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I. BASICS

A. Autocorrelation of the exact eigenfunction ψ2

The autocorrelation function of the exact second eigenfunction is given by

λ2(τ) = 〈ψ2(xt)ψ2(xt+τ)〉t =

ˆ
dx
ˆ

dycτ(x, y; τ)ψ2(x)ψ2(y)

and, using orthogonality of the eigenfunctions ψi, this results in

λ2(τ) = 〈ψ2, µ〉2 + e−κ2τ〈ψ2, ψ2〉µ + ∑
i>2

e−κiτ〈ψ2, ψi〉µ

= e−κ2τ , (1)

such that the single-τ rate estimate

κ̂2 = − ln λ2(τ)

τ
= κ2 (2)

is exact (without a systematic error).

B. Autocorrelation of model functions ψ̃2

We take an arbitrary function ψ̃2. Throughout this paper, ψ̃2 is subject to the normalization condition

〈ψ̃2, ψ̃2〉 = 1, (3)

and is assumed to be orthogonal to the stationary distribution

〈ψ̃2, µ〉 = 0

and shall serve as a model for ψ2. Using the shorthand notation

ai = 〈ψ̃2, ψi〉 (4)

we expand ψ̃2 in terms of eigenfunctions ψi:

ψ̃2 = ∑
i

aiψi

= a2ψ2 + ∑
i>2

aiψi

=
√

αψ2 + ∑
i>2

aiψi (5)
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Parseval’s identity gives:

∑
i

a2
i = 1. (6)

And thus:

λ̃2(τ) = 〈ψ̃2(0)ψ̃2(τ)〉 = a2
2λ2(τ) + ∑

i>2
a2

i λi(τ)

= a2
2λ2(τ) + λ3(τ) ∑

i>2
a2

i
λi(τ)

λ3(τ)

≤ a2
2λ2(τ) + (1− a2

2)λ3(τ)

= αλ2(τ) + (1− α)λ3(τ) (7)

C. Observed dynamics

Let χ(y | x) be the output probability density, providing the conditional density of observing a point
y ∈ R given that the full-space configuration of the system is x ∈ Ω. Using φi(x) = µ(x)ψi(x) as the i-
th eigenfunction scaled by the stationary density, we can express the correlation density of observing
the system at point y0 at time 0 and at time yτ a time τ later as:

cτ(y0, yτ) =

ˆ
dx0

ˆ
dxτ χ(y0 | x0)cτ(x0, xτ)χ(yτ | xτ)

=
∞

∑
i=1

λi(τ)

ˆ
dx0 χ(y0 | x0)φi(x0)

ˆ
dxτ φi(xτ)χ(yτ | xτ)

=
∞

∑
i=1

λi(τ)φ
y
i (y0)φ

y
i (yτ)

= µy(y0)µ
y(yτ) +

∞

∑
i=2

λi(τ)φ
y
i (y0)φ

y
i (yτ) (8)

Here, we have defined the observed (projected) eigenfunctions

φ
y
i (y) =

ˆ
dx χ(y | x)φi(x) (9)

ψ
y
i (y) =

ˆ
dx χ(x | y)ψi(x) (10)

using

χ(x | y)µy(y) = χ(y | x)µ(x) (11)

and the special case for the stationary distribution:

µy(y) = φ
y
1(y) =

ˆ
dx χ(y | x)µ(x). (12)

All observed eigenfunctions with i > 1 are still orthogonal to the observed stationary distribution
with respect to the observed stationary distribution µy(y):

〈ψy
i (y), µy(y)〉 =

ˆ
dy µy(y)

ˆ
dx χ(x | y)ψi(x)

=

ˆ
dy
ˆ

dx χ(y | x)µ(x)ψi(x)

=

ˆ
dx µ(x)ψi(x)

= 0 (13)
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where we assume that the output probabilities are complete
ˆ

dy χ(y | x) = 1, (14)

i.e., for each state x the total probability to observe any y is one. Similarly we derive that
ˆ

dx χ(x | y) =
ˆ

dx
χ(y | x)µ(x)

µy(y)
=

µy(y)
µy(y)

= 1 (15)

holds. Let us now concentrate on the two-state case, i.e., we assume that a time-scale separation exists
between t2 = κ−1

2 and t3 = κ−1
3 , such that at the lag times of interest all eigenvalues λi(τ) ≈ 0 with

i > 2. Thus, we can express the propagator in terms of only two dominant eigenfunctions, µ and φ2,
and their projected counterparts, µy and φ

y
2 . The norm of the observed eigenfunction φ

y
2 with respect

to the projected stationary distribution is:

α̂y = 〈φy
2 , ψ

y
2〉 =

ˆ
dy
ˆ

dx1 χ(y | x1)φ2(x1)

ˆ
dx2 χ(x2 | y)ψ2(x2)

=

ˆ
dx1

ˆ
dx2 φ2(x1)

(ˆ
dy χ(x2 | y)χ(y | x1)

)
ψ2(x2)

=

ˆ
dx1

ˆ
dx2 φ2(x1)M(x1,x2)ψ2(x2)

≡ 〈φy
2 , ψ

y
2〉M (16)

whereM is a mixing kernel that contains the induced overlap in the original space due to the output
probabilities χ.

