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Abstract

We consider time-continuous, reversible Markov processes on large or continuous state space. For a
practical analysis of such processes it is often necessary to construct low dimensional approximations,
like Markov State Models (MSM). MSM have been used for this purpose in several applications,
particularly in molecular dynamics, see [16] for an example. One of the main goals of MSMs is
the correct approximation of slow processes in the system. Recently, it was possible to understand
under which conditions a MSM inherits the most dominant timescales of the original Markov process
[6, 7]. However, all rigorous statements known have yet been concerned with the approximation of
the absolutely slowest processes in the system, i.e., its dominant timescales. In this article, we will
show that it is also possible to design MSMs to reproduce selected non-dominant timescales and which
approximation quality can be achieved.

INTRODUCTION

Markov State Models (MSM) have been used as
finite Markov chain approximations for ergodic,
time-continuous Markov processes for many years
[20, 21, 22, 5, 24, 4]. Usually, one assumes that
the process of interest exhibits metastable dy-
namical behavior. That is, there exist sets in
state space in which the process stays for a long
period of time, compared to the typical transi-
tion times between these sets. The goal of an
MSM approximation is to construct a Markov
jump process with the metastable sets as dis-
crete states so that the MSM process inherits
essential information from the original continu-
ous Markov process. For multiscale systems, e.g.,
this essential information is the timescale associ-
ated with important slow processes in the system.
For example, in molecular dynamics applications
these processes could correspond to protein fold-
ing [11, 12], conformational rearrangements be-
tween native protein substates [9, 15], or ligand
binding [17]. In this context, the MSM process
should model the conformation dynamics of the
system, i.e., it should reproduce the transition
rates between its most important conformations
[21, 14, 10, 22].

The sets representing the Markov states in a
MSM can have two different forms. In standard
MSMs they form a full partition of state space;
a guideline to the construction of such MSM is
provided in [18]. A recently developed alternative

MSM variant does not require the sets to form a
full partition. It is rather based on so called core
sets and milestoning [23, 3] and will be called core
set MSM subsequently. Both methods share that
their construction can be interpreted in the sense
of a projected transfer operator [19]. That is,
the choice of n sets corresponds one-to-one to the
choice of a basis of an n-dimensional subspace D,
and the transition matrix of the MSM to the op-
erator QTQ, where T is the transfer operator of
the original Markov process and Q the orthogo-
nal projection onto D. Therefore, rigorous results
from [6, 7] concerning the approximation quality
of MSMs apply. Its simplest form states that the
longest m timescales of the original Markov pro-
cess are correctly reproduced by the MSM under
consideration if the projection error

δm := max
i=1,...,m

‖Q⊥ui‖, Q⊥ = Id−Q (1)

is small enough. The set {ui}i=1,...,m here denotes
the eigenvectors of the original transfer operator
T which correspond to the m largest eigenval-
ues; via Q the projection error δm depends on the
sets chosen. In the next section, we will present
the exact formulation of this statement. We will
see that the drawback of the Theorem is that it
aims at the approximation of the m longest, i.e.,
the absolutely dominant timescales, only. Nev-
ertheless, in many application one is interested
in events that happen on a particular timescale,
that may not be dominant in the above sense.
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Such timescales will be called non-dominant in
the following. As we will show in this article it
is possible to construct a MSM so that it repro-
duces a particular non-dominant timescale with-
out having to describe (or know) all more dom-
inant timescales of the system. Furthermore we
will present an estimate of the projection error;
the interpretation induced by it allows to under-
stand when the projection error can be expected
small.

