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Abstract A numerical scheme for solving high-dimensional stochastic control prob-
lems on an infinite time horizon that appear relevant in the context of molecular
dynamics is outlined. The scheme rests on the interpretation of the corresponding
Hamilton–Jacobi–Bellman equation as a nonlinear eigenvalue problem that, using a
logarithmic transformation, can be recast as a linear eigenvalue problem, for which
the principal eigenvalue and its eigenfunction are sought. The latter can be computed
efficiently by approximating the underlying stochastic process with a coarse-grained
Markov state model for the dominant metastable sets. We illustrate our method with
two numerical examples, one of which involves the task of maximizing the population
of α-helices in an ensemble of small biomolecules (alanine dipeptide), and discuss the
relation to the large deviation principle of Donsker and Varadhan.

Mathematics Subject Classification 49M25 · 74A25 · 60J28

1 Introduction

Optimal control of stochastic processes is an area of active research. From a theoret-
ical perspective the theory of viscosity solutions and the Hamilton–Jacobi–Bellman
(HJB) equation is well-established [1]. The applications are predominantly in Finan-
cial Mathematics where it is used to determine optimal investment strategies for the
market. On the other hand, application in materials science and molecular dynamics
are rare. Although the idea of numerically solving the HJB or dynamic programming
equation using backward iterations is rather simple, the curse of dimensionality is
often prohibitive and restricts the fields of possible application, excluding molecular
dynamics and the alike.
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Fig. 1 Correspondence between HJB equation for controlled MD, LDP for uncontrolled MD, and the
linear eigenvalue problem that is approximated by a Markov state model

Available methods for the numerical solution of HJB equations of moderate dimen-
sion include Markov chain approximations [2], monotone schemes [3,4], or methods
designed for relatively specific problems [5,6]. Nonetheless we are not aware of a sin-
gle article on optimal control of molecular dynamics (MD) using dynamic program-
ming principles, although the interest in controlling molecular dynamics simulations
has already started more than a decade ago with the development of Targeted MD or
Steered MD [7,8], and laser control of (open) quantum systems [9]; see [10] for a
recent survey of approaches from molecular physics, chemistry, and optical control of
quantum molecular dynamics. While most experimental techniques are used in order
to learn about a certain system from its response to an external forcing, like in atomic
force microscopy [11], experimental works on controlling conformational changes or
molecular switches has recently attracted a lot of attention (also among theorists).

In this article we propose an approach to solving the HJB for optimal control of
stochastic MD in high dimensions. The main idea is to first approximate the dominant
modes of the molecular dynamics transfer operator by a low-dimensional, so-called
Markov state model (MSM), and then solve the HJB for the MSM rather than the full
MD. The type of optimal control problems that we consider here, and which appear
relevant in molecular dynamics applications, belong to the class of ergodic stochastic
control problems. Following ideas of Fleming and co-workers [12,13], we show that
the optimal control of MD on an infinite time horizon can be reformulated as a linear
eigenvalue problem that has deep relations to a Donsker-Varadhan large deviation
principle (LDP) for the uncontrolled MD. The general strategy that is pursued in this
article, namely, using low dimensional MSM for solving high dimensional optimal
control problems is illustrated in Fig. 1.

This article cannot give all the technical details. It is rather meant as a collection
of the material that is required to introduce the main idea, namely, using MSMs to
find approximate optimal control strategies for MD problems. Section 2 gives a short
overview of stochastic molecular dynamics, Markov state models (MSM), and the role
of optimal control in MD. Section 3 is devoted to ergodic control and its relation to
the dominant eigenvalue of a certain elliptic operator. How this can be turned into an
optimal control algorithm using MSMs is outlined in Sect. 4. Section 5 briefly ana-
lyzes the connection to large deviation principles for the uncontrolled MD problem.
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Optimal control of molecular dynamics using Markov state models 261

Our findings are summarized in Sect. 6, including a short outlook for possible future
research. The appendix contains the derivation of the HJB equation of ergodic control.