D. Reaction coordinate quality

Now we consider approximating the second eigenvalue of the two-state system by a probe function
ψ̃2:

〈ψ̃2(yt)ψ̃2(yt+τ)〉t = 〈ψ̃2, µy〉2 + λ2(τ)〈ψ̃2, φ
y
2〉

2

= λ2(τ)〈ψ̃2, φ
y
2〉

2

= αλ2(τ) (17)

with α = 〈ψ̃2, φ
y
2〉2. In the spectral estimation method, we choose the probe function ψ̃2 to be the

second eigenfunction ψ̂2 of an observable transition kernel

pτ(y1, y2) = µy(y1)
−1cτ(y1,y2). (18)

This second eigenvector ψ̂2 is normalized and orthogonal to the observed stationary distribution

〈ψ̂2(y), µy(y)〉 = 0 (19)
〈ψ̂2(y), ψ̂2(y)〉µy = 1, (20)

it maximizes the estimated second eigenvalue λ̂2(τ) under the given orthogonality constraints and
with RCQ

α̂y = 〈ψ̂2, φ
y
2〉 = 〈φ

y
2 , ψ

y
2〉. (21)

Now we ask about the magnitude of α̂y depending on the type of the observation χ, or the mixing
matrixM. For perfect RC’s, every y is uniquely associated with one x, i.e., χ is a bijective map and

M(x1,x2) = δ(x1,x2) (22)

in this case we get:

α̂y,perfect =

ˆ
dx1

ˆ
dx2 φ2(x1)δ(x1,x2)ψ2(x2) = 〈ψ2, φ2〉 = 1. (23)

For all other cases we viewM as a transition operator that reduces α̂y by projecting eigenfunctions,
such that the projected eigenfunction has a reduced norm. Consider the following properties ofM:
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1. M is a transition operator. Proof:ˆ
dx2M(x1, x2) =

ˆ
dx2

ˆ
dy χ(x2 | y)χ(y | x1) =

ˆ
dy χ(y | x1) = 1. (24)

2. M fulfills detailed balance with respect to µ. Proof:

µ(x1)M(x1, x2) = µ(x1)

ˆ
dy χ(x2 | y)χ(y | x1)

=

ˆ
dy χ(x2 | y)µy(y)χ(x1 | y)

= µ(x2)

ˆ
dy χ(x1 | y)χ(y | x2)

= µ(x2)M(x2, x1) (25)

3. µ(x) is a stationary density ofM. Proof:ˆ
dx1 µ(x1)M(x1, x2) = µ(x2)

ˆ
dx1M(x2, x1) = µ(x2)

4. As a result, we can decomposeM into its spectral components:

M =
∞

∑
i=1

βi
li(x1)

µ(x1)
li(x2) (26)

with βi ≤ 1 being the eigenvalues and li being the eigenfunctions. Note thatM is not neces-
sarily irreducible and may thus have multiple 1-eigenvalues. For example, a projectiveM will
have multiple 1-eigenvalues as it does not mix between different values of y. A dispersiveM
will typically be irreducible and thus have a unique eigenvalue β1 = 1.

From these properties and the fact that transition operators have a spectral radius of one, it directly
follows that

α̂y = 〈φ2, ψ2〉M

=

ˆ
dx1ψ2(x1)

ˆ
dx2

∞

∑
i=1

βili(x1)li(x2)ψ2(x2)

= ≤
∞

∑
i=2

βi〈ψ2(x), li(x)〉2 ≤ β2 ≤ 1

where from property (2) follows that l1(x) = µx(x) so that 〈l1(x), ψ2(x)〉 = 0 and the first term in the
sum vanishes. Thus, the magnitude of the second eigenfunction is at best preserved when applying
projection and/or dispersion, but in general decreases.
Multiple application of projection/dispersion
To understand the effect of two subsequent observation processes, we consider the example of apply-
ing first a projection from full configuration x to order parameter y, χp = χ(y | x), and subsequently
a dispersion to reach observable o, χd = χ(o | y). For a two-state system, the observed correlation
density in o is:

co
τ(o0, oτ) =

ˆ
dy0

ˆ
dyτ χ(o0 | y0)

ˆ
dx0

ˆ
dxτ χ(y0 | x0)cτ(x0, xτ)χ(yτ | xτ)χ(oτ | yτ)