SETTING AND FORMER RESULT

In the following we analyze an ergodic and re-
versible Markov process (Xt) on state space E
with unique invariant measure µ. We consider
its transfer operator T = Tτ for a fixed lag time
τ > 0 to act on the space L2

µ(E) = {v : E →
R|
∫
E
v2dµ < ∞}, that is, on a Hilbert space

equipped with the scalar product

〈v, w〉 =
∫
E

vwdµ, (2)

so that the operator T associated with (Xt) is self-
adjoint; details can be found in [6, 7], including
the following Theorem:

Theorem 1 Let 1 = λ0 > λ1 > ... > λm−1 be
the m dominant eigenvalues of T , i.e., for ev-
ery other eigenvalue λ it holds λ < λm−1. Let
u0, u1, ..., um−1 be the corresponding normalized
eigenvectors, D ⊂ L2

µ(E) a subspace with

1 ∈ D dim(D) =: n ≥ m (3)

and Q the orthogonal projection onto D.
Let 1 = λ̂0 > λ̂1 > ... > λ̂m−1 be the dominating
eigenvalues of the projected operator QTQ. Then

max
i=1,...,m−1

|λi − λ̂i| ≤ λ1(m− 1)δ2
m−1, (4)

where
δm−1 = max

i=1,...,m−1
‖Q⊥ui‖

is the maximal projection error of the eigenvec-
tors to the space D.

As already said the projected transfer opera-
tor QTQ is equivalent to the transition or rate
matrices of the respective MSMs; for standard
MSMs, the subspace D would be spanned by
stepfunctions each being constant on the parti-
tioning sets, and for core set MSMs, it would be
spanned by the committors [8, 13] with respect
to the core sets chosen. Thus the eigenvalues
λ̂1 > ... > λ̂m−1 encode the timescales incorpo-
rated in the MSM and the λ1 > ... > λm−1 the
dominant timescales of the original Markov pro-
cess. So, as promised in the introduction, Theo-
rem 1 tells us that the MSM will approximate the

dominant timescales of the original Markov pro-
cess if the projection error (1) is small enough.
Unfortunately, it does not contain information
about how to approximate a process on a selected
non-dominant timescale of interest without tak-
ing care of all slower processes as well.

MAIN THEOREM

The subsequent theorem will show that there is no
need to resolve all slower processes by a MSM if
one is interested in particular events taking place
on a non-dominant timescale (for its proof see the
appendix):

Theorem 2 Let T be a self-adjoint transfer op-
erator and Q the orthogonal projection to a sub-
space D with 1 ∈ D. Let λ be any eigenvalue of
T and u a corresponding normalized eigenvector
and set δ = ‖Q⊥u‖. Then there exists an eigen-
value λ̂ of the projected transfer operator QTQ
with

|λ− λ̂| ≤ λ1δ(1− δ2)−
1
2 . (5)

To simplify the right-hand side, note that for
δ2 < 3

4 , which must be the case for any reasonable
approximation, we have (1 − δ2)−

1
2 < 2. Then,

(5) reads
|λ− λ̂| ≤ 2λ1δ. (6)

This statement shows that, if we select a timescale
of the original process encoded by the eigenvalue
λ of T with associated eigenvector u, and con-
struct the MSM from sets (i.e., via a projec-
tion Q) such that ‖Q⊥u‖ is small enough, then
the MSM will approximate the selected timescale
well.

Remark 3 If the eigenvalue is degenerate, i.e.,
if it is not simple, we are allowed to set
δ = min

u
‖Q⊥u‖, where the minimum is taken

over all normalized vectors from the associated
eigenspace. This fact can be deduced from the
proof of Theorem 2 since it shows that the in-
equality (5) holds for every normalized eigenvec-
tor related to the eigenvalue of interest.

Remark 4 The dimension of the approximation
subspace D may be greater than two such that
QTQ has more than one nontrivial eigenvalue.
Theorem 2 only states that one of these eigen-
value is close to the desired one if the associated
projection error δ is small. However, one will not
know which eigenvalue of QTQ is the one without
knowing for which eigenvector δ is small. There-
fore we may want to consider m = dim(D) = 2
only (or small m in general) which seems to be a
severe limitation. However, we will see in Thm. 5
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below that m = 2 has additional advantages, and
our subsequent numerical examples will illustrate
that the general case perhaps should be approached
by means of a successive refinement strategy with
m = 2 in each refinement step.