2 Molecular dynamics and Markov state models

Molecular dynamics models the dynamical behaviour of molecular systems, mostly
in terms of the (Euclidean) coordinates of all atoms in the system. At each instance in
time, the state x of the system is a vector in S ⊆ R

n where n is three times the number
N of atoms in the system. Most systems of interest contain hundreds to thousands
of atoms which makes the state space S huge. The key object of molecular dynam-
ics is the gradient −∇V (x) of a potential V : S → R that models the interactions
between all atoms in the system. The potential V contains an enormous number of
minima and saddle points (the number of minima is growing exponentially with the
number of atoms). The deepest minima are located in wells that are separated by high
energy barriers or extended diffusive transition regions. For the observation time scale
of the conformation dynamics only the rare transitions between the minima are of
interest, while on the time scale of the internal molecular vibrations these transitions
are unlikely to occur, for the dynamics are confined to the energy minima. In this sense
we speak of the potential V as a multiscale object.

In the following the energy landscape of potential V is assumed to be bounded
below and to satisfy suitable growth conditions at infinity. Then, by the laws of sta-
tistical mechanics, the system visits all possible states according to the equilibrium
distribution μ (also called the invariant measure) which (via dμ/dx = ρ) is given
by the density function ρ(x) = exp(−βV (x))/Z with Z being the normalization
constant Z = ∫

S exp(−βV (x))dx . Here β = 1/(kB T ) is the inverse temperature
where T is the (physical) temperature of the environment of the system and kB is the
Boltzmann constant. Let us assume that the main energy barriers in the system are
of order 1, whereas the temperature ε = kB T is small compared to 1 or, more pre-
cisely, compared to the most important energy barriers. Then the wells of the energy
landscape are the regions in which the dynamics spend most of their time and which
are separated by transition regions of vanishing probability.

The simplest model of molecular dynamics is given by

dxt = −∇V (xt )dt + √
2ε dwt , x0 = x, (1)

where wt ∈ R
n denotes standard Brownian motion, 0 < ε � 1 the temperature, and

xt the state of the molecular system at time t > 0. It is known that (under appropriate
conditions on V ) xt converges to the equilibrium distribution μ in the sense that the
strong law of large numbers holds, i.e.,

lim
T →∞

1

T

T∫

0

f (xs) ds =
∫

S
f (x) dμ(x) a.s., (2)

for any f ∈ L1(µ) and µ-almost all initial conditions x0 = x .
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Fig. 2 The double well potential V = V (x)

Many molecular systems exhibit dominant metastable states, in that a typical MD
trajectory will remain in the vicinity of the main wells for a long time before making a
transition to another well. The wells are metastable or almost invariant subsets under
the dynamics, and, as a consequence, the dynamical behaviour of the system on the
longest timescales is essentially characterized by the rare transitions between these
metastable sets. Metastable dynamics thus means that the system remains in metasta-
ble sets for long periods of time before it exits quickly to another metastable set; here
the words “long” and “quickly” mainly state that the typical residence time has to be
much longer than the typical transition time.

The most prominent toy system that displays metastability is the double-well poten-
tial shown in Fig. 2 and that will serve as a paradigm throughout the text. If the energy
barrier between the right (lower) well and the left one is ΔV then the rare transitions
from the right to the left well happen on timescale exp(ΔV/ε); more precisely, it
follows from the Freidlin-Wentzell theory of large deviations [14] that

lim
ε→0

ε log E(τ εx ) = ΔV,

where τ εx is the first exit time from the right well, given that it started at x0 = x , and
E(·) is the expectation over the Brownian trajectories.1

In the language of biophysics and biochemistry the metastable sets are called molec-
ular conformations. Conformational transitions are essential to the function of pro-
teins, nucleic acids and other macromolecules. These transitions span large ranges
of length scales, time scales and complexity, and include processes as important
as folding [15,16], complex conformational rearrangements between native protein

1 It is a fundamental corollary of the Freidlin–Wentzell theory that, in the limit ε → 0, the expected exit
time E(τ εx ) becomes independent of the initial value x0 = x .
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Optimal control of molecular dynamics using Markov state models 263

substates [17,18], and ligand binding [19]. MD simulations are becoming increasingly
accepted as a tool to investigate both the structural and the dynamical features of these
transitions at a level of detail that is beyond that accessible in laboratory experiments
[20–22].

2.1 Markov state models

Recent years have seen the advance of MSM as low-dimensional models for metasta-
ble dynamical behaviour of molecular systems [23–27]. Recently the interest in MSMs
has increased a lot, for it had been demonstrated that MSMs can be constructed even
for very high dimensional systems [25]. They have been especially useful for mod-
elling the interesting slow dynamics of biomolecules [21,28–32] and materials [33]
(there under the name “kinetic Monte Carlo”). If the system exhibits metastability
and the jump process between the metastable sets are approximately Markovian, the
corresponding MSM simply describes the Markov process that jumps between the sets
with the aggregated statistics of the original process.