=
∞

∑
i=1

λi(τ)

ˆ
dy0 χ(o0 | y0)φ

y
i (y0)

ˆ
dyτ χ(oτ | yτ)φ

y
i (yτ)

=
∞

∑
i=1

λi(τ)φ
o
i (y0)φ

o
i (yτ) (27)

where the twice-projected eigenfunctions are

φo
i (o) =

ˆ
dy χ(o | y)φy

i (y) (28)

µo(o) =

ˆ
dy χ(o | y)µy(y) (29)

ψo
i (o) =

ˆ
dy χ(y | o)ψy

i (y). (30)
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For two-state systems this simplifies to

co
τ(o0, oτ) = µo(o0)µ

o(oτ) + λ2(τ)φ
o
2(o0)φ

o
2(oτ). (31)

It follows that the RCQ from projection and dispersion is:

α̂o = 〈φo
2, ψo

2〉
= 〈φy

2 , ψ
y
2〉Md (32)

using the variational principle from above we can directly conclude that

α̂o = 〈φy
2 , ψ

y
2〉Md ≤ 〈φ

y
2 , ψ

y
2〉 = α̂y. (33)

When applying multiple subsequent projections or dispersions, the reaction coordinate quality can
never increase. It at best stays the same but generally deteriorates. It does so until it reaches zero
which is the RCQ of white noise.

II. CHOICES FOR MODEL FUNCTIONS ψ̃2

A. Dividing surfaces

Most rate theories operate by defining a single dividing surface which splits the state space into
reactants A and products B. Calling hA(y) the indicator function which is 1 for set A and 0 for set B,
one may define the normalized fluctuation autocorrelation function of state A [5].

C(t) =
〈δhA(0)δhA(τ)〉〈

δh2
A
〉 (34)

where δhA ≡ hA − 〈hA〉. Eq. (34) can also be interpreted as the autocorrelation function

C(t) = 〈ψ̃2(0)ψ̃2(τ)〉 =
∞

∑
i=2

e−κita2
i (35)

for the special choice of ψ̃2

ψ̃2,divide(y) =
δhA(y)
〈δh2

A〉1/2
=

hA(y)− πA√
πAπB

=
hA(y)− πA√

πA − π2
A

(36)

where πA = 〈hA〉µ is the stationary probability of state A and πB = 1− πA the stationary probability
of state B. To see that Eq. (36) is properly normalized, let us recall the normalization conditions:

〈ψ̃2, µ〉 = 〈ψ̃2(y)〉 = 0

〈ψ̃2, ψ̃2〉µ = 〈ψ̃2(y)2〉 = 1 (37)

For the choice (36) we get:

〈ψ̃2, µ〉 =
〈hA(y)− πA〉µ√

πA − π2
A

=
πA − πA√

πA − π2
A

= 0 (38)

and

〈ψ̃2, ψ̃2〉µ =
1

πA − π2
A
〈(hA(y)− πA)(hA(y)− πA)〉

=
1

πA − π2
A
〈hA(y)hA(y)− πAhA(y)− πAhA(y) + π2

A〉µ

=
1

πA − π2
A
(πA − π2

A − π2
A + π2

A) = 1. (39)
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For the step function, we obtain the RCQ

α = 〈ψ̂2, ψ2〉2µ

=

〈
hA(x)− πA√

πA − π2
A

, ψ2

〉2

µ

=

(
〈hA(x), ψ2〉µ − πA〈1, ψ2〉µ

)2

πA − π2
A

=
〈hA(x), ψ2〉2µ

πA − π2
A

. (40)

Single-τ rate estimate. The procedure of splitting the observed state space into two sets and estimating
the transition rate from the second eigenvalue of the two-state transition matrix [2] results in a single-
τ estimate (see below) with an error of

κ̂2,divide − κ2 ≤ −
1
τ

ln
〈hA(x), ψ2〉2µ

πA − π2
A

(41)

This estimator is effectively a two-state Markov model estimate and has been analyzed in [2]. The
best possible dividing surface can be chosen by maximizing α, or equivalently, by minimizing κ̃2.
However, it is suboptimal compared to the MSM estimator that uses a finer partition of state space
and thus κ̃2 ≥ κ̂2 ≥ κ2, with an error that also decays with τ−1.