DISCUSSION AND EXAMPLES

Let us consider a diffusion, i.e. the stochastic dif-
ferential equation

dXt = −∇V (Xt)dt+ σdBt, (7)

where V denotes the one-dimensional potential
illustrated in Fig. 1, σ = 0.8 denotes the noise
intensity, and Bt scalar Brownian motion.
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Figure 1: Potential V

For a lag time τ = 1, we find the following domi-
nant spectrum of the transfer operator T :

λ0 λ1 λ2 λ3 λ4

1.0000 0.9885 0.9247 0.7911 0.6289.

We will now compare different core set MSMs
with respect to the approximation of these eigen-
values. First, with two core sets that are chosen
as in Fig. 2,
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Figure 2: Two good core sets to approximate
the first timescale.

we get a very precise approximation of the first
eigenvalue |λ1 − λ̂1| < 10−4 by the dominant
eigenvalue λ̂1 of the MSM operator QTQ.
This is due to the small projection error
δ1 = ‖Q⊥u1‖ = 0.0164. Now, let us assume
that we are rather interested in the second slow-
est process in the system that describes the event

of going from the center of the transition region
into the two main wells and back. This process
is connected to λ2. In order to build an MSM
that captures this process, we have to introduce
another set in the middle of the transition region.
Two choices are presented in Fig. 3.
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Figure 3: Large and small third core set

For the small third core set we get

‖Q⊥u1‖ = 0.0339 ‖Q⊥u2‖ = 0.1024

and exactly the other way around for the large
third core set

‖Q⊥u1‖ = 0.1302 ‖Q⊥u2‖ = 0.0444.

So, Theorem 2 yields that the second non-trivial
eigenvalue λ2 should be better reproduced by the
MSM using the larger core set, paying with a pos-
sible loss in accuracy of the dominant timescale.
Actual computation of the eigenvalues of the 3×3
projected transfer operator QTQ in fact results in
the following values:

small third core set: λ̂1 = 0.9883, λ̂2 = 0.9203,

large third core set: λ̂1 = 0.9847, λ̂2 = 0.9235,

that perfectly exhibit the predicted tendency.
Theorem 1 cannot describe this effect since it

gives a statement about the joint projection error
only:

small third core set: δ2 = 0.1024,
large third core set: δ2 = 0.1302.

Since we already have a good MSM for the repro-
duction of the slowest timescale, why not design
a two state MSM just for the reproduction of the
second slowest one? This can be done by choosing
core sets as shown in Fig.4.
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Figure 4: Two core sets for approximation of
the second slowest timescale.

This choice leads to a MSM operator QTQ that
acts on a two dimensional subspace D; its two
eigenvalues

λ̂0 = 1, λ̂1 = 0.9235,

are only describing the dynamics of the second
slowest process. For this special case, we can also
prove a slightly better approximation quality.

Theorem 5 Let T be a self-adjoint transfer op-
erator and Q the orthogonal projection to a two-
dimensional subspace D with 1 ∈ D. Let λ be
an eigenvalue of T and u the corresponding nor-
malized eigenvector and set δ = ‖Q⊥u‖. Let the
smallest eigenvalue of T be given by λ−.
Then for the non-trivial eigenvalue λ̂ of the pro-
jected transfer operator QTQ it holds

|λ− λ̂| ≤ max{λ1 − λ, λ− λ−}δ2(1− δ2)−1. (8)

Again, one can simplify the statement without
loss of generality for δ2 < 1

2 :

|λ− λ̂| ≤ 2λ1δ
2. (9)

Our above example seems to indicate that one
always has to resolve the dominant timescales
in order to be able to approximate smaller
timescales. Our next example indicates that this
is not the case in general. We again consider a
diffusion process of form (7) but this time in the
three-well energy landscape shown in Fig. 5 with
σ = 0.65.
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Figure 5: Potential V

For a lag time τ = 0.1, we find the following dom-
inant spectrum of the transfer operator T :

λ0 λ1 λ2 λ3

1.0000 0.9979 0.7943 0.6061.

