since the H-matrix is
symmetric, this results in the equations:

0 =
∂F

∂bi
= 2

m�

j=1

hijbj − 2ξbi, i = 1, . . . ,m, (II.45)

⇒ ξbi =

m�

j=1

hijbj, i = 1, . . . ,m. (II.46)

We have thus arrived at the eigenvalue equation Hb = ξb. Since H is a symmetric matrix,
we can find m solutions bi corresponding to real eigenvalues ξi. If we now compute the
Rayleigh coefficient of the function ψ̂i =

�m
j=1 bi,jχj generated from such a solution, we

find:
�
ψ̂i | T (τ) | ψ̂i

�
=

m�

j,k=1

bi,jbi,k �χj | T (τ) | χk� =

m�

j,k=1

bi,jbi,khjk (II.47)

=

m�

j=1

ξib
2
i,j = ξi, (II.48)

where we used the eigenvalue relation
�m

k=1 bi,khjk = ξibi,j. Thus, the solution corresponding
to the largest eigenvalue ξ1 maximizes the Rayleigh coefficient among the basis functions χi,
as we claimed.

Lemma II.9: The second largest eigenvalue ξ2 of Equation II.40 satisfies ξ2 ≤ λ2.

Proof. Let ψ̂1 and ψ̂2 be the functions generated from the eigenvectors b1, b2 and their
eigenvalues ξ1, ξ2, respectively. Consider a linear combination ψ̂ := xψ̂1+ yψ̂2, for x, y ∈ R.
If ψ̂ is normalized, we find, by orthonormality:

1 =

�
ψ̂ | ψ̂

�

µ
= x

2
�
ψ̂1 | ψ̂1

�

µ
+ y

2
�
ψ̂2 | ψ̂2

�

µ
+ 2xy

�
ψ̂1 | ψ̂2

�

µ
= x

2
+ y

2
. (II.49)
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Moreover, as ψ̂1 and ψ̂2 diagonalize the H-matrix:

�
ψ̂1 | T (τ) | ψ̂2

�
=

m�

i,j=1

b1,ib2,j �χi | T (τ) | χj� =

m�

i,j=1

b1,ib2,jhij (II.50)

=

m�

i=1

ξ2b1,ib2,i = 0. (II.51)

Therefore, computing the Rayleigh coefficient for ψ̂ yields:
�
ψ̂ | T (τ) | ψ̂

�
= x

2
�
ψ̂1 | T (τ) | ψ̂1

�
+ y

2
�
ψ̂2 | T (τ) | ψ̂2

�
+ 2xy

�
ψ̂1 | T (τ) | ψ̂2

�

(II.52)

= x
2
ξ1 + y

2
ξ2 = (1− y

2
)ξ1 + y

2
ξ2 = ξ1 − y

2
(ξ1 − ξ2). (II.53)

Depending on the choice of y, this value is between ξ2 and ξ1. If we now had λ2 < ξ2, the
Rayleigh coefficient of ψ̂ would always be greater than λ2. But this means that no normalized
linear combination of ψ̂1 and ψ̂2 could be orthogonal to ψ1, as, by Theorem II.6, we would
then find the Rayleigh coefficient to be bounded by λ2. But this is impossible, one can always
find a linear combination of two given vectors which is orthogonal to a given third vector.

Clearly, this Lemma generalizes to the third, fourth, ... eigenvalue.

Once we are starting out with a basis set {χi}, the linear combination stemming from the
eigenvector b1 is an approximation of the first eigenfunction ψ1 = 1, and the eigenvalue ξ1

should be close to λ1 = 1. Moreover, because of the last result, we can use the function
built from b2 as an approximation of ψ2, and ξ2 becomes an estimate of the real eigenvalue
λ2. This procedure can be repeated for the following eigenvectors. From this, we learn that
maximization of the Rayleigh coefficient really means to maximize the approximation quality,
because if ξ2 is an estimate of λ2, then −

τ
log ξ2

is also an estimate of the implicit time scale t2.
We know that the larger the estimated time scale and the faster it converges upon increasing
τ , the better the approximation. In this sense, the estimated eigenvalues ξ2, ξ3, . . . really
measure how good the approximation from this basis set works.
The advantage of the preceding results is that the entries of the density matrix can be
estimated from finite sampling trajectories. Since these are the Rayleigh coefficients of the
basis functions, and since Rayleigh coefficients are expectation values with respect to the
transition density µ(x)p(x, y; τ), they can be estimated from a trajectory X1, . . . , XN by

acf(χi,χj; τ) ∼
1

N − τ

N−τ�

i=1

χi(Xi)χj(Xi+τ ). (II.54)

Here, τ has to be chosen as an integer, and as a lag time thus becomes an integer multiple
of the simulation window ∆t.
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The only problem left is the requirement that the basis functions were so far assumed to
orthonormal. However, this can easily be circumvented. Again, let χ1, . . . ,χm ∈ L

2
µ(Ω) be

normalized basis functions as before, except that they are no longer assumed to be orthogonal.
We can still derive a similar result:

Theorem II.10 (Roothan-Hall method): For basis functions as above, the linear combi-
nation that maximizes the Rayleigh coefficient is given by the solution b1 corresponding to
the greatest eigenvalue ξ1 of the generalized eigenvalue problem

Hb1 = ξ1 Sb1, (II.55)

where H is as in Theorem II.8 and S is the overlap matrix with entries

sij = �χi | χj�µ . (II.56)

Proof. Starting out the same way as in Theorem II.8, we first have to reformulate the
normalization constraint. Equation II.43 then becomes:

1 = �ψ̂�
2
=

m�

i,j=1

bibj �χi | χj�µ =

m�

i,j=1

bibjsij. (II.57)

This results in an effective functional of the form:

F (b1, . . . , bm) =

m�

i,j=1

bibjhij − ξ(

m�

i,j=1

bibjsij − 1). (II.58)

Maximization requires the solution of:

0 = 2

m�

j=1

bjhij − 2ξ

m�

j=1

bjsij. (II.59)

⇒ ξ

m�

j=1

bjsij =

m�

j=1

bjhij, (II.60)

for every i ∈ {1, . . . ,m}. This is the generalized eigenvalue equation stated above. Since H is
symmetric and S is positive definite, this problem hasm real eigenvalues ξi and corresponding
eigenvectors bi which are orthonormal with respect to the S-weighted scalar product, i.e. we
have bT

i Sbj = δij. Therefore, similar to Equation II.47 - Equation II.48, we find for the
corresponding functions ψ̂i :=

�m
j=1 bi,jχj:

�
ψ̂i | T (τ) | ψ̂i

�
=

m�

j,k=1

bi,jbi,k �χj | T (τ) | χk� =

m�

j,k=1

bi,jbi,khjk (II.61)

= ξi

m�

j,k=1

bi,jbi,ksj,k = ξib
T
i Sbi = ξi. (II.62)
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So again, by taking the solution b1 with maximal eigenvalue ξ1, we have found the linear
combination that maximizes the Rayleigh coefficient.