B. Autocorrelation of the observable

Signal autocorrelation estimate: Another common choice is to calculate the normalized autocorrelation
function of the signal y(t) itself:

〈ψ̃2(0)ψ̃2(τ)〉 =
〈y(t)y(t + τ)〉 − 〈y〉2

〈y2〉 − 〈y〉2 (42)

where we have defined ψ̃2,signal(y) = y−〈y〉√
〈y2〉−〈y〉2

. To see that this function is properly normalized,

consider:

〈ψ̃2, µ〉 =
1√

〈y2〉 − 〈y〉2

ˆ
dy′ µ(y′)y′ − µ(y′)〈y〉

=
1√

〈x2〉 − 〈x〉2
〈y〉(1−

ˆ
dy′µ(y′))

= 0 (43)

and

〈ψ̃2, ψ̃2〉µ =

ˆ
dy′ µ(y′)

(y′ − 〈y〉))2

〈y2〉 − 〈y〉2

=
1

〈y2〉 − 〈y〉2
ˆ

dy µ(y′)y′2 − µ(y′)2y′〈y〉+ µ(y′)〈y〉2

=
1

〈y2〉 − 〈y〉2 (〈y
2〉 − 2〈y〉2 + 〈y〉2)

=
1

〈y2〉 − 〈y〉2 (〈y
2〉 − 〈y〉2)

= 1 (44)
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Like for the dividing surface estimate, direct evaluation of the autocorrelation function of ψ̃2 leads to
a single-τ estimate of κ2 that converges with τ−1 but is suboptimal compared to the MSM estimate:

κ̂2,signal ≈ κ2 −
1
τ

ln
〈y, ψ2〉µ − 1√
〈y2〉 − 〈y〉2

(45)

with an RCQ α < α̂

α = 〈ψ̂2, ψ2〉2µ

= 〈 y− 〈y〉√
〈y2〉 − 〈y〉2

, ψ2〉2µ

=
1

〈y2〉 − 〈y〉2
(
〈y, ψ2〉µ − 〈y〉〈1, ψ2〉µ

)2

=
〈y, ψ2〉2µ
〈y2〉 − 〈y〉2 =

〈y, ψ2〉2µ
Var(y)

(46)

III. RATE ESTIMATION METHODS

A. Integrating the correlation function

A means of estimating the rate is to integrate the correlation function λ̃2(τ) (see, e.g., Equation 3.6 of
[1]),

κ̃2,int = −
(ˆ ∞

0
dτ λ̃2(τ)

)−1

= −
(ˆ ∞

0
dτ

[
αe−κ2τ + ∑

i>2
a2

i e−κiτ

])−1

= −
([

α
1
κ2

e−κ2τ + ∑
i>2

a2
i

κi
e−κiτ

]∞

0

)−1

=

(
α

1
κ2

+ ∑
i>2

a2
i

κi

)−1

(47)

with the projection amplitudes ai = 〈ψ̃i, ψi〉 and α = 〈ψ̃2, ψ2〉2µ = a2
2. The reactive flux rate involves

the systematic error

κ̃2,int − κ2 =
1

α 1
κ2

+ ∑i>2
a2

i
κi

− κ2

=
κ2

α + ∑i>2 a2
i

κ2
κi

− κ2

= κ2

(
1− α + ∑i>2 a2

i
κ2
κi

α + ∑i>2 a2
i

κ2
κi

)

< κ2

(
1− α + ∑i>2 a2

i
α + ∑i>2 a2

i
κ2
κi

)

<
κ2(1− α)

α + ∑i>2 a2
i

κ2
κi

(48)

where we have used Parseval’s identity ∑∞
i=2 a2

i = 1. For the beneficial case of a time scale separation
κ2 � κ3, this simplifies to:

∆κ2,int = κ̃2,int − κ2 ≈ κ2
(1− α)

α
(49)

which becomes 0 for α = 1, but may be very large for imperfect reaction coordinates with α < 1.
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B. Reactive flux rate

Chandler, Montgomery and Berne [1, 4] considered the reactive flux correlation function,

k(τ) ≡ − d
dt

C(t) =
∞

∑
i=1
〈ψ̃2, ψi〉2µκie−κiτ (50)

where, for τmol < τ � κ−1
2 , the reactive flux k(τ) ≈ ke−κτ , such that for τ ∼ τmol (the molecular

relaxation timescale within a conformational state), the rate estimate is

κ̃2,rf = κ2α + ∑
i>2
〈ψ̃2, ψi〉2µκie−κiτ (51)

such that the error is given by

∆κ2,rf = κ̃2,rf − κ2 = κ2(α− 1) + ∑
i>2
〈ψ̃2, ψi〉2µκ2e−κiτ > 0 (52)

C. Transition state theory

The transition state theory rate, which measures the instantaneous flux across the dividing surface
between A and B, can be computed from the short-time limit of the reactive flux [1],

κ̃2,tst = ktst = lim
t→0+

k(t) = ακ2 + ∑
i>2
〈ψ̃2, ψi〉2µκi (53)

such that the error in the rate is given by

∆κ2 = κ̃2,tst − κ2 =
∞

∑
i>2
〈ψ̃2, ψi〉2µ

(
κi
κ2
− 1
)
≥ κ̃2,rf − κ2 > 0 (54)

which is either equal to or (usually) an overestimate of the true rate.