In this case, the dominant nontrivial eigen-
value λ1 encodes the dominant timescale t =
−τ/ log(λ1) ≈ 48 of switches between the two
small wells on the left hand side of the main en-
ergy barrier at x = 0 and the larger one on the
right hand side. The next relevant timescale cor-
responds to the switching between the two smaller
wells left of the main energy barrier. We want to
approximate this timescale. Therefore, we ignore
the large well on the right hand side of x = 0
and choose the two core sets C1 and C2 shown
in Fig. 5. Based on the committors associated
with these core sets we compute QTQ and find
eigenvalues

λ̂0 = 1, λ̂1 = 0.7946.

In view of Thm. 5 the small error |λ2 − λ̂1| =
3 · 10−4 is in good agreement with the projection
error δ = ‖Q⊥u2‖ = 0.0187 of the relevant eigen-
value u2 of T .

The example demonstrates that ones does not
necessarily have to resolve the whole structure of
the state space if one is interested in the dynamics
on a particular timescale. The important condi-
tion to allow for a low-dimensional approximation
of a non-dominant timescale is that one can ap-
proximate an associated eigenvector well by com-
mittor functions corresponding to only few core
sets. This raises hopes for a hierarchical refine-
ment strategy, which would try to approximate
every timescale separately by a different set of
core sets resolving only the relevant part of state
space. In general, an approximation using only
two core sets for every timescale may require the
use of more sophisticated refinement strategies in-
troducing an additional weighting between core
sets.

ESTIMATING THE PROJECTION ERROR

Next we will give an estimate of the projection
error δ = ‖Q⊥u‖ that appears in our above the-
orems for a specific subspace D. Therefore we
first introduce the committors q1, ..., qm that are
induced by them core sets C1, . . . , Cm under con-
sideration: The committor qj is given by the lin-
ear equation

(Id− T )qj = 0, on C
qj = gj , on E \ C,

with gj = 1 on Cj and gj = 0 on all other core
sets, and C = E \ ∪jCj . The space spanned by
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the committors can be written as

D = span{q1, ..., qm}
= {v | v is constant on each set Cj ,

T v = v on C}.

Now we can estimate the projection error ‖Q⊥u‖
for any eigenvector u.

Theorem 6 Take the setting from above, but let
D be the space spanned by committors. Denote
with Q the orthogonal projection onto D. Let λ
be an eigenvalue of T and u the corresponding,
normalized eigenvector. Then

‖Q⊥u‖ ≤ p(u) + 2µ(C)pmax(u)
+r(C)(1− λ)c(u)

with

r(C) = sup
‖v‖=1,

v=0 on E\C

 1∫
C

(v − Tv)2dµ

1/2

p(u) = ‖P⊥u‖
pmax(u) = ‖P⊥u‖∞

(Pu)(x) =

u(x), if x ∈ C,
1

µ(Cj)

∫
Cj

udµ, if x ∈ Cj .

c(u) =

∫
C

u2dµ

 1
2

(10)

INTERPRETATION

In order to achieve a small bound we have to make
sure that the two summands

r(C)(1− λ)c(u), and p(u) + 2µ(C)pmax(u) (11)

are small. For given λ the first summand consists
of objects that depend on the set C only. If we
let Π denote the projection onto the space of v ∈
L2
µ(E) with v|E\C = 0 then r(C) = ‖Π(Id−T )Π‖

so that we get from [1, 2], that

r(C) ≤ sup
z∈C

Ez(τ(∪jCj)),

where τ(A) denote the first entry time of
(Xnt)n∈N into the set A. That is, r(C) is small
whenever the process quickly leaves the set C.
Therefore the first summand is small whenever
λ is close to one and the process leaves the set
quickly. In order to have a small second summand
the eigenvector u just has to be almost constant
on the sets C1, . . . , Cm.