The key object of MSM theory is the transfer operator Tτ of the system. The transfer
operator is the propagator of the system: Tτ f models the transport of the function f
from time t = 0 to t = τ by the underlying dynamics. Mostly, the transfer operator is
considered as a linear operator Tτ : Hμ → Hμ on the weighted Hilbert space

Hμ =
⎧
⎨

⎩
ψ : R

n → R

∣
∣
∣
∣

∫

Rn

|ψ |2dμ < ∞
⎫
⎬

⎭
, (3)

with the weighted scalar product 〈ψ1, ψ2〉μ = ∫
Rn ψ1ψ2dμ andμ denoting the invari-

ant measure of the underlying dynamics. If the dynamics are given by (1) with μ ∝
exp(βV ) then the transfer operator satisfies Tτ = exp(τ L) where L denotes the infin-
itesimal generator

L = εΔ− ∇V (x) · ∇. (4)

In the space Hμ, the operators L and Tτ are known to be essentially self-adjoint which
implies that their spectrum is real-valued. The spectrum of L is contained in (−∞, 0]
with λ = 0 being a simple eigenvalue with eigenvector 1, the constant function. The
location of the dominant metastable sets and the transition rates between these sets are
encoded in the leading eigenvalues of Tτ , or L . In particular, the number of metastable
sets is determined by the number of eigenvalues close to the maximum eigenvalue
λ = 0 [27,34].

MSMs are low-dimensional representations of the dynamics that approximate the
longest timescales. If there are m � n dominant metastable sets, an MSM is based on
m disjoint core sets C1, . . . ,Cm ⊂ S that form the cores of the dominant metastable
sets, i.e., the most attractive parts of the main wells in the energy landscape. Given
these sets, one then constructs the so-called committor functions q1, . . . , qm by
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264 C. Schütte et al.

q j (x) = Prob(τx (C j ) < τx (D j )), D j = ∪k �= j Ck,

where τx (A) denote the first hitting time for the set A, assuming that xt was initialized
at x0 = x . That is, the committor q j gives the probability that the dynamics if started
in x at time t = 0 hit the core set C j next and before all other core sets.

By being probabilities, the committors form a partition of unity,
∑m

j=1 q j = 1, and
a basis of an m-dimensional subspace D = span(q1, . . . , qm} of Hμ. For instance, the
Galerkin projection of the eigenvalue problem Lu = λu onto D reads

L̂v = λ̂Mv, L̂i j = 〈qi , Lq j 〉μ, Mi j = 〈qi , q j 〉μ. (5)

The pair (L̂,M) represents the MSM. For appropriately chosen core sets, the entries
of M−1 L̂ are known to approximate the transition rates of the underlying dynamics
between the main metastable sets while its eigenvalues 0 = λ̂1 > · · · ≥ λ̂m are close
approximations of the leading eigenvalues 0 = λ1 > · · · ≥ λm of the infinitesimal
generator L [32]. In this case, the MSM can be taken as a low-dimensional represen-
tation of the effective dynamics of the molecular system: instead of the complicated
dynamical behaviour in some high dimensional state space we can now consider a
Markov jump process on a finite state space. Since the metastable sets can be inter-
preted as biomolecular conformations, the entries of the MSM matrix M−1 L̂ have the
direct interpretation of conformational transition rates or residence times.

Remark 1 In real life molecular dynamics applications the state space is very high
dimensional. In such cases the accurate computation of the committors as functions
on state space is infeasible even on the most powerful computers. Yet the matrix pair
(L̂,M) can be accurately estimated from one long realization of xt or from many
independent short realizations [35].

Example 1 (Double well potential) For the illustration, the committor functions q1
and q2 for the dynamics (1) for the double well potential from Fig. 2 and core sets
C1 = [−1.1,−0.9] and C2 = [0.9, 1.1] are shown in Fig. 3 (ε = 1/4). Here the
infinitesimal generator has leading spectrum

0 = λ1, λ2 = −0.0186, λ3 = −1.6647, . . . ,

while the spectrum of the 2 × 2 matrix M−1 L̂ is found to be

0 = λ̂1, λ̂2 = −0.0186.