D. Single-τ rate estimator and its systematic error

A rate estimate based on a single-τ-fit of λ̃2(τ) is defined as follows:

κ̂2 = −τ−1 ln λ̃2(τ)

= −τ−1 ln

(
αλ2(τ) + ∑

i>2
a2

i λi(τ)

)

= −τ−1 ln

(
αe−τκ2 + ∑

i>2
a2

i e−τκi

)

= −τ−1 ln

(
e−τκ2

[
α + ∑

i>2
a2

i e−τ(κi−κ2)

])

= −τ−1

(
ln e−τκ2 + ln

[
α + ∑

i>2
a2

i e−τ(κi−κ2)

])
(55)

which leads to the systematic error in the rate κ̂2:

∆κ2,τ = κ̃2,τ − κ2 = −τ−1 ln

[
α + ∑

i>2
a2

i e−τ(κi−κ2)

]
(56)

Please note that the expression in the logarithm is smaller than unity, such that the rate κ̂2 is always
overestimated. We can continue to simplify to
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∆κ2,τ = −τ−1 ln

(
α(1 + ∑

i>2

a2
i

α
e−τ(κi−κ2))

)

= τ−1 ln
1
α
− τ−1 ln

(
1 + ∑

i>2

a2
i

α
e−τ(κi−κ2)

)
(57)

as an expression for the estimation error. This error can then be bounded using 0 ≤ ln(1 + x) for
x ≥ 0 by

0 ≤ ∆κ2,τ ≤ τ−1 ln
1
α

(58)

and since κi > κ2 is true for i > 2 we can also find a lower bound on the error that only depends on
the spectral gap κ3 − κ2 and the RCQ α

0 ≤ τ−1 ln
1
α
− τ−1 ln

(
1 +

1− α

α
e−τ(κ3−κ2)

)
≤ ∆κ2,τ ≤ τ−1 ln

1
α

(59)

where we used that ln(1 + x) < x always holds. We conclude that the estimation error ∆κ2 is dom-
inated by a 1/τ dependence whereas the width of this error bound decreases exponentially in the
spectral gap. For a two-state system with with a large gap κ2 � κ3 this uncertainty vanishes and the
rate error is indeed approximated by:

∆κ2,τ ≈ τ−1 ln
1
α

. (60)

E. Multi-τ exponential fitting estimators

Exponential-fitting estimators usually employ an exponential fit to autocorrelation functions λ̃2(τ).
This can be done using different choices of ψ̃2 such as a step function arising from a dividing surface,
or the normalized signal itself. We will here calculate the systematic error of estimating κ2 via an
exponential fit to the function:

λ̃2 = 〈ψ̃2(0)ψ̃2(τ)〉 = αe−τκ2 + ∑
i>2

a2
i e−τκi (61)

using a set of m mutually different lagtimes τj ∈ {τ1, ..., τm} in ascending order, τj < τj+1. For the
sake of quantifying the systematic error, we may consider the exponential fit to be implemented via
a linear fit to the logarithmized data:

z(τ) = ln〈ψ̃2(0)ψ̃2(τ)〉
= ln[αe−τκ2 + ∑

i>2
a2

i e−τκi ] (62)

A simple linear regression algorithm can then be expressed as:

κ̃2,fit =
E[τj]E[z(τj)]−E[τjz(τj)]

Var(τj)

=
E[(E[τj]− τj)z(τj)]

Var(τj)

=
∑m

j=1(τ̄ − τj)z(τj)

m Var(τj)
(63)

with expectation of lagtimes

τ̄ = E[τj] =
1
m

m

∑
j=1

τj (64)
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and variance of lagtimes

Var(τ) = E[(τj − τ̄)2] =
1
m

m

∑
j=1

τ2
j − τ̄2. (65)

This results in

κ̃2,fit =
∑m

j=1(τ̄ − τj) ln[αe−τjκ2 + ∑i>2 a2
i e−τjκi ]

m Var(τ)

=
∑m

j=1(τ̄ − τj) ln[e−τjκ2
(

α + ∑i>2 a2
i e−τj(κi−κ2)

)
]

m Var(τ)

=
∑m

j=1(τ̄ − τj) ln e−τjκ2

m Var(τ)
+

∑m
j=1(τ̄ − τj) ln

(
α + ∑i>2 a2

i e−τj(κi−κ2)
)

mVar(τ)

= κ2
− 1

m ∑m
j=1(τ̄ − τj)τj

Var(τ)
+

∑m
j=1(τ̄ − τj) ln

(
α + ∑i>2 a2

i e−τj(κi−κ2)
)

mVar(τ)