Clearly, the Ritz method is just a special case of the Roothan-Hall method, where S is given
by the m × m-identity matrix. With the Roothan-Hall method, we can use any basis set,
orthonormal or not. Like the density matrix H, the overlap matrix S can also be estimated
from finite sampling. Since we are mostly interested in the propagator eigenfunctions, we
will weight the solution with the stationary distribution afterwards. In most cases, we will
have to estimate µ from a sample trajectory as well. Our method consequently consists of
the following steps:

(a) Compute a sufficiently long or sufficiently many short sampling trajectories of the
process and check convergence.

(b) Estimate the stationary distribution from the sample.

(c) Estimate the H- and S-matrix from the sample.

(d) Solve the generalized eigenvalue problem from Theorem II.10.

(e) Weight the solution with the estimated stationary density.

Lastly, we see that the Markov state model approximation is also obtained from using the
Ritz method with indicator functions. So, like in section II.2, choose a partition of the
state space into s mutually disjoint sets A1, . . . , As, and let the candidate basis functions
χ1, . . . ,χs be given by the indicator functions of these sets, normalized by a pre-factor 1√

πi
,

with πi =
�
Ai

dxµ(x). Computing the density matrix H yields:

hij =
1

√
πiπj

�

Ai

dx

�

Aj

dy µ(x)p(x, y; τ) (II.63)

=

√
πi

√
πj

P(Xτ ∈ Aj, X0 ∈ Ai)

P(X0 ∈ Ai)
=

√
πi

√
πj

pij(τ). (II.64)

The density matrix is the same as the MSM transfer matrix up to a similarity transformation
with transformation matrix Π

1
2 , which is the diagonal matrix with the square roots of the

local stationary probabilities as diagonal entries. The Ritz method therefore generates the
right-hand eigenvalues of the MSM transfer matrix and is equivalent to the construction of
a Markov state model.





III. Diffusion processes and

application in one dimension

We are now prepared to apply the variational methods we have just derived to a number of
example systems. Our guiding example will be a diffusion process. This is a system where a
number of classical particles move under the influence of a deterministic force field, generated
by some potential energy function. If there was no further influence, this system could be
modelled by classical equations of motion. However, the particles are also subject to random
fluctuations, which interfere with the deterministic motion. The fundamental concepts of
such a system will be introduced below. As a result, the system trajectory can no longer
be uniquely predicted. Instead, we have a stochastic process to which our theoretical results
can be applied.

III.1. Brownian motion and stochastic differential

equations

The fundamental model for the description of random fluctuations is Brownian motion or
theWiener process. In 1826-27, R. Brown studied the irregular behaviour of pollen grains in
water. He and many others observed that the pathways taken by such a particle were highly
irregular. Moreover, whereas the average distance from the starting point seemed to vanish,
the mean fluctuation from the average seemed to be growing linearly. These observations
motivated the following mathematical model, [Evans, ch. 3].

Definition III.1: A one-dimensional stochastic process Wt on a probability space Ω, defined
for t ≥ 0, is called a Brownian motion or a Wiener process if it satisfies:

(a) W0 = 0 a.e.
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(b) For any times t1, . . . , tk, the increments Wtk −Wtk−1
, . . . ,Wt2 −Wt1 are independent

random variables.

(c) The increments Wt−Ws are normally distributed according to Wt−Ws ∼ N (0, t−s),
∀t > s ≥ 0.

An Rn-valued stochastic process where each component is a one-dimensional Wiener process
is called n-dimensional Wiener process. In the 1920s, N. Wiener constructed a Brownian
motion and thereby mathematically proved the existence of such a process. In fact, there is
a number of different ways how this can be achieved, but the explicit realization is of little
importance. All we need to know are the three conditions from the above definition and
the most important properties. It can be shown that a Brownian motion defines a Markov
process, that the sample paths, i.e. the functions t �→ Wt, are continuous, but almost every-
where in Ω nowhere differentiable with respect to time, see Figure III.1 and [Behrends, 2011,
ch. 5.2]. This model has turned out to be a very suitable for many different phenomena,
reaching way beyond the simulation of particles in a fluid. For instance, Brownian motion
has frequently been used to model financial markets.
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Figure III.1.: A sample path of the Wiener process. Clearly, the path is continuous but not
differentiable as a function of time.

Despite the irregularity of its sample paths, Brownian motion can be used to model phenom-
ena involving differential calculus. Suppose that the change of a quantity X(t) over a short
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time ∆t is given by
∆X(t) = ∆tF (X(t), t) + σWt, (III.1)

meaning that the change is composed of a deterministic function F depending on the quantity
X(t) and the time plus a random fluctuation, modelled by Brownian motion. Here, σ > 0

is simply a control parameter governing the strength of the perturbation. Upon dividing by
∆t and passing to the limit ∆t → 0, one is tempted to write down a differential equation

dX(t)

dt
= F (X(t), t) + σdWt, (III.2)

where we would like to have dWt denote the time derivative of Brownian motion. We have
just seen that such a derivative does not exist. However, Equation III.2 does make sense if
it is transformed into an integral form. This involves the definition of a stochastic integral
and the Ito formula, [Behrends, 2011, ch. 6, 7]. In particular, Brownian motion itself can be
shown to solve Equation III.2 in this sense, if F = 0.