CONCLUSION

In this article, we have shown that it is not nec-
essary for a MSM to resolve all slow processes of
the approximated system. We proved that it is
possible to design special MSMs for the approx-
imation of selected non-dominant timescales, in
principle. By the way of doing this we also gave
an estimate for the projection error that appears
in previous estimates of the MSM approximation
error, as e.g. in Thm. 1.

Concerning the algorithmic question of how to
choose a good core sets, our results seem to indi-
cate that a multilevel identification strategy that
resolves timescale after timescale may not only
be possible but also superior to the simultaneous
reproduction of many timescales with many core
sets.

ACKNOWLEDGEMENTS. The authors have been
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MATHEON.

APPENDIX

PROOF OF THEOREM 2
Proof. For λ = 1 it is trivial, so λ < 1, u 6= 1.
Since T is self-adjoint, also QTQ is self-adjoint on
a finite dimensional space. Therefore, we have an
orthonormal basis of eigenvectors û1, ..., ûn and
real eigenvalues λ̂1, ..., λ̂n and

QTQu =
n∑
i=1

λ̂i〈u, ûi〉ûi.

On the other hand we have

QTQu = QTu−QTQ⊥u = λQu−QTQ⊥u

= λ

n∑
i=1

〈u, ûi〉ûi −QTQ⊥u.

Putting both equations together we get

QTQ⊥u =
n∑
i=1

(λ− λ̂i)〈u, ûi〉ûi.

Therefore,

‖QTQ⊥u‖2 =
n∑
i=1

(λ− λ̂i)2〈u, ûi〉2

≥ min
i=1,...,n

{(λ− λ̂i)2}
n∑
i=1

〈u, ûi〉2

= min
i=1,...,n

{(λ− λ̂i)2}‖Qu‖2

= min
i=1,...,n

{(λ− λ̂i)2}(1− δ2).
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So, there exists an eigenvalue λ̂ with

(λ− λ̂)2 ≤ ‖QTQ⊥u‖2(1− δ2)−1.

Moreover,

‖QTQ⊥u‖2 ≤ ‖QTQ⊥‖2‖Q⊥u‖2 ≤ λ2
1δ

2,

since Q⊥u0 = Q⊥1 = 0. Taking the square root
completes the proof. �

PROOF OF THEOREM 5

Proof. From the proof of Theorem 2 we get

QTQ⊥u = (λ− λ̂)〈u, û〉û

= (λ− λ̂)Qu,

where û is the eigenvector to the only non-trivial
eigenvalue λ̂. On the other hand,

〈Qu,1〉 = 〈u,Q1〉 = 〈u,1〉 = 0,

which means, that {1, Qu
‖Qu‖} is an orthonormal

basis of D. Therefore,

QTQ⊥u = 〈TQ⊥u,1〉1+
1

‖Qu‖2
〈TQ⊥u,Qu〉Qu

=
1

‖Qu‖2
〈TQ⊥u,Qu〉Qu.

Combination with the first equation yields

λ− λ̂ =
1

‖Qu‖2
〈TQ⊥u,Qu〉

=
1

‖Qu‖2
〈Q⊥u,Q⊥TQu〉

=
1

‖Qu‖2
(〈Q⊥u,Q⊥Tu〉 − 〈Q⊥u,Q⊥TQ⊥u〉)

=
1

‖Qu‖2
(λ‖Q⊥u‖2 − 〈Q⊥u, TQ⊥u〉)

≤ 1
‖Qu‖2

(λ− λ−)‖Q⊥u‖2

= (λ− λ−)δ2(1− δ2)−1.

Moreover,

λ̂− λ =
1

‖Qu‖2
(〈Q⊥u, TQ⊥u〉 − λ‖Q⊥u‖2)

≤ (λ1 − λ)δ2(1− δ2)−1.

�

PROOF OF THEOREM 6

In the proof of Theorem 6 the following maximum
principle will be needed:

Lemma 7 Let v ∈ L2
µ(E) be the solution of

(Id− T )v = 0, on C
v = g, on E \ C,

(12)

with g ∈ L∞(µ), g 6= 0 on E \ C. Then,

‖v‖∞ := max
y∈E
|v(y)|

≤ max
y∈E\C

|g(y)|.