= κ2 +
∑m

j=1(τ̄ − τj) ln
(

α + ∑i>2 a2
i e−τj(κi−κ2)

)
mVar(τ)

(66)

and the estimation error is given by

∆κ2,fit = κ̃2,fit − κ2 =
∑m

j=1(τ̄ − τj) ln
(

α + ∑i>2 a2
i e−τj(κi−κ2)

)
mVar(τ)

(67)

We simplify further

∆κ2,fit =
∑m

j=1(τ̄ − τj) ln
(

α(1 + ∑i>2(a2
i /α)e−τj(κi−κ2)

)
mVar(τ)

=
∑m

j=1(τ̄ − τj) ln α

mVar(τ)
+

∑m
j=1(τ̄ − τj) ln

(
1 + ∑i>2(a2

i /α)e−τj(κi−κ2)
)

mVar(τ)

and use that ∑m
j=1(τ̄ − τj) = 0 so that

∆κ2,fit =
m

∑
j=1

(τ̄ − τj)

mVar(τ)
ln

(
1 + ∑

i>2
(a2

i /α)e−τj(κi−κ2)

)
(68)

remains. This expression can be bounded from above by keeping only all positive summands with
times τ1, ..., τl < τ̄ where we used the increasing ordering of the times and find that

0 < ∆κ2,fit <
l

∑
j=1

(τ̄ − τj)

mVar(τ)
ln

(
1 + ∑

i>2
(a2

i /α)e−τj(κi−κ2)

)
(69)

and then replace all summands by the largest one, which is given by j = 1

0 < ∆κ2,fit <
l
m

(τ̄ − τ1)

Var(τ)
ln

(
1 + ∑

i>2
(a2

i /α)e−τ1(κi−κ2)

)

<
m− 1

m
(τ̄ − τ1)

Var(τ)
ln

(
1 + ∑

i>2
(a2

i /α)e−τ1(κi−κ2)

)
(70)

and bound the number of positive summands via l ≤ m− 1. Using that the rates κi > κ2 are ordered
we can derive a bound that again only depends on the gap κ3 − κ2 and the chosen lag times τi
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0 < ∆κ2,fit <
m− 1

m
(τ̄ − τ1)

Var(τ)
ln
(

1 + e−τ1(κ3−κ2)
1− α

α

)
. (71)

Lastly using Samuelson’s inequality and (a + b)2 ≥ 2ab we can bound this by

0 < ∆κ2,fit <
(m− 1)2

m(τm − τ̄)
ln
(

1 + e−τ1(κ3−κ2)
1− α

α

)
(72)

without knowledge about the variance.
It is important to note that the error is now dominated by an exponential decay in the gap between
2nd and 3rd timescale κ3 − κ2 and also decays exponentially in the minimal lagtime τ1. As expected,
the error vanishes for the limit of a perfect reaction coordinate (α→ 0).
In order to obtain a more practical expression let us consider that a series of lagtimes is used that
obeys the form (kτ, 2kτ, ..., mkτ) for some k ∈ R+. In this case, we obtain the explicit bound:

0 < ∆κ2,fit <
2(m− 1)

mkτ
ln
(

1 + e−τ1(κ3−κ2)
1− α

α

)
<

2
kτ

1− α

α
e−τ1(κ3−κ2). (73)

In the special case of using two lagtimes for the fit with τ1 = τ and τ2 = 2τ, we get

0 < ∆κ2,fit <
1
τ

1− α

α

(
e−τ1(κ3−κ2)

)
(74)

and even in the worst case of no time scale separation κ3 = κ2 we get:

0 < ∆κ2,fit <
1
τ

ln
1
α

. (75)

Finally, the case of a single-τ estimation can be recovered by the choice of τ1 = 0 and τ2 = τ:

0 < ∆κ2,fit <
1
τ

ln
1
α

. (76)

Note, that in the absence of statistical uncertainty it is theoretically always better to replace the multi-
τ estimation by a 2-timescale estimation and use the two largest lagtimes τm−1 and τm. In practice
this multi-τ estimators with more than two lagtimes are still recommended in order to diminish the
effect of statistical uncertainty.