III.2. Diffusion process

Consider a classical particle of mass m moving under the influence of friction γ > 0 and of
a force field F, generated by a potential energy function V , i.e. F = −∇V . By Newton’s
equation, the position vector x(t) ∈ R3 satisfies the relation

m
d
2x(t)

dt2
= −mγ

dx(t)

dt
−∇V (x(t)). (III.3)

Let us now suppose that there are random perturbations, caused, for instance, by collisions
with small particles, which continuously alter the particle’s motion. We therefore make
Equation III.3 a stochastic differential equation by adding σdWt,

m
d
2x(t)

dt2
= −mγ

dx(t)

dt
−∇V (x(t)) + σdWt, (III.4)

keeping in mind that it is meant to be solved in an integral sense. It is known that
σ =

√
2mγkBT , where kB = 1.3806488J/K is Boltzmann’s constant and T is the sys-

tem temperature. This equation is typically called the Langevin equation of our system,
the solution x(t) =: Xt is a Markov process, called a diffusion process. Equation III.4 holds
in the same way if we study a system of n particles, in this case, Xt is a stochastic process in
3n dimensions. If the friction parameter γ is large enough, it is justified to drop the second
derivative on the left-hand side of Equation III.4, [Zwanzig, 2001, sec. 2.2]. Rearranging the
terms modifies the equation to

dx(t)

dt
= −

1

mγ
∇V (x(t)) +

√
2DdWt, (III.5)
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where we have defined D :=
kBT
mγ This equation is the Langevin equation in the high fric-

tion limit, the underlying dynamics is called Smoluchowski dynamics or also Brownian

dynamics. It will be the interest of our studies in what follows.
The Langevin equation itself can hardly be solved, except in a few rare cases. However, it
is helpful to restrict oneself to the study of probability densities. Instead of trying to find
an expression for the stochastic process Xt itself, we are only interested in computing the
average probability ρ(x, t) to find the particle in a position x at time t. This probability
density also satisfies a differential equation, called the Smoluchowski equation:

Theorem III.2 (Smoluchowski equation): The probability ρ(x, t) to find a system obey-
ing the Langevin Equation III.5 at position x at time t satisfies the differential equation:

∂ρ(x, t)

∂t
=

1

mγ
∇ · (∇V (x)ρ) +D∆ρ(x, t). (III.6)

Here, ∇ · denotes the divergence of a vector field and ∆ the Laplace operator of a scalar
field.

Proof. A derivation can be found in [Zwanzig, 2001, ch 2.2].

Equation III.6 is a special case of a Fokker-Planck equation. This result enables us to find
the stationary density for the diffusion process:

Theorem III.3: The stationary solution of the Smoluchowski Equation III.6 is the Boltz-

mann distribution

µ(x) =
1

Z
exp (−βV (x))) , (III.7)

where β :=
1

kBT is the inverse Boltzmann temperature and Z :=
�
Ω dx exp(−βV (x)) is a

normalization constant, called the partition function.

Proof. If ∂ρ
∂t = 0 holds, we have to check that

−
1

mγ
∇ · (∇V (x)µ(x)) = D∆µ(x). (III.8)
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We find:

D∆µ(x) =
kBT

mγZ

�

i

∂

∂xi

�
−β

∂V (x)

∂xi
exp (−βV (x))

�
(III.9)

=
kBT

mγZ

�
−β∆V (x) exp (−βV (x)) +

�

i

β
2

�
∂V (x)

∂xi

�2

exp (−βV (x))

�

(III.10)

= −
1

mγ
[∆V (x)µ(x) +∇V (x) ·∇µ(x)] (III.11)

= −
1

mγ
∇ · (∇V (x)µ(x)) . (III.12)

We note that µ has to be well-defined for this result to make sense, i.e. the integral defining
Z has to exist. This mainly requires that V (x) → ∞ fast enough as |x| → ∞. If the
state space is dynamically connected, which we will always assume, this can also be shown
to be sufficient for the process to be ergodic and meet the requirements from chapter II,
[Sarich, Noé, Schütte, 2010, ch. 2.2]. Therefore, we have just shown that µ is the stationary
distribution of the diffusion process, and we can now apply the foregoing theory.

III.3. Numerical considerations

Knowing the invariant distribution of a diffusion process helps us a lot, because our compu-
tational result for the first eigenfunction can be compared to the function exp(−β∇V (x)),
and should be almost equal to it up to a pre-factor. However, little more can be computed
in advance, except for a few simple systems. In particular, the transition kernel p(x, y; τ) is
unknown to us. But in order to apply the variational methods, we need to perform a numer-
ical simulation of the process, which means that if the current simulation step is x ∈ Ω, we
need to draw the next step with time lag ∆t from the distribution p(x, · ;∆t). We therefore
approximate this distribution by a very common procedure, the so-called Euler-Maruyama
method. It consists of combining a deterministic explicit Euler step with a normally dis-
tributed random step. If the current simulation position is x, the deterministic Euler step
is

x �→ x−∆t∇V (x). (III.13)

This approximates the position that the process would attain if it was unperturbed. But
since it is subject to normally distributed noise which, after time ∆t, has variance 2D∆t,
we add a normally distributed random number with standard deviation

√
2D∆t. Altogether,
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the simulation step becomes

x �→ x−∆t∇V (x) +
√
2D∆tη, (III.14)

where η ∼ N (0, 1). Clearly, this is just an approximation of the true dynamics, but a good
one as long as ∆t is chosen small enough. However, having in mind the difficulties arising
from the use of the explicit Euler method to unperturbed dynamical systems, it can also lead
to serious trouble, a problem we will encounter in the next chapter.
We are left with the question of how to choose an appropriate basis set. In the previous
chapter, we have seen that the eigenfunctions φi of the propagator and the eigenfunctions
ψi of the transfer operator differ only by a factor of the stationary density. An approximation
scheme using the Roothan-Hall method results in an estimate of the functions ψi. But since
it is our goal to determine the propagator eigenfunctions φi, we can either start with a set
of functions suitable to approximate the functions ψi, and weight the result with a factor
µ afterwards, or we can go the other way round. That means to start with a number of
functions suitable to estimate the φi-functions and divide them by µ prior to the computation.
After the computation, we simply take the resulting linear combination of our original basis
functions to estimate the functions φi. There is also a third way: If f ∈ L

2
(Ω) is an element

of the unweighted L
2-space, then f√

µ is in L
2
µ(Ω) on the one hand, and

√
µf is in L

2
µ−1(Ω)

on the other hand. These functions are somehow “in between“ the two domains, and they
can also be used with the Roothan-Hall method. To this end, they have to be divided by
the square root of µ before the computation, and the resulting linear combination has to be
re-weighted by

√
µ afterwards.

