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ABSTRACT: We study the vibrational decoherence dynamics
of an iodine molecule in a finite krypton cluster comprising the
first solvation shell. A normal mode analysis allows us to
successively increase the complexity of the description. For the
ground state dynamics, comparison with experimental matrix
results shows that already four degrees of freedom are suffi-
cient to capture the main decoherence mechanism. For electro-
nically excited iodine, we model the vibrational dynamics of
initial Schrödinger cat-like states by the semiclassical hybrid
dynamics [Grossmann, F. J. Chem. Phys. 2006, 125, 014111]
and full quantum calculations, where available. Good agree-
ment of the results is found for a reduced model with three
degrees of freedom. We find non-Gaussian distortions of the bath density matrix, which is a necessary condition, if Schrödinger
catlike states in the bath are to be identified. However, in contrast to the experiment [Segale, D.; et al. J. Chem. Phys. 2005, 122,
111104], we observe only incoherent superpositions of bath vibrational states.

I. INTRODUCTION

Molecular dynamics in condensed phases can often be modeled
in terms of a quantum system that interacts with many
surrounding bath degrees of freedom (DOFs), thereby typically
experiencing rapid decoherence. In prototypical experiments in
the field, the environment consists of rare gas clusters/solids/
liquids.1−3 One way to describe such systems is by mixed
quantum-classical approaches that have been designed to treat
part of the DOFs on a classical level to make dynamical cal-
culations feasible. The time-resolved coherent anti-Stokes
Raman spectroscopy (TRCARS) experiments by the Apkarian
group on the ground state iodine molecule in a krypton matrix,4

for example, have recently been modeled and, using a mixed
quantum-classical Liouville method, two groups have been able
to reach very good agreement with experimentally observed
decay rates.5,6 For a recent text book on quantum-classical
methods and an extensive list of references, see refs 5 and 7. The
questions of how to correctly interface quantum with classical
dynamics, how to determine the initial conditions for the classical
DOFs, and how to devise efficient numerical solvers,8,9 never-
theless, leave room for a lot of debate.
Alternative approaches are based on the quantum mechanical

propagator, which allows us to start the dynamics using the true
quantum initial conditions and in its original form treats the

dynamics of all DOFs on equal footing, although the dynamical
ingredients for all DOFs are solely the solutions of Hamilton’s
equations. These so-called semiclassical initial value representa-
tion (IVR) methods have experienced a renaissance in the 1990s,
especially in the field of theoretical (chemical) physics of atomic
and molecular systems.10−12 One of the most prominent
semiclassical IVR methods was inspired by work of Heller,13

finally devised by Herman and Kluk,14 and studied in detail by
Kay.15,16 In principle this so-called Herman−Kluk (HK)
propagator is the first term in a series representation of the full
quantum propagator and by calculating higher order terms
even deep tunneling may be described in terms of real-valued
trajectories.17,18 In general, however, even the semiclassical IVR
method is plagued by the fact that an exceedingly large number of
trajectories may be needed to converge the oscillating, possibly
rapidly increasing integrand appearing in the propagator
expression. Therefore, even simpler expressions have been
looked for. One of them is the thawed Gaussian wave packet
dynamics (TGWD)19 of Heller. This method is based on the
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propagation of a single Gaussian with time-dependent width
(“thawed”), in contrast to the fixed width (“frozen”) Gaussians of
the HK propagator. It has been shown that the TGWD is in fact
an approximation to the HK propagator if applied to a Gaussian
initial state.20,21 Another, alternative way is to use different
levels of approximation to the prefactor in the Herman−Kluk
propagator.13,22−24

The TGWD is a single trajectory method and therefore does
not depend on sampling of initial conditions. For at most
harmonic potential, TGWD results are exact. Thus this method
might be very well suited for the description of weakly coupled
environmental DOFs, whose dynamics is expected to take place
near the potential minimum, where a harmonic approximation is
justified. In this spirit a recently developed method21 combines
the advantages of the semiclassical IVRmultitrajectory Herman−
Kluk (HK)14 method with Heller’s single-trajectory (TGWD)19

approach to apply it to typical system-bath type of situations.
This semiclassical hybrid dynamics (SCHD) has later been
extended to the density matrix level of description25 and
including finite temperatures.26 These developments make the
method ideally suited to be applied to a study of the decoherence
dynamics of I2 in a finite kryptonmatrix as studied experimentally
in the group of Apkarian.4 As far as possible, we will compare the
semiclassical hybrid results with full quantum calculations as well
as experimental results.
The paper is organized as follows: In section II the

semiclassical hybrid method is reviewed. In section III we give
the details of our pseudo normal mode description of I2 in a
krypton cluster, where we restrict the level of description of the
matrix to the first solvation shell. In section IV we show full
quantum results for the decoherence dynamics in the electronic
ground state and compare them with experimental results.
Section V deals with excited state dynamics and SCHD results
are compared with full quantum ones. Our final conclusions are
presented in section VI.

II. SEMICLASSICAL HYBRID DYNAMICS

We first review the semiclassical hybrid approach21 used in this
paper. To this end, we start by sketching the semiclassical IVR of
Herman and Kluk14 and its relation to TGWD.19 The com-
bination of these two methods leads to the SCHD, which has
been generalized for reduced density matrix dynamics in ref 25.
A. Herman−Kluk Propagator. A quantum mechanical

wave functionΨ(x,t) at time t for a system withNDOFs ∈x N

can be obtained by applying the quantummechanical propagator
to the initial wave function Ψ(x,0) according to

∫Ψ = ′ ′ Ψt K tx x x x x( , ) d ( , ; ,0) ( ,0)N
(1)

A semiclassical approximation to the propagator based on
multiple frozen Gaussians was developed by Herman and Kluk,14

building on previous work by Heller.13 The corresponding
propagator is given by
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Its main ingredients are normalized Gaussian wave packets
(GWPs) in position representation
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with a constant, real, positive definite, and diagonal width
parameter matrix γ. The integration in (2) is performed over
phase space points which serve as initial conditions of classical
trajectories (pt = p(q,p,t), qt = q(q,p,t)). Furthermore, classical
mechanics comes into play via the classical action

∫= = ′S S t tq p( , , ) d
t

0 (4)

with the Lagrangian = − .
The matrix in the determinantal prefactor, which goes back to

the original work of Herman and Kluk, is given in a slightly
generalized form by27,28
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It ensures the propagator’s unitarity in the stationary phase
sense29 and consists of elements of the so-called monodromy
(or stability) matrix,
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This matrix describes the time evolution of small deviations in
the initial conditions and can be obtained by solving linearized
Hamilton equations for the deviations.