IV. OBTAINING MICROSCOPIC TRANSITION RATES kAB, kBA USING PCCA+

In order to convert a relaxation rate κ2 to microscopic (state-to-state) transition rates κAB and κBA, we
need to decompose κ2 according to the probability to be in A and B, πA and πB. For the two-state case
this can be achieved based on the estimated eigenfunctions, ψ̂1 = ψ1 = 1 and ψ̂2, following PCCA+
[3]. We seek state membership functions χA(y) and χB(y) that span the eigenfunctions ψ̂1, ψ̂2:

ψ̂1 = a11χA(y) + a12χB(y)
ψ̂2 = a21χA(y) + a22χB(y) (77)

We can write this as a matrix-vector product:

(
ψ̂1
ψ̂2

)
=

(
a11 a12
a21 a22

)(
χA
χB

)
(78)



12

and using the matrix B = A−1, rewrite this as:

(
χA
χB

)
=

(
b11 b12
b21 b22

)(
ψ1
ψ2

)
(79)

To be able to determine the coefficients we need to evaluate the functions χ and ψ at two points y1
and y2. This yields four equations which can be written again in matrix form:

(
χA(y1) χA(y2)
χB(y1) χB(y2)

)
=

(
b11 b12
b21 b22

)(
ψ1(y1) ψ1(y2)
ψ2(y1) ψ2(y2)

)
(80)

we choose x1 and x2 to be the extreme values of ψ and take them as representatives for the states A,
B. Then:

(
b11 b12
b21 b22

)
=

(
1 0
0 1

)(
1 1

ψ2(y1) ψ2(y2)

)−1

=
1

ψ2(y2)− ψ2(y1)

(
ψ2(y2) −1
−ψ2(y1) 1

)
.

=
1

max ψ2 −min ψ2

(
max ψ2 −1
−min ψ2 1

)
(81)

and hence:

(
χA
χB

)
=

1
max ψ2 −min ψ2

(
max ψ2 −1
−min ψ2 1

)(
1

ψ2

)
χA(x) =

max ψ2 − ψ2(y)
max ψ2 −min ψ2

χB(x) =
ψ2(x)−min ψ2

max ψ2 −min ψ2
. (82)

We see that χA(y) are fuzzy membership functions:

χA(y) + χB(y) = 1 (83)

And using

A =

(
1 1

min ψ2 max ψ2

)
(84)

we can express ψ1 and ψ2 exactly as linear combinations of these memberships, consequently χA
and χB are a decomposition of state space towards the states A and B according to which we can
reproduce ψ̂2 optimally, and thus the rate optimally, and with the rate estimation procedure given
above even asymptotically exactly. Therefore, χA and χB are optimal choices as memberships for A
and B.

Effect of filtering on rate estimates

In order to test the effect of time-binning on the quality of a rate estimate, we have constructed a
diffusion process in a one-dimensional two-well potential with a dominant relaxation rate κ2 = 0.349
(timescale t2 = κ−1

2 = 286.5 time steps) and fast relaxation rates of κ3 = 0.115 (timescale t3 = κ−1
3 =

8.6 time steps) or faster. A long simulation trajectory (106 time steps) was generated and time-binned
using window lengths of 10, 100 and 1000 time steps. Fig. 1 left shows the normalized autocorrelation
function of the resulting signal, λ̃2(τ) = 〈ytyt+τ〉. It is seen that for the original signal, λ̃2(τ) shows
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an initial fast decay due to the fast processes and then decays single exponentially with rate κ2. Time-
binned signals show a longer non-exponential phase in the beginning that also leads over to a single-
exponential decay with rate κ2. The non-exponential phase lasts a short multiple of the binning time.
For example, for the binning time 100 time steps, the single-exponential phase is found at lagtimes of
about τ = 150 time steps or greater. For the binning time 1000 steps, lagtimes of τ = 1500 or greater
are needed, which is unfortunately much larger than the timescale of the process itself. Fig. 1 right
shows the effect of this modification of λ̃2(τ) on the MSM rate estimate κ̃2 = −τ−1 ln λ̃2(τ). It is seen
that a binning time of 10 time step yields a small error of the estimated rate, while a binning time of
100 or more time steps already yields a large error. We recommend that the binning time used is a
factor of 10 smaller than the timescale of interest, indicated by the long-τ estimate of t̃2(τ) = κ̃−1

2 (τ).

0 100 200 300 400 500
lagtime τ

0.1

1

λ
(τ

)

unbinned data
W = 10
W = 100
W = 1000

0 100 200 300 400 500
lagtime τ

0.0001

0.001

0.01

κ
(τ

)

Figure 1: Test of the effect of time binning on the filtering theory on a diffusion process in a two-well potential.
Left: λ̃2(τ) = 〈ytyt+τ〉 for different window sizes. Right: apparent rates κ̃2(τ) = −τ−1 ln λ̃2(τ). The exact rate
is shown as a dashed black line.