Our approach to all of the following problems will be to make use of the shape of the energy
function. The function V will always display a number of minima, which correspond to
metastable regions of the state space. We will try to use local functions, like Gaussian hats,
which are essentially non-zero only in a neighbourhood of the metastable regions. Since
functions in L

2
µ−1(Ω) and L

2
(Ω) at least have to decay to zero if |x| becomes large, whereas

functions in L
2
µ(Ω) can be constant or even unbounded, we will prefer one of the latter

two ways. Additionally, using unbounded functions can lead to instabilities if rare states
outside the metastable regions are visited by a sampling trajectory, because these functions
can become very large for such states. In the experiments, both of the two preferred ways
seemed to perform well. All of the computations shown below were ran using Gaussian
functions weighted with the square root of the stationary density.

III.4. Diffusion in a quadratic potential

A simple but important example is diffusion in a quadratic potential V (x) =
1
2bx

2, for

x ∈ R and b > 0. Inserting this into Equation III.7 shows that µ(x) =
1√
2πα

exp

�
−

x2

2α

�
,

the stationary distribution becomes a Gaussian distribution with zero mean and variance
α =

kBT
b . The potential and its invariant measure are depicted in Figure III.2. It turns out
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Figure III.2.: Quadratic potential V (x) = 0.5x
2 and its invariant distribution.

that this is one of the rare cases where all important quantities can be determined analytically.
Using stochastic integrals and Ito’s formula, we derive an explicit expression for this process in
Lemma A.1. Using this expression, we then show that if the process starts with a distribution
ρ0, the expectation value at time t is given by E [ρt] = e

−θtE [ρ0], where we have defined
θ :=

b
mγ . Moreover, the variance evolves according to ω

2
[ρt] = e

−2θt
ω
2
[ρ0] + (1− e

−2θt
)α.

Regardless of the initial distribution, the process quickly approaches the stationary Gaussian
distribution. Even the complete set of eigenfunctions can be found analytically:

Lemma III.4: The propagator eigenfunctions are given by the appropriately scaled Hermite
polynomials, multiplied with the invariant measure:

φi(x) =

�
αi−1

(i− 1)!
Hi−1

�
x
√
α

�
µ(x). (III.15)

The corresponding eigenvalues are λi(τ) = e
−θ(i−1)τ .

Proof. We also show the proof of this Lemma in the appendix.

Since there is only one potential minimum, there are no metastable states. Unless b is very
small or mass and friction are very large, the global relaxation time −

τ
log λ2(τ)

=
τ
θτ =

mγ
b is

short, the process quickly equilibrates to its invariant distribution.
Since all these analytic quantities are at hand, we can compare them to the results obtained
from the Roothan-Hall method. As shown in Figure III.3, a relatively small numerical effort
leads to a good approximation of the eigenfunctions as well as the corresponding eigenvalues
and implied time scales. Though this example may be a simple one, it is still important. In
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Figure III.3.: Results obtained from applying the Roothan-Hall method to diffusion in a har-
monic potential. A simulation of 20 million time steps of length ∆t = 10

−3

was used with thirteen Gaussian test functions centred at −3, −2, −1, −0.8,
−0.4, −0.2, 0, 0.2, 0.4, 0.8, 1, 2, 3. The variances were set to 0.5 for all
centres between −0.8 and 0.8, and to 1 for the remaining functions. (a) First
eigenfunction φ1. (b) Second eigenfunction φ2. (c) Second eigenvalue λ2. (d)
Estimated second implied time scale t2. Exact value is t2 = 1.
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molecular simulations, a harmonic potential is often used to model bonds between atoms,
as well as bond angles. The harmonic potential will therefore frequently show up in applica-
tions.

III.5. Two-well potential

Another important example is a two-well potential. In general, this is some potential function
displaying two minimum positions which are separated by a significant energy barrier, and
which rises to infinity both to the left and to the right of the minima. For our calculations,
we choose V (x) = k(x

4 − 2x
2
+ 1) for some k > 0, which has two minima at x = −1

and x = 1. The energy function and the invariant distribution are displayed in Figure III.4a
and Figure III.4b. The two-well potential is a good model for certain molecular interactions
where a certain degree of freedom favours two characteristic positions. The regions around
the potential minima correspond to metastable states, we therefore expect one dominant
slow process apart from the stationary process. We apply the Roothan-Hall method using
thirteen Gaussian functions centred around the two minima, with uniform variance equal
to 0.5. In order to evaluate the results, we also computed the eigenvalues of an MSM
transition matrix. Here, we used a fine discretization of the state space into 100 sets, most
of them situated close to the potential minima. A comparison of the results can be seen
in Figure III.4. Most importantly, we see that the implied time scales are estimated very
well. Both methods converge quickly to about the same value. The stationary distribution
is very well approximated, and we obtain a convincing result for the second eigenfunction,
clearly displaying a characteristic sign change between the two metastable regions. The
computational effort required by the Roothan-Hall method is much smaller, since we only
need to compute an eleven by eleven matrix instead of a 100× 100 matrix.
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Figure III.4.: Application of the Roothan-Hall method to the one-dimensional two-well poten-
tial. A simulation of 20 million time steps with ∆t = 10

−3 was used with thir-
teen Gaussian hats centred at −2, −1.5, −1.2, −1, −0.8, −0.5, 0, 0.5, 0.8, 1,
1.2, 1.5, 2. The variances were set to 1 for the centres at x = −2,−1.5, 0, 1.5, 2

and to 0.5 for all others. We compare the results with a 100 set MSM discretiza-
tion. (a) Potential function V (x). (b) First eigenfunction φ1. (c) Second
eigenvalue λ2. (d) Second implied time scale t2. (e) Second eigenfunction φ2.



IV. Application to molecules

In this chapter, we are going to apply the variational method to diffusion processes in a
higher dimensional state space. For systems with many degrees of freedom, the potential
energy function often possesses multiple minima, and contains at times highly complicated
interactions between several of the coordinates. Evaluation of the partition function becomes
very difficult, and requires specialized algorithms like Markov chain Monte Carlo methods.
Computing eigenvalues and characteristic time scales can be done using Markov state models,
but the choice of adequate sets requires suitable clustering methods. This also leads to a
huge computational effort if the state space is very high-dimensional. We have the hope that
the use of variational methods can help to reduce this effort.