B. Density Matrix Formulation. In density formalism the
general solution of the Liouville−von Neumann (LvN) equation

∫ρ ρ′ = ″ ‴ ″ ″ ‴

× * ′ ‴

t K t

K t

x x x x x x x x

x x

( , ; ) d d ( , ; ,0) ( , ;0)

( , ; ,0) (7)

applies the propagator twice. Because we are interested in the
dynamics of a particular DOF, the appropriate quantity to
consider henceforth is the reduced density matrix, focusing only
on the explicit dynamics of the system of interest (SOI).
To find the appropriate semiclassical expression, we use eq 7

together with eq 2, subdividing the position coordinate vector
into a SOI and a bath part, x ≡ (s,b). Then the partial trace over
all bath DOFs is performed, finally yielding a semiclassical
expression for the corresponding reduced density matrix25
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with the initial density operator ρ̂(0) and the width parameter
matrix divided into system and bath related submatrices γS and
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γB, respectively. We note that still S and S′ is the action of the
overall system. Also, the labels “S” and “B” denote the
subvectors for the system and the environmental DOFs.
Although the integration over phase space is usually performed
by a Monte Carlo procedure,30 the computational effort for
the calculation of the 4N-dimensional integral in eq 8 is still
formidable.
C. Thawed Gaussian Wave Packet Dynamics. We now

briefly sketch the relation of the TGWD introduced by Heller19

to the HK approximation. To this end we note that, if the initial
wave function in eq 1 is a Gaussian wave packet, a distinct
advantage of the HK propagator becomes manifest.31 Let
Ψα(x,0) be centered around (qα, pα). Then the integration over
x′ in eq 1 can be performed analytically and the overlap of
Ψα(x,0) with the coherent state centered around (q, p) in eq 2
reads

γ

γ

⟨ |Ψ ⟩ = − − −

−
ℏ

− −

+
ℏ

− · +

γ α α α

α α

α α

−

⎧⎨⎩

⎫⎬⎭

g q p q q q q

p p p p

q q p p

( , ) (0) exp
1
4

( ) ( )

1
4

( ) ( )

i
2

( ) ( )

T

2
T 1

T

(9)

where, for reasons of simplicity, we assumed that both
Gaussians have the same width parameter matrix γ to render
the final expression compact. The HK propagator as applied
to a Gaussian wave packet can now be approximated in a
simple fashion by expanding the exponent in the result-
ing phase space integral around the initial wave packet center
(qα, pα) up to second order. The integration in eq 1 can
then be performed analytically via Gaussian integration,21

yielding
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We emphasize that, in contrast to the HK expression (2), this
expression is given in terms of just one single trajectory with
initial conditions according to the mean position of the initial
Gaussian. The Gaussian form of the wave packet is retained
throughout the propagation, only the position and the width
change in time. In addition, it is exact for potentials being at most
quadratic.32 However, due to the additional approximation
which was applied to obtain eq 10, the TGWD is obviously less
accurate than the HK approximation.
D. Semiclassical Hybrid Dynamics. Based on the HK

method and the TGWD, the SCHD for the density matrix
propagation can now be presented. We start by assuming that the
initial density operator can be factorized into N Gaussians. This
is, e.g., realized for the normal mode approximation to molecular
vibrations in section V. As a generalization, which will be needed
later, we consider an initial wave function in the SOI variable that
is a sum of two Gaussians, |Ψ(0)⟩ = ξ(|Ψ1⟩+|Ψ2⟩), with a
normalization factor ξ due to the finite overlap (see eqs 31 and

35). Then, the initial SOI reduced density operator is a sum
ρ̂S(0) = ξ2∑α,α′=1

2 Iα̂,α′, where each contribution

̂
′ = |Ψ ⟩⟨Ψ |α α α α′I , (11)

is an outer product of two N-dimensional Gaussians generally
located at two different phase space points labeled with the
indices α and α′.
Again, we start with the full density matrix in terms of

HK propagators, i.e., eq 7 together with eq 2. The SCHD
approximation comes into play by expanding the exponent
up to second order around the center of the initial Gaussian
wave packet for a subset of Ntg DOFs and performing the
corresponding phase space integral analytically. The respec-
tive DOFs are hence approximated to the level of TGWD,
whereas Nhk = N − Ntg DOFs are retained on the level
of HK. Subsequently, we trace over all bath DOFs and
finally obtain an expression for the reduced density
matrix contribution (here for 1D SOI, as will be the case in
section V)

∫

σ

π π

γ

Λ

′ =
′ ′

ℏ

′ *
′*

×
−

′ − ′

−

′ − ′

+
−

′ − ′
+ +

ℏ
− ′

× ⟨ |Ψ ⟩⟨Ψ | ′ ′ ⟩

α α

α

α

α

α

α

α

γ α α γ

′

′ ′

′

′

⎧
⎨⎪
⎩⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬⎪
⎭⎪

H

I s s t
p q p q

s q

s q

s q

s q

s q

s q
h

i
S S

g g

h h
A A

q p q p

( , , )
d d d d

(2 )

det( ) det[ ( ) ]
det( ) det( ) det( )

exp

( )

( , ) ( , )

N N N N

N N

S t

S t

S t

S t

S t

S t

,
S hk hk hk hk

2 2 1/2

, ,

, ,

T
, ,

, ,

T
, ,

, ,

hk hk
(hk) (hk)

hk hk

hk

hk

hk hk hk

hk

hk

(12)