2.2 Controlled MD

Biophysical and biochemical research aims at controlling the function of molecular
systems, or even at designing molecular systems to perform certain functions. One
direction of research focuses on steering the molecular system of interest from one
conformation into another conformation. Mostly there is one conformation C ⊂ S
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Fig. 3 Committor functions q1 and q2 for the dynamics (1) for the double well potential (β = 4) and core
sets C1 = [−1.1,−0.9] and C2 = [0.9, 1.1]

with considerably higher equilibrium population2 than all other conformations, and
one wishes to drive the system into another conformation B ⊂ S, e.g., by apply-
ing an external force as in force microscopy, or by photo or vibrational excitations
as in pump-probe laser experiments. Instead of the dynamics (1) one considers the
controlled process

dxt = (ut − ∇V (xt )) dt + √
2ε dwt , x0 = x0, (6)

with ut denoting a suitable R
n valued vector of control variables. The control is chosen

such that the cost function

lim inf
T →∞ E

⎛

⎝ 1

T

T∫

0

f (xs) ds

∣
∣
∣
∣ x0 = x

⎞

⎠ , (7)

is maximized where f is any bounded function, measuring, e.g., the population of
conformation B (this can be achieved by choosing f = 1B , the indicator function
of the conformation B, or f being the committor of conformation B). The expecta-
tion goes over all realizations of the process xs starting in x0 = x ∈ C where x is
any suitable reference point in C , e.g., the deepest minimum. To make sure that the
maximum in (7) exists, the control must be penalized, typically in form of a cost term
− ∫ T

0 |us |2ds that is proportional to the work done to the system between t = 0 and

2 Here the term equilibrium population refers to the probability μ(C) = ∫
C ρ(x)dx to find the system in

the conformation C ⊂ R
n when it is in thermal equilibrium, given by the stationary probability measure μ.
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t = T , for too much external work may either alter the system irreversibly, e.g., by
bond breaking, or it may be just too costly for practical purposes.

In order to include both aspects, high output in the sense of (7) and low cost in
terms of work done to the system, one can consider to solve

sup lim inf
T →∞

1

T
E

⎛

⎝
T∫

0

(σ f (xs)− η|us |2) ds

∣
∣
∣
∣ x0 = x

⎞

⎠,

where the maximization goes over all admissible controls ut , and σ, η > 0 are (so
far) arbitrary coefficients that weight the desired maximization of the output relative
to the cost of the work done on the system.

3 From ergodic control to eigenvalue problems

When u = 0 in (6) the strong law of large numbers (2) is valid. A similar statement
holds (under suitable assumptions) when u �= 0 is a stationary feedback law of the
form ut = c(xt ). We thus seek a control law u = (ut )t≥0 that maximizes the cost
functional

Jx [u] = lim inf
T →∞ E

⎛

⎝ 1

T

T∫

0

g(xs, us) ds

∣
∣
∣
∣ x0 = x

⎞

⎠, (8)

where we assume the cost function to be of the form

g(x, u) = σ f (x)− η|u|2, σ, η > 0. (9)

3.1 A dynamic programming equation

The following result relates the solution of the above optimal control problem to the
solution of a HJB equation.3

Theorem Let W ∈ C2 and λ ∈ R be the solution of

λ = sup
c∈Rn

{εΔW + (c − ∇V (x)) · ∇W + g(x, c)} . (10)

Further assume that

c∗(x) ∈ argmax
c∈Rn

{εΔW + (c − ∇V (x)) · ∇W + g(x, c)} (11)

exists and defines an admissible Markov control by u∗
t = c∗(xt ), such that

3 For a brief derivations of the HJB equation and the interpretation of the value function W , we refer to
“Appendix A” below.
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lim inf
t→∞

1

t
E (W (xt ) | x0 = x) = 0.

Then Jx [u] ≤ Jx [u∗] among all admissible controls, where the optimal cost Jx [u∗] =
J [u∗] is independent of the initial value x0 = x and is equal to λ.

Proof The proof is standard and consists basically in the application of Itô’s formula
to the value function W . A brief version is provided for the reader’s convenience; for
the technical details we refer to, e.g., [36]. Let

Lu = εΔ+ (u − ∇V (x)) · ∇
denote the infinitesimal generator of (6). Here the superscript indicates the explicit
dependence on the control variable. We have to show that the solutions to (10) yield
optimal controls that maximize (8)–(9) subject to (6).

Now choose a

c∗(x) ∈ argmax
c∈Rn

{
LcW + g(x, c)

}
.