IV.1. The example system

Let us consider a system which is like a very much simplified small molecule. Let it consist
of N atoms, with N being small, either equal to 4 or to 5 in what follows. Denote their
position vectors by ri ∈ R3, i ∈ {1, . . . , N}. Neighbouring atoms are connected by a bond.
Denote the distance vectors between those atoms by rij := rj − ri and the distances by
rij := �rij�. For three neighbouring atoms, we define the bond angle θijk by

θijk := cos
−1

�
−
�rij | rjk�

rijrjk

�
, (IV.1)

which is the angle between rij and rjk. Additionally, for four atoms, we can define the
dihedral angle ψijkl as the angle between the plane spanned by rij, rjk and the one spanned
by rjk, rkl. Using the normal vectors nijk and njkl, given by

nijk := rij × rjk, (IV.2)

which are perpendicular to the respective planes, we find that the dihedral is the angle
between the two normal vectors:

ψijkl = cos
−1

�
�nijk | njkl�

�nijk��njkl�

�
. (IV.3)
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-168.93
1.49   ‘

Figure IV.1.: Schematic drawing of the four atom system, corresponding either to system A
or B. It shows the dihedral angle in blue. Created with [VMD, 1996].

A sketch of such a system is shown in Figure IV.1.

Let us now define a potential function V , which generates a force field acting on the molecule.
A bond between two atoms is typically modelled like a spring. Therefore, we define harmonic
potentials Vij, depending on the distance rij, for each pair of connected atoms:

Vij :=
1

2
kij (dij − rij)

2
. (IV.4)

Here, kij is a constant defining the strength of the potential and dij is the distance of minimal
energy. The system will drive the bond lengths towards the minimum distances dij. Similarly,
we set up harmonic potentials Vijk for each bond angle:

Vijk :=
1

2
kijk (dijk − θijk)

2
. (IV.5)

The dihedral angles usually have a number of favoured positions. In order to model this, we
define the dihedral potential as

Vijkl := kijkl (1− cos(nψijkl)) , (IV.6)

for ψijkl ∈ [−π, π). The position ψijkl = π is identical to ψijkl = −π, consequently, it is
enough to have Vijkl defined on the above interval. This potential has n minimum positions,
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Figure IV.2.: The potential energy function V (ψijkl) = kijkl(1−cos(nψijkl)) for the dihedral
angle, with kijkl = 1 and n = 2, n = 4, respectively.

as displayed in Figure IV.2. If n = 2, these two minima are situated at ψijkl = 0;−π. Lastly,
we would also like to include Coulomb potentials VC defined by:

VC(rij) =
1

4π�0

e1e2

rij
, (IV.7)

which describe the electrostatic repulsion or attraction between two atoms. Here, �0 is the
electric constant, and e1, e2 are the charges of the two atoms. In our simulation, the charges
will be equal to one elementary charge e = 1.602 · 10−19

C in absolute value, but can have
opposite signs. The total potential energy function V is then the sum of all individual
energies.
For our computations, we will consider three small systems, which we call system A, system
B and system C. The first is a four atom system which only includes the three harmonic bond
interactions, two bond angle interactions, and a dihedral potential with n = 2. The second
one also consists of four atoms, but we set n = 4 for the dihedral and add an attractive
Coulomb interaction between atoms one and four. In the last case, we have N = 5, four
bonds, three bond angles and two dihedrals, one with n = 4 and the other with n = 2.

If we now add random perturbations and Smoluchowski dynamics, we obtain a diffusion
process with invariant distribution

µ(x) =
1

Z
exp(−βV (x)), (IV.8)

where Z is the partition function, as before, and x ∈ R3N is the full position vector containing
all coordinates of the atoms.
It is important to point out once more that the stationary distribution and all the other
eigenfunctions are defined on the 3N -dimensional Euclidean space. As such, they probably
take a highly complicated shape. At least for our examples however, the state of the system
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Figure IV.3.: Statistical distribution of the two bond angles of a four atom system with
Coulomb 1-4 attraction. The position of minimum energy is θ = 1.9373 =

111.00 deg. We see that the interaction causes a slight shift of both distribu-
tions, but because of the strong bonds, the Gaussian type distribution is well
conserved. Clearly, the changes of the distributions caused by the interactions
can be much more drastic, but still we hope that they will not altogether destroy
the original shape.

as well as its potential energy is completely determined by the bond lengths, the bond angles
and the dihedral angles. These coordinates are called the internal coordinates. Projected
onto these internal coordinates, the eigenfunctions will probably have a much simpler form.
Clearly, these projections will in general not be equal to the eigenfunctions we would find
if a one-dimensional particle was propagated under the influence of the energy depending
on that coordinate only, since the internal coordinates are not independent of each other
(see Figure IV.3). But still, we have the hope that the projections somehow resemble these
functions. This is the central idea of the following calculations: If the internal coordinates are
not too heavily dependent on one another, we can try to apply the variational method with
local functions, dependent on just one internal coordinate, and placed near the minimum
positions of the individual potential energies. Choosing these functions does not require the
use of clustering techniques, but can be based on knowledge of the molecular energy function,
which is known as an expression of the internal coordinates. Since the number of internal
coordinates grows at most like O(N

2
), the same would be true for the number of basis

functions needed. As before, we will stick to Gaussian functions in the square root weighted
space throughout the following examples, and we will only use functions which depend on
one of the dihedral coordinates.
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Quantity Symbol Unit Value

Boltzmann constant kB kJ/mol ·K 8.3144621 · 10−3

Avogadro constant NA mol
−1

6.02214129 · 1023

Electric constant �0 Fm
−1

8.854187817 · 10−12

Elementary charge e C 1.602176565 · 10−19

Atomic mass unit u kg 1.660538912 · 10−27

Mass of one carbon atom m kg 12.001u

Reference distance between atoms db nm 0.153

Reference bond angle da deg 111.00

Temperature T K 400 (A,B) or 600 (C)
Friction γ ps

−1
200

Bond force constant kb kJ/mol · nm2
2× 10

5

Angle force constant ka kJ/mol · rad
2

2× 10
3

Dihedral force constant kd kJ/mol 5.92

Table IV.1.: Overview of constants and parameters used in the simulation.