The expression consists of the NB × NB matrix

γ= − + ′ −H K K( )BB BB B (13)

and the symmetric 2 × 2 matrix
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The last abbreviation is the scalar
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Again “S” and “B” denote the SOI and the bath subvectors or
submatrices, respectively. Further abbreviations in eq 12 are
the symmetric 2Ntg × 2Ntg matrix
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where m̃ij are now N × Ntg matrices consisting of the
derivatives with respect to variables carrying the label “tg”
only. On the other hand, the label “hk” denotes the DOFs that
are excluded from this expansion. The matrices in eqs 18 and
19 and their complex conjugate, which depend on the other
half of the double phase space, also determine the symmetric
matrices

≡ ̃ ̃ ̃ ̃
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whose submatrices KSS, KSB, and KBB, which are also included
in eq 12, couple the different classes of DOFs (system and
bath).
We stress that in contrast to the full HK reduced density matrix

expression in eq 8, the present one (eq 12) is just a 4Nhk-
dimensional phase space integral. Also, the dynamics of the bath
DOFs is still fully included in this expression. The SCHD
expression in eq 12 is the method of choice for the numerical
computations in section V.

III. MODEL OF THE I2KR17 CLUSTER
In this work we will apply the semiclassical scheme just outlined
to study the dynamics of the iodine molecule in a krypton matrix
that has been investigated quite extensively in the Apkarian
group.2,4,22,33−36 Where applicable, semiclassical results will be
compared with full quantum dynamics. Although the experi-
ments are carried out in a cryogenic matrix environment, for the
numerical treatment presented here we reduce the krypton
environment to the first microsolvation shell. This cluster model
comprises 17 Kr atoms that are arranged as a double-icosahedron
surrounding the I2 molecule (Figure 1). In terms of symmetry,
this cluster belongs to the D5h point group, which is different
from the experimentally realized matrix symmetry. Apart from
being numerically easier to handle than a matrix model, there is

also a fundamental difference of the cluster model considered
here: Energy transfer from the vibrating I2 molecule to the two
rare gas atoms residing on the 5-fold symmetry axis can cause the
latter ones to dissociate from the cluster which in principle could
lead to the emergence of an observable directly related to the
system-bath coupling studied here.

A. Model Potentials. In our treatment of the system, all
atom−atom interactions between the iodine as well as the
krypton atoms of the first solvation shell have to be accounted
for. For reasons of simplicity, the full potential is approximated as
a sum over all pair potentials

∑=
> =

V V
J K

N

KJ
1

a

(21)

whereNa = 19 is the total number of atoms and the capital letters
are atom indices. Three kinds of pair potentials have to be
considered, depending on the kind of atoms that interact. All
potential parameters given in Table 1 are taken from ref 22, with

one typographical error corrected according to ref 33. We will
be considering adiabatic dynamics on a single electronic
surface of I2 in the following. Then the I−I interaction (each
atom has a mass of mI = 231323 me) is described by the Morse
potential

Figure 1.Normal modes of I2Kr17 with the highest symmetry, where the
modes shown in (b)−(d) have the strongest coupling to the I2 mode in
(a). I atoms are depicted in orange; Kr atoms are blue. The red lines
show the direction of atom displacements for the respective normal
coordinate.

Table 1. Parameters of the Model Potentials for the I2Kr17
Cluster

interaction D [Eh] α [a0
−1] Re [a0]

I−I (X state) 0.057 0.99 5.0
I−I (B state) 0.021 0.98 5.7
I−Kr (Σ) 0.0013 0.79 7.1
I−Kr (Π) 0.00057 0.81 8.1

interaction σ [a0] ε [Eh]

Kr−Kr 6.8 0.00063
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Below we will start with the dynamics on the electronic
ground state, i.e., the X state. The corresponding period in the
harmonic approximation of the potential is about 150 fs. For
the dynamics after electronic excitation of the I2 the Morse
parameters for its electronic B state are taken. In that case, the
period in the harmonic approximation is about 258 fs.
Regarding the I2−Kr interaction, we use a DIM-type

(diatomics in molecules37,38) superposition of Σ and Π
potentials for the I2−Kr interaction
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for ground state iodine, and
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for electronically excited iodine, where the index I(K) denotes
theKth iodine atom and θK is the angle between iodinemolecular
axis and the vector joining Kth iodine and krypton atom. Both
potentials can be modeled by the Morse potential, as well as by a
Lennard-Jones potential.5 Here, we use Morse potentials for
both Σ and Π contribution.
Finally, the Kr−Kr interaction is of van der Waals type, which

is here approximated by the Lennard-Jones potential
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⎛
⎝
⎜⎜

⎞
⎠
⎟⎟V

R R
4 1

KJ KJ
LJ

6

6

6

6
(25)

The parameter ε is the well depth of the potential (similar toD in
the Morse oscillator) and σ is the root of the potential. The mass
of a Kr atom is mKr = 152757 me.
B. NormalModeAnalysis.After geometry optimization, the

I2Kr17 cluster emerges with D5h symmetry as described at the
beginning of section III. The minimum energy of −0.1034 Eh is
close to the sum of I−I interaction, 20 I−Kr and 45 Kr−Kr
nearest neighbor interactions, which is −0.09915 Eh. For the
numerical treatment of the I2Kr17 cluster, we introduce normal
coordinates Qj that are related to (mass-weighted) Cartesian
displacement coordinates qk̃ via a linear transformation

∑= ̃ ̃ = ΔQ a q q m xj
k

kj k k k k
(26)

withmk the mass of the atom that is associated with the kth DOF
and where (a)kj is the matrix of the eigenvectors of the Hessian
matrix of the potential energy function39 from eq 21 for the
electronic X state of I2 (we note that, although the normal modes
are determined with respect to the X state, the dynamics studied
later will take place either on the X or on the B surface). More
precisely, the normal modes introduced here are actually
“pseudo”-normal modes, because all mixed second derivatives
containing derivatives with respect to the position of an I or axial
Kr atom in the Hessian matrix were neglected. This was done to
obtain pure I2 and Kr2 symmetric stretching modes, which allows
for dissociation of the two outer Kr atoms while leaving the
remaining cluster intact.