Obviously u∗
t = c∗(xt ) is Markovian. Applying Itô’s formula to W and taking expec-

tations conditional on x0 = x yields

λ+ W (x)− E (W (xt ) | x0 = x)

t
= E

⎛

⎝1

t

t∫

0

(λ− Lu W (xs) ds
∣
∣
∣ x0 = x

⎞

⎠

≥ E

⎛

⎝1

t

t∫

0

g(xs, us) ds
∣
∣
∣ x0 = x

⎞

⎠,

where the second line follows from dropping the sup{. . .} in (10). Taking the limit
t → ∞ gives

λ ≥ lim inf
t→∞ E

⎛

⎝1

t

t∫

0

g(xs, us) ds
∣
∣
∣ x0 = x

⎞

⎠.

But the right hand side of the inequality equals Jx [u] where equality is attained for
u = u∗. Hence the assertion is proved. ��

3.2 Formulation as an eigenvalue problem

The HJB equation (10) admits an interpretation in terms of an eigenvalue problem
[12,37]. To reveal it we first of all note that

sup
c∈Rn

{
c · ∇W − η|c|2

}
= 1

4η
|∇W |2
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is unambiguously defined, so that (10) can be recast as

λ = LW + 1

4η
|∇W |2 + σ f (x), (12)

where L again denotes the infinitesimal generator of the control-free process (for
u = 0) as given by (4). We can transform (12) into an eigenvalue equation for the
function ψ = exp(W ): Using chain rule, it follows that ψ solves

Lψ + σ f (x)ψ +
(

1

4η
− ε

) |∇ψ |2
ψ

= λψ,

where the nonlinearity can be removed by choosing η = (4ε)−1. With this choice,
solving the HJB equation (10) turns out to be equivalent to solving the linear elliptic
eigenvalue problem

(L + σ f (x)) ψ = λψ. (13)

By the Perron–Frobenius Theorem, the eigenfunctionψ = ψσ to the maximum eigen-
valueλ = λσ is positive for allσ ≥ 0. Hence the transformation from the eigenfunction
ψ to the value function W = logψ is well defined. Furthermore the operator L + σ f
is symmetric in the weighted Hilbert space Hμ defined by (3), which implies that its
spectrum in Hμ is real-valued [38].

The representation of the value function W = logψ and its relation to the optimal
control u∗

t = c∗(xt ) by c∗(x) = 2ε∇W (x) implies that the optimally controlled MD
(6) takes the form

dxt = −∇ [V (xt )− 2εW (xt )] dt + √
2ε dwt , x0 = x0,

from which we see that the optimally controlled MD is again a diffusion in a trans-
formed energy landscape

dxt = −∇U (xt )dt + √
2ε dwt , x0 = x0, (14)

with

U (x) = V (x)− 2εW (x) = V (x)− 2ε logψσ (x). (15)

This allows to compute the optimal target population

πσ = lim inf
T →∞ E

⎛

⎝ 1

T

T∫

0

f
(
xσs

)
ds

∣
∣
∣
∣ x0 = x

⎞

⎠, (16)

where xσt denotes the optimally controlled MD, that is, the solution of (14), for a
given σ . Assuming that U grows sufficiently at infinity, ergodicity implies that xσt is
sampling state space according to exp(−βU ). Hence we have
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πσ = 〈ψσ , fψσ 〉μ
〈ψσ ,ψσ 〉μ .

Remark 2 The logarithmic transformation that leads to the eigenvalue equation (13)
is not unique, and for different parameter regimes it may be advantageous to use a
scaled transformation. For instance, for studying the low-temperature regime ε � 1,
a transformation of the form ψ̃ = exp(W/ε) gives rise to a risk-sensitive control
problem with the cost function [13,39]

g̃(x, u) = σ

ε
f (x)− 1

4
|u|2.

The result η = (4ε)−1 of the specific logarithmic transformation considered above
ought to be explained: The dominant energy barriers in the system are of order 1.
The external work exerted by the control force, W = 1/2 · ∫ T

0 |us |2 ds, should not
be larger than the average kinetic energy of the system that scales with ε; otherwise
one risks dissociation of the molecular system. In order to allow the external work
to overcome the dominant barriers, thereby achieving order 1 improvements of the
output, one needs to scale the work with 1/ε.

Remark 3 The operator L +σ f is formally equivalent to a Schrödinger operator [40].
Define

Sϕ = exp(−V/(2ε)) (L + σ f ) (ϕ exp(V/(2ε))) .