IV.2. Simulation

In order to produce simulation trajectories of the above system, we implement a small Matlab-
based molecular dynamics program. It allows us to define all necessary parameters, such as
temperature, friction, mass of the atoms, potentials to be used, simulation time step and
number of time steps. After initializing all these, it propagates the system in its Euclidean
coordinates, that is, for each time step, it computes the gradient of the potential in Euclidean
coordinates and adds a random perturbation. After each step, it computes the internal
coordinates and saves them to a binary file. Optionally, one can also store the Euclidean
coordinates as a binary file or as an .xyz-file to be used with an MD-viewer.

As for the settings, we try to make a realistic simulation and use physical units, in particular
nm for distances, ps for time and kJ/mol for energies. We also try to use realistic values for
the reference distances and angles, as well as for the force constants. However, we also wish
for a certain type of behaviour to show up. First, we choose the bonds and the angles to be
very strong, meaning that they should be distributed closely around the reference positions,
which requires kij and kijk to be chosen sufficiently large for all bonds and all bond angles.
We encounter a number of difficulties here. If kij is large, the Euler discretization can
quickly lead to a blow-up. Consequently, we either have to make the simulation time step
very small or friction large enough. Additionally, we want the dihedral angles to display a
metastable behaviour, like the type of behaviour we have studied in the previous examples.
This requirement limits the temperature, because a high temperature will flatten the energy
landscape, and also keeps friction from being chosen too large, since this would lead to very
long waiting times until a transition occurs. Furthermore, it keeps the time step from being
made too small, since this would make simulations covering sufficiently many transitions very
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expensive. It turns out to be quite difficult to find settings matching these requirements. In
particular, we have to turn away from values used in real world examples a number of times.
A complete list of the parameters we used is shown in Table IV.1.

IV.3. Application of the Roothan-Hall method

With a sufficiently long simulation trajectory at hand, we can turn to the approximation of
eigenvalues and time scales. For system A, we expect one dominant slow process to show up.
We start with a small basis set, consisting of no more than two Gaussian functions centred
at the two minimum positions, in order to get a rough approximation of the eigenvalues.
Furthermore, we apply the method to a large basis set of twenty-seven functions, most of
them centred closely around the two minima, with variance equal to 0.1. Details about the
basis sets used in this chapter are given in Table IV.2. As a reference, we also compute
the eigenvalues and -vectors of two Markov state model discretizations. One of them just
splits up the state space into two sets along the dihedral coordinate. The other one is a fine
discretization involving 100 sets along the same coordinate. Results showing the estimated
implicit time scales, the dominant eigenvalues, as well as the first two eigenfunctions, are
depicted in Figure IV.4. We see that in both cases, the slow process can be resolved, and the
implicit time scales converge as the lag time τ increases. As expected, the fine discretizations
converge much faster than the coarse ones. Most importantly, we see that the large basis
set Roothan-Hall approximation is as good as the fine MSM for most lag times. Also, both
methods yield a very good approximation of the stationary density, compared to the statisti-
cal estimate obtained from sampling, and a convincing estimate of the second eigenfunction,
displaying the characteristic sign change between the minima. This is a good result, it shows
us that the variational method yields an approximation which is comparable to a fine MSM.
We also learn from our attempts that the choice of basis functions is very influential to the
approximation quality. If the functions are too strongly peaked, they are not sufficiently cor-
related and the eigenvalues go down. However, if they are too widely spread, they correlate
too much and the H-matrix is just poorly estimated. As a consequence, the computation
returns eigenvalues which are greater than one or have non-zero imaginary parts. But as we
said in the beginning of the chapter, the shape of the energy function can be used to choose
the right functions and move in the right direction.

For system B, the process will now display four metastable regions, but they will be populated
with different frequencies. Whereas the minimum which is closest to atom number one will
be visited much more often because of the electrostatic attraction, the others will be less
populated. We therefore expect a number of dominant slow processes to appear, describing
the transitions between different minima. Again, we apply the Roothan-Hall method with
two different basis sets, a small one consisting of four functions, and a large one consisting
of 35 functions, which are distributed closely around the four minima. We find that three
dominant slow processes are present, and compare the estimates for implicit time scales and
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eigenvalues with a four set and a 100 set MSM discretization. The results are shown in
Figure IV.5 and Figure IV.6. They are similar to the previous example, both eigenvalues and
time scales as well as the eigenfunctions are approximated comparably well by both the large
set Roothan-Hall method and the fine MSM.

These examples had in common that the metastable behaviour was only dependent on one
single coordinate. As a last step, we take a look at system C, where more than one coor-
dinate is relevant for the description of slow processes. For the Roothan-Hall method, we
combine the two basis sets used in the previous examples, that means we have 35 basis
functions which depend on the first dihedral coordinate and 27 which cover the second. We
compare the results to those stemming from a Markov state model discretization, which
uses all possible combinations of 15 sets along each coordinate, i.e. 225 sets altogether.
The second, third and fourth eigenvalue and time scale, estimated with both methods, are
shown in Figure IV.7. We see that the time scales estimated with the Roothan-Hall method
converge earlier. This is a good sign, because we are able to estimate the eigenvalues and
time scales of the larger system by simply adding up the basis functions used for the smaller
system, without having to use all possible combinations of these functions.
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System Potentials Basis set

A Three bonds, two bond angles, one
dihedral with two minima.

Small basis: Two Gaussians, cen-
tred at −π

2 ,
π
2 , both with variance

0.3. To simplify the computation,
we shifted the minima to those two
positions.
Large basis: 27 Gaussians, centred
at −3.1, −3.0, −2.8, −2.6, −2.4,
−2.2, −2.0, −1.5, −1.0, −0.8,
−0.6, −0.4, −0.2, 0, 0.2, 0.4, 0.6,
0.8, 1.0, 1.5, 2.0, 2.2, 2.4, 2.6, 2.8,
3.0, 3.1. All of them with variance
0.1.

B Three bonds, two bond angles, one
dihedral with four minima, elec-
trostatic attraction between atoms
one and four.