In this work, we construct a reduced model comprising only
four out of five totally symmetric (i.e., A1g representation of the
D5h point group) normal modes of the I2Kr17 system. In addition
to the two symmetric stretching modes of the four axial atoms,
the remaining three totally symmetric modes are referred to as
“hourglass”, “rugby ball”, and “balloon” mode. In Figure 1 these
krypton normal modes as well as the I2 mode are sketched.
Among the Kr (“bath”) modes, the axial Kr stretching is most
strongly coupled to the I2 (SOI) mode. The balloon mode has a
considerably weaker coupling than the other totally symmetric
normal modes. It will therefore be omitted in the following.
Figure 2 shows 1D potential cuts along the four most important

normal modes. Because we are using ground state normal
coordinates for our calculations of electronically excited iodine,
potential minima of all normal coordinates are in general shifted
away from zero in that case as can be seen most clearly for the
I2 stretch coordinate in Figure 2a. It should also be noted that the
Kr stretch mode Q2 is the only one that has a dissociative limit in
its potential. All other normal modes Qi correspond to atom
displacements such that both negative and positive values of Qi
result in some atoms approaching each other. The axial iodine
vibration Q1, for example, has a potential cut with Morse like form;
forQ1 > 800 a0 me , however, the iodine molecule starts interacting
with the axial Kr atoms which prevents it from dissociating.
With this model at hand, we have reduced the complexity of the

19-atomic systemwith 51 internal (vibrational) DOFs in a way that
(quantum) dynamical calculations are feasible, where the
complexity can be gradually enhanced by adding more and more
normal modes, thereby creating a hierarchy of models. In passing
we note that some of the normal modes considered here closely
resemble those obtained for dihalogens in a rare gas matrix.38

IV. NUMERICAL RESULTS FOR GROUND STATE
DYNAMICS

With the atomic interactions defined, we are now in a position
to perform dynamical simulations for the system of interest.

Figure 2. Potential cuts along single normal coordinates for I2 in the
electronic ground state (solid line) and I2 in the electronically excited B
state (dashed line).
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To justify our hierarchical model, we will first compare our
numerical rates for the loss of vibrational coherence on the
electronic ground state of I2 with the temperature dependent
experimental ones,4 as has been done previously using mixed
quantum-classical approaches.5,6 All full quantum results in this
and the next section have been obtained with the split-operator
method (SPO)40 as implemented in the WavePacket software.41

A. Quantities of Interest and Initial States. We use two
different measures for decoherence. On the one hand, the purity

ρ= ̂P t t( ) tr( ( ))S
2

(27)

describes the degree of pure state content of a system, taking
values between 1 and 1/n, where n is the number of states taking
part in the dynamics.42 On the other hand, the coherence Πkj(t)
between two vibrational eigenstates |k⟩ and |j⟩ of a system is
defined as5,6

ρΠ = | |t t( ) ( )kj kj (28)

where ρkj(t) is the matrix element ρkj(t) = ⟨k|ρ̂S(t)|j⟩. Our initial
state is assumed to be a product state

|Ψ⟩ = |Ψ ⟩|Ψ ⟩S B (29)

of system |ΨS⟩ and bath part |ΨB⟩ with

∏ ψ|Ψ ⟩ = | ⟩
=n

N

nB
1

B,
(30)

where the number of bath modes N is at most 3 for the quantum
mechanical calculations. In the system DOF (I2 stretching
mode), the initial state is a superposition state, consisting of
either two Gaussians or two numerically calculated vibrational
eigenstates of I2 in the rigid Kr cage. The coherence of two initial
vibrational eigenstates is investigated to achieve results that can
be compared with the experimental ones4 as well as with results
from earlier theoretical works.5,6 As in the previous works, the
initial superposition comprises the vibrational ground state |0⟩
and a vibrationally excited eigenstate |n⟩.
The purity of two initial GWPs is considered in particular to be

used in the next section for the SCHD. For that method, GWPs
are an ideal initial state due to their straightforward sampling, and
the purity, depending on the reduced density matrix only, is an
easily accessible quantity of interest. For that case, the initial
Schrödinger catlike state of the system is

|Ψ ⟩ ≡ |Ψ ⟩

= + −

|Ψ ⟩ + |Ψ ⟩

γ
α α

α α

− −
′

−

′

α α′ Q P P
1
2

{1 e cos[ ( )]}

( )

P P

S cat

( ) /4
1 1, 1,

1/21, 1,
2

(31)

Both Gaussians are centered at Q1 = 0, i.e., at the potential
minimum. The initial momenta are chosen to be P1,α = 0 and P1,α′
≠ 0 such that one Gaussian is in the vibrational ground state and
the energy of the other one corresponds to the energy of the nth
excited eigenstate. The width parameter of both Gaussians
corresponds to the width of the ground state of the harmonic
approximation or equivalently to the eigenfrequency of the I2
stretching mode: γ1 = 22.29 a0

−2.
To observe decoherence effects without zero-point energy

modifications,43 we have to treat finite temperature baths. This
requirement determines the initial states of all bath DOFs. For
the full quantum case, a finite temperature bath can be simulated

by a thermal average over a sufficiently large number of
independent wave packet calculations according to

∑ρ ρ∂
∂

̂ = ̂ ̂β− ̂

t
t H ti ( ) e [ , ( )]

n

H
n

B

(32)

where Ĥ and ĤB are total and bath Hamiltonian, respectively.
Equation 32 is a solution of the LvN equation only for vanishing
system-bath coupling ĤSB = 0 ̂, which we assume to be
approximately fulfilled. Also, we assume the potentials of the
bath modes close to QB,i = 0 (i = 2, ..., 4) to be sufficiently
harmonic that the initial bath states can be chosen as eigenstates
of harmonic oscillators with frequencies corresponding to the
eigenvalues found in the normal-mode analysis.