A straightforward computation then shows that S is a Schrödinger operator, namely,

S = εΔ+ Uσ , Uσ = σ f + 1

2
|∇V |2 − 1

4ε
ΔV .

Setting ψ = ϕ exp(V/(2ε)), it can be readily seen that (13) is equivalent to

Sϕ = λϕ.

Example 2 (Double well potential, cont’d) For the illustration, let us return to the dif-
fusion (1) in the double well potential shown in Fig. 2. We choose the target function
f = 1B with B = (−∞,−0.5) corresponding to the left well of the double well
potential. The eigenvalue problem (13) can be solved by means of a finite element
discretization to almost arbitrary accuracy. The results for the principal eigenvalue λσ ,
especially its dependence on σ are shown in Fig. 4. We observe that the eigenvalue
λσ grows almost linearly with σ for large σ (the graph displays that σ−1λσ tends
to a constant line asymptotically) while for small σ we observe a linear regime of
σ−1λσ that starts at a constant value a > 0. This behavior can be easily explained by
noting that λ0 = 0 and λ′

0 equals the expectation of the equilibrium cost (7), while the
behaviour for large σ is due to the fact that the optimal cost in (8) saturates when σ is
increased while ε is kept fixed. (Here the prime denotes the derivative with respect to
the parameter σ ; cf. also Sect. 5 below.)
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Fig. 4 The principal eigenvalue λσ /σ of the eigenvalue problem (13) versus σ
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Fig. 5 Eigenvector ψσ of principal eigenvalue for different σ . The eigenvector is shown for the following
values of σ : 0.005/0.01/0.015/0.02/0.025/0.05/0.1/0.2/0.3/0.4/0.5. The smallest value of σ belongs to
the highest line on the right hand side. Increasing values of σ belong to lower and lower values of ψ on the
right hand side. The highest values of σ are displayed as dashed lines

Figure 5 shows the respective eigenvector ψσ as a function of x for different
values of σ . The arbitrary prefactor of the eigenvector has been chosen such that
maxx ψσ (x) = 1.

Based on ψσ we can compute the transformed potential U from (15) that governs
the optimally controlled MD. The potential U is shown in Fig. 6. We observe that the
well on the right hand side (which for σ = 0 and U = V has been the deeper well
of the double well potential V ) is shifted upwards with increasing σ until σ = 0.5,
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Fig. 6 The transformed potential U (x) depending on σ . Same values of σ as shown in Fig. 5. Again the
highest values of σ are displayed as dashed lines

for which the two wells become equal; for σ > 0.5, i.e., for low penalization of the
control u relative to the cost function f , the left well becomes dominant and strongly
attracts the dynamics.

4 Approximate solution using MSMs

In real life molecular dynamics applications the state space is very high dimensional.
Then finite element discretizations of (13) are infeasible even on the most powerful
computers. Thus for such applications the step from the optimization problem (10) to
the eigenvalue problem (13) does not seem to be a big step forward. We are in need
of a method that allows to transform (13) to a feasible problem. We will now see that
MSMs can do this job.

Let us assume that we have access to an MSM (M, L̂) for the system with the
dynamics (1) and that the MSM subspace is D = span{q1, . . . , qm} with commit-
tor functions q1, . . . , qm . Then the eigenvalue problem (L + σ f )ψ = λψ can be
projected onto D. To this end, we represent the eigenvector ψ in the basis of D,
i.e., ψ = ∑

j α j q j with unknown coefficients αi . This results in

(L + σ f )ψ =
∑

j

(α j Lq j + α j f q j ) = λ
∑

j

α j q j .

Taking the scalar product with qi i = 1, . . . ,m from the left yields the following
generalized eigenvalue problem in m dimensions:

(L̂ + σ F)α = λMα, (17)
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Fig. 7 The principal eigenvalue λσ depending on σ and its MSM approximation λ̂σ as described in the
text (dashed line)

where α = (α1, . . . , αm)
T is the vector of the unknown coefficients, L̂ and M are

the MSM matrices given in (5) and F is the m × m matrix representation of the
multiplication operator f with entries

Fi j = 〈qi , f q j 〉μ, (18)

where ( f q j )(x) = f (x)q j (x) denotes pointwise multiplication.
As outlined in Remark 1 we typically do not have access to the committor functions

in molecular dynamics applications, but to the matrix pair (M, L̂) instead. Fortunately,
the matrix F can also be accurately estimated from one long realization of the process
(xt ) or from many independent shorter realizations without knowing the committor
functions [35].