Small basis: Four Gaussians, cen-
tred at −3π

4 , −
π
4 ,

π
4 ,

3π
4 , all of them

with variance 0.1. To simplify the
computation, we shifted the min-
ima to those four positions.
Large basis: 35 Gaussians centred
at −3.0, −2.9, −2.8, −2.6, −2.2,
−2.0, −1.8, −1.7, −1.6, −1.5,
−1.4, −1.2, −1.0, −0.8, −0.4,
−0.2, −0.1, 0, 0.1, 0.2, 0.4, 0.8,
1.0, 1.2, 1.4, 1.5, 1.6, 1.7, 1.8, 2.0,
2.2, 2.6, 2.8, 2.9, 3.0. All of them
with variance 0.1.

C Four bonds, three bond angles, two
dihedrals with n = 4 for the first
one and n = 2 for the second one.

The large set from B for the first
dihedral and the large set from A
for the second.

Table IV.2.: Description of the example systems and the basis sets used for them.
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Figure IV.4.: Approximation results for system A. We used every third step of a 30 million
trajectory corresponding to a sampling time step ∆t = 10

−3
ps. We compare

the results obtained with the small and the large basis set with a 2 set and
a 100 set MSM. The functions displayed were computed from the large basis
sets. (a) Potential energy for the dihedral coordinate. (b) Projection of first
eigenfunction φ1, compared to direct estimate from the sample. (c) Second
eigenvalue λ2. (d) Second implied time scale t2. (e) Projection of second
eigenfunction φ2.
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Figure IV.5.: Approximation results for system B. Every fifth step of a 30 million trajectory
corresponding to a sampling time step ∆t = 10

−3
ps was used. We compare

the results obtained with the small and the large basis set to a 4 set and a
100 set MSM discretization. The functions displayed were computed using the
large basis sets. (a) Potential energy for the dihedral angle. (b) Projection
of first eigenfunction φ1, compared with direct estimate from sampling. (c)
Second eigenvalue λ2. (d) Second implied time scale t2. (e) Projection of
second eigenfunction φ2.
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Figure IV.6.: Continuation of Figure IV.5. (a) Third eigenvalue λ3. (b) Third implied time
scale t3. (c) Projection of third eigenfunction φ3. (d) Fourth eigenvalue λ4.
(e) Fourth implied time scale t4. (f) Projection of fourth eigenfunction φ4.



42 IV. Application to molecules

0 20 40 60 80 100
0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Time lag τ

S
e
co

n
d

 e
ig

e
n
va

lu
e
 λ

2

 

 

Estimated λ2, Roothan−Hall

Estimated λ2, MSM

(a)

0 20 40 60 80 100
0

2

4

6

8

10

12

14

Time lag τ

Im
p
lie

d
 t

im
e
 s

ca
le

 t
2

 

 

Estimated t2, Roothan−Hall
Estimated t2, MSM

(b)

0 20 40 60 80 100
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Time lag τ

T
h

ir
d

 e
ig

e
n

va
lu

e
 λ

3

 

 

Estimated λ3, Roothan−Hall

Estimated λ3, MSM

(c)

0 20 40 60 80 100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Time lag τ

Im
p
lie

d
 t
im

e
 s

ca
le

 t
3

 

 

Estimated t3, Roothan−Hall
Estimated t3, MSM

(d)

0 20 40 60 80 100
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Time lag τ

F
o
u

rt
h
 e

ig
e

n
va

lu
e

 λ
4

 

 

Estimated λ4, Roothan−Hall

Estimated λ4, MSM

(e)

0 20 40 60 80 100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Time lag τ

Im
p
lie

d
 t
im

e
 s

ca
le

 t
4

 

 

Estimated t4, Roothan−Hall
Estimated t4, MSM

(f)

Figure IV.7.: Approximation results for system C. Every fifth step of a 10 million sampling
trajectory with time step ∆t = 10

−3
ps was used. We compare the Roothan-

Hall method with a combination of the large basis sets of the previous examples
to a 15×15 MSM discretization. (a) Second eigenvalue λ2. (b) Second implied
time scale t2. (c) Third eigenvalue λ3. (d) Third implied time scale t3. (e)
Fourth eigenvalue λ4. (f) Fourth implied time scale t4.



V. Summary and outlook

We have presented a method to approximate the eigenvalues and time scales of slow pro-
cesses in stochastic dynamical systems based on the variational principle Theorem II.6 and
the Roothan-Hall method Theorem II.10. We have applied this method with Gaussian func-
tions to one-dimensional and a few simple higher dimensional examples of diffusion processes
governed by Smoluchowski dynamics. So far, we have seen that in all cases a convincing
estimate of the involved time scales was achieved. Comparison with results obtained from
Markov state model discretizations showed that the variational method can reproduce the
quality of these.

V.1. Future work

Future work on the subject will have to deal with a number of questions:

V.1.1. Application to larger systems

Can we, in a chain with many internal coordinates, obtain a convincing result by simply adding
up local basis functions, dependent on one coordinate, chosen on the basis of the molecular
energy function? This assumes that the internal coordinates are sufficiently independent to
allow this approximation. If it works, it would avoid the use of clustering techniques and
result in a computationally affordable method to compute the dominant eigenvalues and
relevant time scales. As a first test, we will have to try a five atom system with additional
Coulomb interactions, and see if it works.
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V.1.2. Choice of basis functions

So far, we have exclusively used Gaussian functions, and more or less guessed their shape
parameters from the energy function. Can we make a more precise statement about the
relation between the shape of the basis functions and the approximation quality, and what
other types of functions can be used?

V.1.3. Numerical stability

We will have to address sources of numerical instabilities involved in our computations. As
mentioned before, choosing basis functions which are either too uncorrelated or correlated
too much can lead to meaningless results. Can we find a way to quantify these instabilities
and determine how they are related to the choice of functions?

V.1.4. Importance of sampling

The method does not work without the computation of simulation trajectories. In the ex-
ample we studied, it was easy to compute trajectories which visit all the metastable regions
frequently often. But what does this mean for greater systems? How can we determine
the minimum length of a sufficiently long trajectory, and how much does the use of finite
simulations affect all the quantities involved in the method, like the H- and S-matrix?



A. Appendix

A.1. Diffusion in a quadratic potential

Let us prove the properties of the diffusion in a quadratic potential as introduced in sec-
tion III.4. First, let us derive an analytic expression for the problem’s solution. On stochastic
integrals and Ito’s formula, see [Evans, ch. 4].