B. Coherence for Different Numbers of Bath Modes.
First, we consider an initial superposition of ground and excited
vibrational eigenstate in the system DOF

|Ψ ⟩ = | ⟩ + | ⟩n(0)
1
2

( 0 )S (33)

with corresponding initial reduced density matrix

ρ ̂ = | ⟩⟨ | + | ⟩⟨ | + | ⟩⟨ | + | ⟩⟨ |n n n n(0)
1
2

( 0 0 0 0 )S (34)

making the initial coherence Π0n(0) = |⟨0|ρ̂S(0)|n⟩| = 0.5. For a
start, we choose T = 45 K and n = 20 to get a significant loss of
coherence on a short time scale.
Our cluster approach allows for a hierarchy of models, adding

one bath DOF at a time. The first bath mode to be added is the
vibration of the two axial Kr atoms along the iodine molecular
axis, described by normal coordinate Q2. It has the strongest
coupling to the system in the sense that the decay of vibrational
coherence is faster than in any other 2D calculation. As can be
seen from the results of full quantum calculations displayed in
Figure 3a, Π0n(t) shows oscillatory behavior as well as

exponential decay. The oscillation period of about 1170 fs is
close to the harmonic approximation of the bath DOF (1102 fs).
Increasing the complexity of the problem by adding the

hourglass normal mode Q3 and thus allowing for movement of
the Kr ring atoms according to Figure 1c yields a slightly shorter
oscillation period and faster decay of vibrational coherence
(Figure 3b). If the fourth normal mode Q4 (rugby ball mode,

Figure 3. Coherence decay of I2 vibration for different number of bath
DOFs at T = 45 K (full quantum results). (a) One bath mode: axial Kr.
(b) Two bath modes: axial Kr and hourglass. (c) Three bath modes:
axial Kr, hourglass and rugby ball. The dashed line shows the exponential
fit for the decay of Π0n(t).
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Figure 1d) is taken into account, the decay is very much en-
hanced and the oscillation period doubles, as shown in Figure 3c.
This strong change might be due to the fact that axial Kr
stretch with 1102 fs and hourglass with 1144 fs have similar
oscillation periods, whereas rugby ball mode with 1513 fs is
clearly off-resonant. As expected, the number of bath modes is
crucial for the decoherence dynamics of the system. In the
following, we will show results from 4D full quantum calcula-
tions only. In terms of numerical effort, it takes 128 grid points
for the system DOF and either 16 or 32 grid points for each
bath DOF to perform these calculations. The time step for the
SPO is 1 fs.
C. Comparison with Experimental Results. Figure 4

shows the coherence from calculations starting from a

superposition of vibrational ground and excited state with n = 10
and n = 20, respectively. The qualitative behavior is the same as in
the experiment. Higher bath temperatures result in faster loss of
coherence. It also becomes clear that the energy of the excited
eigenstates has a strong influence on the dynamics: a
superposition with a high-lying excited eigenstate undergoes
fast decoherence. Fitting the peaks in the graphs from Figure 4
with the experimentally expected quantitative behavior Π0n(t) ∼
e−Γ0nt as shown in Figure 3c, rates Γ0n for the loss of vibrational
coherence can be extracted and compared with the fits to
experimental data (Table 2). In spite of our model comprising

only the first solvation shell and using only four normal modes,
our decoherence rates differ from the experimental results at
most by a factor of 2. For all computations listed in Table 2, the
rates are smaller than the experimental ones, which is due to two
reasons. First, we use only three bath modes. As shown in Figure 3,
the loss of coherence is enhanced if the number of bath modes
is increased. Therefore, one might expect the rates to get bigger
if more bath modes are included. Second, we get a 2-fold error
by the way we simulate finite bath temperature. For high
temperature, in this case 45 K, the number of bath states with a
significant weight e−βEB,n gets too big to consider all contributions.
At the same time, higher-lying bath states have to be taken

into account; for those states the assumption of a harmonic
potential is no longer valid. For n = 20, the influence of the
temperature can be seen very clearly. At T = 10 K, the rate
agrees almost exactly with the experimental one. Here, the
summed weight of them contributing bath states as a fraction of
the total partition function, ∑j=1

m e−βEB,j/∑j=1
∞ e−βEB,j, is almost 1.

At T = 45 K, this fraction is only 0.85 (with m = 30).
Consequently, the rate is considerably smaller than the
experimental one.
We stress that by using only four out of 51 normal modes, a

very good agreement with experimental results, and therefore
also with purely classical simulations taking explicitly into
account 108 atoms,5,6 can be achieved.

D. Purity vs Vibrational Coherence and GWP vs
Vibrational Eigenstate. After having established good
qualitative and quantitative agreement of our model with
experimental results, we will now introduce the purity as a viable
alternative measure for coherence of our system, and we also
show that simulations with initial superpositions of GWPs
display similar dynamics as simulations with eigenstates as initial
states. In Figure 5, vibrational coherence (multiplied by 2 to get

values between 0 and 1) and purity are shown for three different
setups. The qualitative evolutions are identical, with both
quantities undergoing exponential decay. However, decay rates
are not the same. The same holds for the limit for t→∞ of both
quantities, as illustrated especially in Figure 5c. Due to both
quantities displaying the same qualitative behavior, it can be
concluded that the loss of vibrational coherence corresponds to a
loss of quantum character of the system DOF in general.
Therefore, we will use the purity as the computationally easier
measure for decoherence henceforth.
The influence of the form of the initial wave packet can be seen

in Figure 6, in which either Schrödinger catlike states, i.e.,
superpositions of two GWPs according to eq 31, or super-
positions of two eigenstates as before are used as initial states. In
the case of GWPs, one Gaussian is chosen to be identical to the
ground vibrational eigenstate, and the other one is placed in the
potential minimum and has nonzero momentum such that it has
the same energy as a given excited eigenstate. In effect, we only
change the shape of the excited state. Differences in the details of
the purity are visible for all three examples; however, the overall
time evolution is the same. Especially the peaks indicating purity
revivals appear at the same points in time and have identical

Figure 4. Vibrational coherence of I2 in a Kr microsolvation
environment for T = 10 K (solid), T = 20 K (dashed), and T = 45 K
(dotted) from 4D full quantum calculations: (a) n = 10; (b) n = 20.