Comparison of rates using different dividing surfaces and spectral estimator

Fig. 2 shows a comparison of the estimated rates from the dividing surface estimator with different
choices of the dividing surface and the spectral estimator, for the apo-myoglobin data reported in
the main manuscript. All estimates are made at a lagtime τ = 15 ms. The direct 50 kHz dataset
is shown in the left panel, while the filtered dataset that has been binned to 1 kHz is shown in the
right panel. Row (a) reports again the histograms and partial probability densities of the two slowest-
interconverting states that are also given in the main manuscript. Row (b) reports the estimate of the
relaxation rate κ2 for different choices of the dividing surface. This result shows that, as expected from
the theory, the dividing surface estimate and the spectral estimate agree as long as reasonable choices
for the dividing surface are made. When the dividing surface is chosen too far to the “left” or “right”,
the content of state B and A, respectively, is so small that numerical errors are introduced and the
dividing surface rate estimate becomes unreliable. Row (c) reports the estimates of the microscopic
transition rates kAB and kBA for different choices of the dividing surface. It is seen that the estimate
of spectral estimator and dividing surface estimator meet at one point. Since the dividing surface
rate constants are produced by splitting the rate κ2 = kAB + kBA in a way that depends on how
much aggregate probability of µo(o) is “left” and and “right” of the dividing surface, and since the
estimate of κ2 is unbiased, there always exists one choice of the dividing surface that yields the correct
microscopic rates kAB and kBA. However, this is an error compensation effect based on the fact that
for this the amount of probability from the “right” state overlapping to the “left” side of the dividing
surface (and vice versa) happen to neutralize each other in the estimate of kAB and kBA. There is no
indicator in the data what this choice is because generally kAB and kBA will not be equal as in the
present case. On the other hand, the spectral estimate of the microscopic transition rates is unbiased
and does not need a definition of dividing surface.
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Figure 2: Comparison of the estimated rates from the dividing surface estimator with different choices of the
dividing surface and the spectral estimator, for the apo-myoglobin data reported in the main manuscript. All
estimates are made at a lagtime τ = 15 ms (1) Direct 50 kHz dataset. (2) Filtered dataset that has been binned to
1 kHz. (a) Histograms and partial probability densities of the two slowest-interconverting states. (b) Estimate of
the relaxation rate κ2 for different choices of the dividing surface. (c) Estimate of the microscopic transition rates
kAB (dashed) and kBA (solid) for different choices of the dividing surface.

Robust eigenvector estimation

Although statistical issues were largely not considered in this manuscript, there is one point in the
estimation procedure where statistical uncertainty can become crucial: In Eq. (82), the partital prob-
ability distributions of substates A and B are estimated from the dominant eigenvector ψ̂2, and in
particular involve its minimum and maximum values min ψ2 and max ψ2. These minimum and max-
imum values typically lie where the observed signal has its minimum and maximum value, and
therefore in regions with poor statistics.
In order to obtain a reliable estimate of the partial probability distributions µA(o) and µB(o) and
therefore also of the microscopic rate constants kAB and kBA, one needs to ensure that the statistical
uncertainty of the values min ψ2 and max ψ2 is not too large. This can be ensured by designing the
binning of the observed coodinate o such that the first and last bin each contain at least a fraction pmin
of the data points. Here, we choose pmin = 0.0005 (0.05% in each state, equivalent to 0.1% in both
state).
To see that this choice is not arbitrary, and that the results are robust with respect to changes of this
choice, consider Fig. 3. Fig. 3 shows the results of the decomposition in the case of the apo-myoglobin
(see Fig. 5 in the main text) with filtering W = 1 ms. We plot the results for πA, the membership of
state A, χA(o), and the partial probabilities µA(o) and µB(o) depending on the choice of the fraction
pmin. For pmin > 10−5 the fluctuations for the total stationary probability of state A are within a 1%
range (s. Fig. 3 a) and so the estimates of the microscopic rates κAB and κBA stabilize. If we increase
the cutoff further, also the noise in the estimated memberships reduces and we get a more stable
estimate of the shape of the single states A and B (s. Fig. 3 b). In particular, Fig. 3d shows that for too
small a fraction pmin ≈ 10−6, statistical effects lead to an apparent bimodel shape in the distribution
of the B state, which disappears when more data is included in the first and last discretization bin.
For the main text we settled on a cutoff of 0.1% (0.05% on each side) that seemed a reasonable com-
promise to stabilize the estimation while not removing too much data.
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Figure 3: Sensitivity of state decomposition on extended binning. Estimation result for the apo-myoglobin with
filtering (s. Fig. 3 and Fig. 5 in the main text) depending on the total cutoff choice for the left and right most
bins combined. (a) Total stationary probability πA of being in state A (left). After about 10−5 the fluctuation are
below 1%. (b) Estimated membership of state A depending on the cutoff. With increasing cutoff the fluctuations
at the left and right most states decrease and suggest a more stable decomposition. (c) + (d) Estimated shape of
state A and B depending on the cutoff. With increasing cutoff an apparent bimodel shape disappears toward an
unsymmetric but unimodal shape. Very large cutoffs start to affect the overall shape of the distribution.
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