The optimal target population given in (16) can be computed based on the MSM
approximation by

πσ = αT
σ Fασ
αT
σ Mασ

,

where ασ ∈ R
m is the eigenvector of the principal eigenvalue of (17).

Example 3 (Double well potential, cont’d) Returning to the diffusive dynamics in the
double well potential already discussed above with f = 1B , B = (−∞,−0.5), cor-
responding to the left well of the double well potential, we can compute the 2 × 2
matrix F from (18) based on the committor function shown in Fig. 3, and use our
knowledge of the MSM (M, L̂) to solve the 2-dimensional eigenvalue problem (17).
Figure 7 shows the ratio λ̂σ /σ as a function of σ in comparison with the reference ratio
λσ /σ that has been computed using a very accurate FEM discretization of the original
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Fig. 8 MSM eigenvector ψ̂σ of principal eigenvalue for different σ . The eigenvector is displayed for the
same values of σ and in the same way as in Fig. 5

eigenvalue problem (13). We observe that the MSM yields a very good approximation;
in particular the asymptotic behaviour for σ → 0 and the cross-over to the saturation
regime for large σ are almost perfectly reproduced.

Let the eigenvector corresponding to the principal eigenvalue λ̂σ be denoted by
(α1,σ , α2,σ )

T . Then ψ̂σ = ∑
j=1,2 α j,σq j is the MSM approximation of the dominant

eigenvector ψσ of (13). Figure 8 displays ψ̂σ for different values of σ . Comparison
with Fig. 5 shows very good agreement with ψσ . The corresponding MSM approx-
imation Û = V − 2ε log ψ̂σ of the transformed potential that shown in Fig. 9 is in
very good agreement with the reference potential in Fig. 6 that is obtained from the
accurate FEM solution.

In the above example the MSM approximation leads to a 2×2 eigenvalue problem.
Its principal eigenvalue can be computed analytically. From this analytical form we
find that λ̂σ scales as follows: For small σ we find

σ−1λ̂σ = a + bσ + O(σ 2), a = μ((−∞,−0.5)).

where a = μ((−∞,−0.5)) ≈ 0.171 is the equilibrium population of the left hand well
regarding the uncontrolled dynamics, and b = β2(1 + γ 2/4)/|λ1| with β = 〈 f, u1〉μ,
and γ = 〈u2

1, u1〉μ with u1 denoting the normalized first non-trivial eigenvector of L
with eigenvalue λ1. This shows that the increase of σ−1λ̂σ for small σ is the stronger
the stronger the metastability of the system (i.e., the smaller |λ1|). For large σ we find

σ−1λ̂σ = a + β

(
1

2
γ + (1 + γ 2/4)1/2

)

+ O(σ−1).
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Fig. 9 The transformed potential Û = Û (x) computed from the MSM described in the text

Here β ≈ 0.366 and γ ≈ 1.640 which yields σ−1λ̂σ = κ + O(σ−1) with κ ≈ 0.945
in good agreement with the reference FEM eigenvalue (see Fig. 7).

In the calculation we have employed the explicit form of the committor functions
in order to compute the transformed potential Û . Since computation of the committor
functions is infeasible in real MD applications this renders the computation of Û infea-
sible in real life MD applications. However, this is no limitation, for in experiments
only free energy differences between conformations matter which can be computed
from the MSM approximations directly without computing Û, cf. [18].

5 Deviations from ergodicity

The principal eigenvalue of (13) bears a deep relation with the cumulant generating
function of the (time-integrated) cost function f and entails a large deviations principle
for deviations from the ergodic limit of the cost function.

5.1 Relation to cumulant-generating functions

Let us for the last time return to the uncontrolled process xt given by (1). We want to
study the time-averaged exponential cost (cf. [41])

c(σ ) = lim inf
t→∞

1

t
log E (φ(y, t)) , (19)

with the function

φ(y, t) = E

⎛

⎝exp

⎛

⎝σ

t∫

0

f (xs)ds

⎞

⎠

∣
∣
∣
∣
∣
∣

x0 = y

⎞

⎠ . (20)
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If we keep t > 0 fixed and notice that log E(exp(σ F)) is the cumulant-generating
function (CGF) of the random variable

Ft =
t∫

0

f (xs)ds,

it readily follows that

c(σ ) = lim inf
t→∞

σ

t
E (Ft )+ lim inf

t→∞
σ 2

2t
E

(
(Ft − E(Ft ))

2
)

+ · · · ,

which, by ergodicity, implies that

c′(0) =
∫

S
f (x) dμ(x).