Table 2. Comparison of Decoherence Rates Γ0n from Fits to
Experiments4 with Our 4D Full Quantum Calculations

45 K 20 K 10 K

n = 10 n = 20 n = 10 n = 20 n = 10 n = 15 n = 20

Γ0n,exp (ps
−1) 0.100 0.34 0.040 0.10 0.029 0.044 0.060

Γ0n,sim (ps−1) 0.053 0.18 0.025 0.09 0.015 0.032 0.059

Figure 5. Purity P(t) (solid) and vibrational coherence 2Π0n(t)
(dashed) of I2 DOF for (a) n = 10, T = 20 K, (b) n = 15, T = 10 K,
and (c) n = 20, T = 45 K from full quantum calculations.
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heights, pointing to similar bath dynamics. The smaller
oscillations on top of the eigenstate purity are due to the more
sophisticated form of the highly excited eigenstate when
compared with a simple GWP. The loss of quantum character-
istics is mainly dominated by the initial energy rather than by its
detailed form.

V. NUMERICAL RESULTS FOR EXCITED STATE
DYNAMICS

In intriguing experiments on excited state dynamics of the
Apkarian group2 the generation of vibrational Schrödinger cat-like
states in the Kr bath has been postulated. In the remainder of this
paper we therefore concentrate on describing the dynamics of an
initial cat state of the I2 evolving on the electronic B surface. Now
we are interested in the qualitative behavior only and therefore
restrict ourselves to the case T = 0. For this purpose, we choose an
arbitrary superposition of two Gaussians

|Ψ ⟩ = + |Ψ ⟩ + |Ψ ⟩γ
α α

− − −
′α α′

1
2

(1 e ) ( )Q Q
cat

( /4)( ) 1/2s 1, 1,
2

(35)

where one Gaussian is centered at the minimum of the B state at
Q1,a = 204.1 a0(me)

1/2 and the other Gaussian at the repulsive side
of the potential at Q1,b = 22.63 a0(me)

1/2. Both Gaussians start at
zero initial momentum, thus having energies that correspond to
energies of vibrational ground and 20th excited state,
respectively, of I2 in the electronically excited B state. The
width parameters of both Gaussians are the same as for the
ground state dynamics. In the bath DOFs a single GWP is
initially located at Qi = 0 (i = 2, ..., 4). However, due to I2 being
electronically excited now, this no longer corresponds to the
potential minimum. All bath DOFs have zero initial momentum
and their width parameters correspond to the eigenfrequency of
the respective normal mode, i.e., γ2 = 60.21 a0

−2, γ3 = 61.36 a0
−2,

and γ4 = 70.56 a0
−2.

The main difference to the ground state dynamics described in
the previous section is that the electronically excited iodine
molecule induces a partial dissociation of the axial Kr molecules,
i.e., the Kr stretching mode Q2. This dissociation leads to a
suppression of the purity revivals, as can be seen from a
comparison of Figures 7a and 11a with Figure 6. Numerically, it
requires a higher number of grid points and the use of absorbing
boundary conditions to treat this dissociating bath mode with full
quantum mechanics. Due to hourglass mode Q3 and rugby ball

modeQ4 also not starting at the potential energy minimum, these
bath modes require a higher number of grid points, as well. In the
examples below, 128, 512, 64, and 128 grid points have been used
for Q1, Q2, Q3, and Q4, respectively. For both SCHD and SPO,
the time step was 1 fs.

A. Three NormalModes: Comparison of SCHDwith Full
Quantum Results. In this section, we compare three-
dimensional SCHD results with full quantum ones. First, the
I2, Kr2, and hourglass modes are considered, for which the
purities are shown in Figure 7 on a time scale in the order of 12
vibrational periods of I2 in the B state. Within the SCHD
treatment, the I2 mode Q1 is treated on the level of the HK
approximation as well as the Kr2 stretching mode Q2, because its
coupling to the I2 mode is the strongest compared with all other
normal modes. In contrast, we exploit the relatively weak
coupling of the hourglass mode Q3 by treating this DOF on the
level of TGWD.We find that the agreement between the purities
is very good, even for the hourglass mode, which is treated with a
cruder approximation than the other modes. The largest
deviation becomes manifest in the I2 mode at larger times,
where the SCHD result is below the full quantum one. However,
up to this deviation, the quantum results are well reproduced by
SCHD. We note that for this system the deviation of the norm
from unity is maximally 10% at larger times in the SCHD.
Next, the hourglass mode Q3 is replaced by the rugby ball

mode Q4. The corresponding purities are plotted in Figure 8.

Figure 6. Purity P(t) of I2 DOF for (a) n = 10, T = 20 K, (b) n = 15,
T = 10 K, and (c) n = 20, T = 45 K from full quantum calculations. Initial
states are either eigenstates (solid line) or Gaussians with energy
corresponding to the respective eigenstate (dashed line).

Figure 7. Time evolution of the purity of various normal modes for
I2Kr17 with I2, Kr2, and hourglass mode: (a) I2 stretching mode Q1; (b)
Kr2 stretching mode Q2; (c) hourglass mode Q3. Solid lines: quantum
results. Dashed lines: SCHD results.

Figure 8. Time evolution of the purity of various normal modes for
I2Kr17 with I2, Kr2, and rugby ball mode: (a) I2 stretching mode; (b) Kr2
stretching mode; (c) rugby ball mode. Solid lines: quantum results.
Dashed lines: SCHD results.
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Here the agreement of the SCHD with quantum results in all
three modes is even better than in the previous case, except for
times above t = 2300 fs, where the SCHD result for all modes is
above the quantum one. Also, the norm deviates from unity by
less than 15% at larger times. We note in passing that for all
SCHD results the necessary number of sampled trajectories is
105, which is reasonable considering the eight-dimensional phase
space integral and the length of the time scale.
The excellent agreement of the purities in the hourglass and

rugby ball mode is surprising, the more so as both modes are
treated on the level of an approximation in which the
corresponding (reduced) density was assumed to retain its
Gaussian form. On the other hand, one might assume that in the
full quantum treatment the initial Gaussian shape of the reduced
density is distorted after a few periods due to the anharmonicity
of the potential energy surfaces. To shed light on this seemingly
contradictory issue, we investigate the time evolution of the
reduced density in the hourglass and rugby ball mode in more
detail.
To this end, a snapshot of the SCHD Wigner function44