Lemma A.1: If the process is initially distributed according to X0, then the distribution at
time t is given by the stochastic integral

Xt = e
−θt

X0 + σ

� t

0

dBs e
−θ(t−s)

. (A.1)

Proof. The proof can also be found on [Wikipedia]. Let Xt be the solution of the corre-
sponding stochastic differential equation, i.e.

dXt = −θXtdt+ σdBt. (A.2)

Consider the function f(Xt, t) := e
θt
Xt. According to Ito’s formula, f(Xt, t) satisfies the

SDE:

d(f(Xt, t)) =
∂f

∂t
dt+

∂f

∂x
dXt +

1

2

∂
2
f

∂x2
σ
2
dt (A.3)

= θe
θt
Xtdt− θe

θt
Xtdt+ e

θt
σdBt = e

θt
σdBt. (A.4)

The process f(Xt, t) is therefore given by the stochastic integral

e
θt
Xt = f(Xt, t) = X0 + σ

� t

0

dBs e
θs
. (A.5)
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Multiplying the last expression by e
−θt gives the desired result.

Now we can confirm the claims about the expectation and variance. The properties of
stochastic integrals we use can be found again in [Evans, ch. 4].

Lemma A.2: The solution Xt from Lemma A.1 satisfies

E [Xt] = e
−θtE [X0] , (A.6)

ω
2
[Xt] = e

−2θt
ω
2
[X0] + (1− e

−2θt
)α, (A.7)

with α =
kBT
b =

σ2

2θ .

Proof. Directly using Equation A.1, we find

E [Xt] = e
−θtE [X0] + σE

�� t

0

dBs e
−θ(t−s)

�
= e

−θtE [X0] , (A.8)

since the expectation of stochastic integrals over scalar functions is always zero. Similarly,
using that the expectation of the square of a stochastic integral over a scalar function equals
the normal integral over the square of that function, we compute

E
�
X

2
t

�
= e

−2θtE
�
X

2
0

�
+ 2σe

−θtE [X0]E
�� t

0

dBs e
−θ(t−s)

�
+ σ

2E
��� t

0

dBs e
−θ(t−s)

�2
�

(A.9)

= e
−2θtE

�
X

2
0

�
+ σ

2E
�� t

0

ds e
−2θ(t−s)

�
(A.10)

= e
−2θtE

�
X

2
0

�
+

σ
2

2θ
(1− e

−2θt
). (A.11)

Therefore,

ω
2
[Xt] = E

�
X

2
t

�
− (E [Xt])

2
= e

−2θtE
�
X

2
0

�
+ α(1− e

−2θt
)− e

−2θt
(E [X0])

2 (A.12)

= e
−2θt

ω
2
[X0] + α(1− e

−2θt
). (A.13)

Next, let us determine the transition kernel p(x, y; τ). If the current position of the process
is known to be x ∈ Ω, its current distribution is a delta function centred at x. Consequently,
by the preceding Lemma, the distribution at time τ > 0 has expectation value e

−θτ
x and

variance α(1 − e
−2θτ

). We can verify that this distribution is a Gaussian function with
precisely these shape parameters:
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Lemma A.3: With ν := (1−e
−2θτ

), the transition function p(x, y; τ) is given by a Gaussian

p(x, y; τ) =
1

√
2παν

exp

�
−
(y − e

−θτ
x)

2

2αν

�
. (A.14)

Proof. We show that p satisfies the Smoluchowski Equation III.6 with initial condition
p(x, · ; 0) = δx. Since the initial condition is clearly fulfilled, we check that the differential
equation holds for all τ > 0. In order to do so, we note that θ

α =
b2

mγkBT =
D
α2 , whereas

D
α =

b
mγ = θ. On the one hand we find:

∂p
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. (A.18)

On the other hand we have:
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(A.23)

Since all terms cancel, the equation holds.

Knowing this, we can prove the statement about the eigenfunctions of the propagator:
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Proof of Lemma III.4. For convenience, we restrict the proof to the case that α = 1

and leave out all pre-factors. The case i = 1 was already treated when we discussed the
stationary distribution, so let us check the statement for i = 2. By partial integration we
find that:

�
dx p(x, y; τ)x exp

�
−
x
2

2

�
= −

�
dx p(x, y; τ)

d

dx
exp
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−
x
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=
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Upon multiplication by ν, we see that the last term cancels, and we are left with:
�

dx p(x, y; τ)x exp

�
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2

2
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−θτ
y

�
dx p(x, y; τ) exp
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2

2

�
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(A.28)

Having established the first two cases, we can prove the assertion for general i by induction.
We will need the recursion relation for Hermite polynomials, which reads

Hi+1(x) = xHi(x)− iHi−1(x), (A.29)

and also holds for the eigenfunctions φi. Furthermore, similarly to the first case, we can use
that φi(x) = (−1)

i di

dxi exp(−
x2

2 ), which is one way to define the Hermite functions. The
course of the proof is then quite the same as for i = 2:
�

dx p(x, y; τ)φi+1(x) = (−1)
i+1

�
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d
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=
e
−θτ

ν
y
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dx p(x, y, τ)φi(x)−
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(A.32)
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ν
λiyφi(y)−

e
−2θτ

ν

�
dx p(x, y; τ) [φi+1(x) + iφi−1(x)] .

(A.33)

Again, multiplying the equation by ν eliminates the terms containing φi+1 and the factor
e
−2θτ . We are left with:

�
dx p(x, y; τ)φi+1(x) = e

−θτ
λiyφi(y)− ie

−2θτ

�
dxp(x, y; τ)φi−1(x) (A.34)

= e
−θτ

λiyφi(y)− ie
−2θτ

λi−1φi−1(y). (A.35)
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By assumption, we have that e
−θτ

λi−1 = λi. With one more application of the recursion
relation, we arrive at the final result:

�
dx p(x, y; τ)φi+1(x) = e

−θτ
λi [yφi(y)− iφi−1(y)] (A.36)

= e
−θτ

λiφi+1(y), (A.37)

which proves both the assertions about the eigenfunctions and the corresponding eigenvalues.
The pre-factors are then chosen to assure that the eigenfunctions are normalized.
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