For a proof of this Lemma please visit [19], Sec.
3.3.

Proof. Take the projection P onto the space
V = {v ∈ L2

µ(E)|v(x) = cj∀x ∈ Cj , cj ∈ R, j =
1, ..., n} of functions, which are constant on the
core sets.
First, ‖Q⊥u‖ = ‖u − Qu‖ ≤ ‖u − q‖ for every
q ∈ D, as Qu is the best approximation. Take
the interpolating q ∈ D, that is a solution of

Tq = q on C,
q = Pu, on E \ C.

(13)

As q ∈ V we have Pq = q. Therefore (13) is
equivalent to

PTPq = q on C,
q = Pu, on E \ C.

(14)

Moreover, for the projection Pu

PTPu = PTu− PTP⊥u = λPu− PTP⊥u.

Therefore the error e := Pu− q solves

(Id− PTP )e = (1− λ)Pu+ PTP⊥u on C,
e = 0, on E \ C.

This means, e ∈ EΘ = {v|v(x) = 0, x ∈ E \C} ⊂
E fulfills

Θ(Id−PTP )Θe = (1−λ)ΘPu+ΘPTP⊥u (15)

with

Θv(x) =

{
v(x), x ∈ C
0, x ∈ E \ C

.

Obviously it holds PΘ = ΘP = Θ. Thus, (15) is
equivalent to

Re := Θ(Id−T )Θe = (1−λ)Θu+ΘTP⊥u (16)

Now R has to be invertible on EΘ because if it
was not, there would be some v ∈ EΘ satisfying

Rv = 0,

which would imply

Tv = v on C,
v = 0, on E \ C.

But then it must hold Tv = 0 on E \ C, because
otherwise we would have ‖Tv‖ > ‖v‖. This would
imply Tv = v on E, which is a contradiction to
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the unique, positive invariant measure.
So we can write

e = R−1(1− λ)Θu+R−1ΘTP⊥u.

R is self-adjoint, because T is, and therefore
‖R−1‖ = 1

κ , where κ is the smallest eigenvalue
of R, i.e. there is a vector v ∈ EΘ, ‖v‖ = 1 with

Θ(Id− T )Θv = κv.

Now we have

κ2 =
∫
E

(κv)2dµ =
∫
E

(Θ(Id− T )Θv)2dµ

=
∫
C

((Id− T )v)2dµ.

This implies

‖R−1‖ ≤ 1

min
v∈EΘ,‖v‖=1

(∫
C

(v − Tv)2dµ

) 1
2
.

Moreover, ΘTP⊥ = Θ(T − Id)P⊥, which gives

‖R−1ΘTP⊥u‖ = ‖R−1Θ(Id− T )P⊥u‖ = ‖Θf‖,

where Θf solves

RΘf = Θ(Id− T )Θf = Θ(Id− T )P⊥u

which is equivalent to

Θ(Id− T )(Θf − P⊥u) = 0.

That is, w := Θf − P⊥u is the solution of

(Id− T )w = 0 on C

w = −P⊥u on E \ C

Lemma 7 now implies that ‖w‖∞ = ‖P⊥u‖∞ and
therefore

‖R−1ΘTP⊥u‖ = ‖Θf‖ ≤ µ(C)‖P⊥u
+w‖∞ ≤ 2µ(C)‖P⊥u‖∞.

So,

‖e‖ = ‖R−1(1− λ)Θu+R−1ΘTP⊥u‖
≤ ‖R−1‖‖(1− λ)Θu‖+ ‖R−1ΘTP⊥u‖)

= r(C)(1− λ)

∫
C

u2dµ

 1
2

+ 2µ(C)‖P⊥u‖∞.

Further,

‖Q⊥u‖ = ‖u−Qu‖ ≤ ‖u− q‖
≤ ‖u− Pu‖+ ‖Pu− q‖ = p(u) + ‖e‖.

Putting all together completes the proof. �
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