∫π
ζ ρ ζ ζ̃ =

ℏ
̂ − + ζ̃ ℏW s p s s t( , )

1
d ( , ; )e p

S S
2i /s

(36)

is plotted in Figure 9 for the hourglass mode at t = 1320 fs, which
is after about five I2 periods. A direct SCHD expression for

W(s,ps̃) is derived in Appendix A; this SCHD result is compared
with the full quantum one. The agreement of both results is
obvious. Furthermore, we find that the initial superposition of
two locally separated wave packets in the I2 is reflected in the
hourglass mode due to their mutual coupling. As one can see
from Figure 9, both parts of the Wigner function are of slightly
distorted Gaussian form, even in the SCHD. This circumstance
suggests that the TGWD DOFs generally do not keep their
Gaussian shape in the SCHD. To see this more clearly, the
Wigner function for the rugby ball mode is shown in Figure 10 at

time t = 1800 fs. The quantum result is very well reproduced by
the SCHD and apparently its shape is different from the shape of
a minimum uncertainty wave packet or a superposition of two of
them.
To elucidate this phenomenon, we recall that the DOFs on

both levels of approximation, HK and TGWD, are coupled via
classical dynamics. While the initial HK phase space points are
sampled within the numerical integration, the initial phase space
point of a TGWDDOF is fixed at the center of the corresponding
initial GWP. However, due to the coupling to the HK DOFs, the
trajectories associated with a TGWD DOF vary due to the
coupling to the different initial conditions (leading to different
histories).45 Therefore, strictly speaking, the integration over the
HK DOFs comes along with an integration over a set of “thawed
Gaussian”-trajectories in the SCHD, and thus the reduced
density of a TGWD DOF is not restricted to a Gaussian shape.
This confirms our assumption that an approximation on the level
of TGWD applied to a DOF which is coupled to other HK
DOFs, as in the SCHD, can still be accurate, even if weakly
affected by anharmonic dynamics.

B. Four Normal Modes. So far, we have compared three-
dimensional SCHD results with full quantum ones and found
good agreement. Now we increase the number of DOFs by
considering all four of the most important normal modes, i.e., I2,
Kr2, hourglass, and rugby ball. For iodine in the electronic B state,
a 4D full quantum treatment with the SPO would be numerically
overly expensive, because due to the aforementioned dissociation
of the axial Kr atoms, the necessary grid size for a wave function
with more than 3 DOFs increases beyond the memory capacity
of a standard desktop computer, even if absorbing boundary
conditions are applied. In contrast, for the SCHD this is no
restriction and thus it can be applied. Again, the phase space
sampling within the framework of the numerical integration is
performed only for the I2 and Kr2 modes, whereas the rugby ball
and hourglass modes are still treated on the level of TGWD. We
note in passing that also in the four-dimensional calculation 105

sampling points were used for the Monte Carlo integration.
In Figure 11, the purities obtained with SCHD for each of the

considered modes are plotted and compared for the three- and

Figure 9. Snapshot of the hourglass mode Wigner function at 1320 fs
considering three normal modes from full quantum simulation (a) and
from SCHD (b).

Figure 10. Snapshot of the rugby ball mode Wigner function at 1800 fs
considering three normal modes from full quantum simulation (a) and
from SCHD (b).

Figure 11. Time evolution of the SCHD purity of various normal
modes. (a) I2 mode with Kr2, hourglass, and rugby ball mode (solid line),
Kr2 and rugby ball mode (dashed line), and Kr2 and hourglass mode
(dotted line). (b) Kr2 mode with I2, hourglass, and rugby ball mode
(solid line), I2 and rugby ball mode (dashed line), and Kr2 and hourglass
mode (dotted line). (c) Hourglass mode with I2, Kr2, and rugby ball
mode (solid line) and I2 and Kr2 mode (dashed line). (d) Rugby ball
mode with I2, Kr2, and hourglass mode (solid line) and I2 and Kr2 mode
(dashed line).

The Journal of Physical Chemistry A Article

dx.doi.org/10.1021/jp305084f | J. Phys. Chem. A 2012, 116, 11199−1121011207

http://pubs.acs.org/action/showImage?doi=10.1021/jp305084f&iName=master.img-009.jpg&w=198&h=97
http://pubs.acs.org/action/showImage?doi=10.1021/jp305084f&iName=master.img-010.jpg&w=188&h=92
http://pubs.acs.org/action/showImage?doi=10.1021/jp305084f&iName=master.img-011.jpg&w=155&h=145


four-dimensional case. A comparison of the different purities for
every normal mode reveals only small differences between results
for the four- and three-dimensional case. Particularly, the purities
of the cagemodes show only slight deviations between the results
obtained for different numbers of DOFs. Hence, for the chosen
initial state in the I2, we could assume that for a certain cage mode
it is almost insignificant, whether or not the other cage mode is
considered in the propagation.
Of course, the purity does not give all information about a

state. It only reveals information about the “mixedness” of a state.
Therefore, to see the influence of an additional normal mode on a
subsystem, the Wigner functions of the rugby ball mode are
shown in Figure 12 for both the three- and four-dimensional case.

The comparison of both snapshots, taken at the same time t =
1860 fs, shows clear differences, especially in the momentum
width and also in the position of the maxima. Consequently, we
conclude that indeed it is relevant for the dynamics of a cage
mode, whether or not another cage mode is considered in the
dynamics of the overall system.
C. Comparison with Experimental Results. At last, we

shortly compare our results with experimental findings from the
Apkarian group, who inferred from their four-wave mixing
experiments that a coherent superposition between different
vibrational states of the bath is created.2 As can be seen in Figure 9,
the initial conditions used for our calculations generate a
vibrational superposition in the hourglass bath mode Q3.
However, the superposition is incoherent, which is indicated
by the lack of an interference pattern with negative parts between
both “packets” in theWigner function (Heller’s “dangerous cross
terms”46). The lack of interference in the bath modes might just
be due to the dissociation-induced lack of purity revivals. That is
why we have performed calculations for a variety of initial
conditions and sets of bath modes to find an initial setup for
electronically excited iodine that results in purity revivals as well
as coherent superpositions of bath states. Apart from “artificial”
initial cat states with arbitrarily chosen positions and momenta
according to eq 35 and 31, we also used initial conditions closer
to the experiment. For that, we ran 1D full quantum calculations
on two coupled electronic surfaces, starting with the cluster at its
equilibrium position in the electronic X state and irradiating with
two laser pulses with frequencies, delay time, and pulse durations
according to ref 2, to provide a superposition of two GWPs inQ1
as initial condition for our subsequent 2D or 3D calculations on
the B state. Some minor oscillations in the system purity have
been observed, but the energetic distance between the initial
GWPs turned out to be too small to split up the bath Gaussians.
With certain “artificial” initial conditions, such purity revivals

can be observed, as well. One example is shown in Figure 13,
where the wave function was a cat state according to eq 35 with

initial Gaussians centered at 78 (me)
1/2a0 and 378 (me)

1/2a0,
respectively, corresponding to both Gaussian having the energy
of the seventh eigenstate. On the other hand, all calculations with
artificial initial states have shown that every time a bath mode
splits up into two Gaussians, this superposition is incoherent and
the purity of the respective bath mode is at a local minimum, no
matter if there are purity revivals in the system or not.

VI. SUMMARY AND OUTLOOK
We have studied the ground as well as excited electronic state
dynamics of wave packets for the I2Kr17 cluster. A pseudo
normal mode analysis has been undertaken to make the
dynamics amenable for quantum calculations. As a first central
result of this paper, we could show that good agreement with
experimental (and previous classical) results can be achieved
already with four DOFs, particularly for high initial excitation and
low temperature.
Second, in the case of excited state dynamics and for zero

temperature, we employed a semiclassical hybrid scheme as
quantum calculations become increasingly cumbersome so that
four normal modes are beyond the capabilities of standard
present-day computers. After finding good agreement between
semiclassical and full quantum results for three normal modes,
we proceeded to investigate the dynamics of four normal modes
in SCHD. Although the hybrid scheme employs thawed
Gaussians for the bath DOFs, we could show that non-Gaussian
distortions are manifested in our results.
As in the experiment, partial purity revivals have been observed

for certain initial conditions. Other than inferred from the
experiment, which was performed at finite temperature, we did
not see any signatures of cat states in the bath, even for T = 0.
Only incoherent superpositions of different vibrational bath
states were generated. In future investigations we intend to
investigate different cluster or matrix geometries to study the
influence of symmetry and size of the Kr environment on the
decoherence dynamics. Another direction is to apply finite-
temperature SCHD26 to improve quantitative agreement with
experimental data also for other regions of temperature/
excitation parameter space. Finally, the influence of further
normal modes on the decoherence dynamics will be the objective
of future studies, where we intend to include more than four
normal modes in SCHD calculations to corroborate the
convergence of our reduced dimensionality results toward the
bulk results.

■ APPENDIX A: SCHD EXPRESSION OF THE WIGNER
FUNCTION

We consider a one-dimensional SOI. In density matrix formalism
the Wigner function has already been defined in eq 36 as

∫π
ζ ζ ρ ζ̃ =

ℏ
⟨ − | ̂| + ⟩ ζ̃ ℏW s p s s( , )

1
d e p

S
2i /s

(A1)

Figure 12. Snapshot of the rugby ball mode SCHD Wigner function at
1860 fs from calculation with three normal modes (a) and four normal
modes (b).

Figure 13. Purity of iodine mode from 3D full quantum calculation with
Kr stretching and hourglass mode. As seen in the experiment, the purity
shows revivals while decaying exponentially.
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For reasons of clarity, the momentum of the Wigner
representation pS̃ is introduced to distinguish it from the system
momentum pS, which is part of the phase space integration

variables in the SCHD. Inserting the SCHD expression of the
reduced density from eq 12, the ζ-dependent terms in the
exponent of eq A1 then give

ς σ σ ζ

σ σ

= − −Λ + Λ − Λ + − − Λ + − Λ + − Λ − + +
ℏ

̃

+ − Λ + − ′ Λ + − − ′ Λ + − + − ′

α α α α

α α α α α α

⎡
⎣⎢

⎤
⎦⎥e s q q q s q p
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2i
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t t t
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11 12 22
2
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,S,
2
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2

22 ,S, ,S, 12 ,S, 1 ,S, 2 (A2)

This is now an exponent of quadratic form in ζ, for which the
integral in eq A1 can be calculated analytically by applying a

Gaussian integration formula. The Wigner function then
becomes

∫
π π

γ
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′ ′
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where the expression
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results from the integration over ζ. It consists of the matrix

=
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and the vector
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Thus as in the semiclassical hybrid reduced density, only the
numerical calculation of the phase space integral is left to obtain
the SCHD Wigner function.
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Miller, W. H. J. Chem. Phys. 2001, 114, 2562.
(29) Herman, M. F. J. Chem. Phys. 1986, 85, 2069.
(30) Kluk, E.; Herman, M. F.; Davis, H. L. J. Chem. Phys. 1986, 84, 326.
(31) In the case of a non-Gaussian initial wave function, it can be
decomposed to a given accuracy in terms of Gaussian wave packets.47

(32) Heller, E. J. In Chaos et Physique Quantique/Chaos and Quantum
Physics, Proc. Les Houches Summer School, Session LII (1989); Giannoni,
M. J., Voros, A., Zinn-Justin, J., Eds.; North-Holland, Amsterdam:
Amsterdam, 1991.
(33) Zadoyan, R.; Li, Z.; Martens, C. C.; Apkarian, V. A. J. Chem. Phys.
1994, 101, 6648.
(34) Bardeen, C. J.; et al. J. Chem. Phys. 1997, 106, 8486.
(35) Karavitis, M.; Apkarian, V. A. J. Chem. Phys. 2004, 120, 292.
(36) Segale, D.; Apkarian, V. A. J. Chem. Phys. 2011, 135, 024203.
(37) Ellison, F. O. J. Am. Chem. Soc. 1963, 85, 3540.
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