Assuming that the limit in (19) exists, we can conclude that φ(y, t) grows exponen-
tially at rate c as t → ∞. That is, we have φ(y, t) � ψ(y) exp(ct) where, by the
Feynman–Kac theorem, φ solves the linear evolution equation

(
∂

∂t
− L

)

φ = σ f (y)φ

φ(y, 0) = 1.

If we insert the asymptotic ansatz for φ in the last equation, we find that ψ is the
eigenvector corresponding to the maximum eigenvalue of L +σ f (x), i.e., the one that
dominates the growth of φ(·, t) for large t . More precisely,

(L + σ f (y)) ψ = cψ,

which is readily seen to be equivalent to (13) with λ = c.

Remark 4 The specific structure of the eigenvalue problem (13) implies a large devia-
tions principle that is due to Donsker and Varadhan [42,43]; cf. also [44,45]. It follows
from Hölder’s inequality that the CGF λσ = c(σ ) is convex, so that its Legendre trans-
form is well-defined. Now let

c∗(ω) = sup
σ

{ωσ − c(σ )}

denote the Legendre transform of c(σ ) and let I ⊆ R be a any closed subset. Then Ft

satisfies the large deviations principle (LDP)

lim
t→∞

1

t
log P

(
Ft

t
∈ I

)

= − inf
ω∈I

c∗(ω).

123



276 C. Schütte et al.

Fig. 10 Legendre transform
c∗(ω) of the CGF c as
introduced in the text

0 0.5 1
−0.01

0

0.01

0.02

0.03

0.04

ω
c *(ω

)

with the rate function c∗, which expresses the fact that the probability distribution
pt of ω = Ft/t decays like pt (ω) � exp(−tc∗(ω)) as t → ∞. In other words, the
Donsker–Varadhan LDP determines the exponentially small likelihood of observing
deviations from the law of large numbers as t → ∞.

Example 4 (Double well potential, closing) Since we have computed the CGF λσ =
c(σ ) for the diffusive dynamics in the double well potential already discussed above
with f = 1B , B = (−∞,−0.5), we can also compute its Legendre transform.
The result is shown in Fig. 10. The convex Legendre transform has its minimum at
ω = μ(B) ≈ 0.171 which determines the most probable value for Ft/t when t → ∞.
Another useful information that we obtain from the knowledge of c∗ is that if we want
to getμ(B)with a probability of 95 % up to 10 % correct based on long term simulation
of xt , then we have to use simulations of length T ≈ 30.000.

5.2 Application to alanine dipeptide

We consider the small biomolecule alanine dipeptide (ADP), see Fig. 11 (left panel).
ADP with the CHARMM 27 force field was simulated in a box of 256 TIP3P water
molecules. We performed a 1 μs production run with Langevin dynamics at 300 K,
using a friction constant of 5 ps−1 and options rigibonds all (i.e., all bond lengths
were fixed). The conformation dynamics of the system can be monitored via the φ and
ψ backbone dihedral angles. The corresponding invariant measure exp(−βV )/ZV is
shown in the right panel of Fig. 11; specifically we have plotted the marginal density

ρV (φ,ψ) = 1

ZV

∫

S
exp(−βV (x))δ[Φ(x)− φ]δ[Ψ (x)− ψ] dx .

The plot shows that the density is highest at the α-helical and the β-sheet-like struc-
tures, where the fact that the conformations appear as sharp peaks in the contour
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Fig. 11 Alanine dipeptide (ADP) and its invariant measure projected onto the φ–ψ plane, ρV . The meta-
stable α and β conformations are the two indicated regions, carrying most of the invariant measure μ of the
uncontrolled ADP system

plot indicates that the chosen temperature T is small compared to the most important
energy barriers ΔVmax of the system. More precisely, the average kinetic energy E
satisfies 9kB T = E � ΔVmax. In other words, we are in a scenario with ε � 1, since
ΔVmax is a O(1) quantity, and ε = kB T in our MD model (1).

Our further considerations are based on the MSM (standard MSM with 250 states
and a lag time of 500 time units) constructed in [35]. Our target function is f = 1B with
B = [−130,−50]× [−100,−50], meaning that we want to maximize the population
of the α-helix conformation while suppressing the β-sheet conformation without putt-
ing too much energy into the system. Figure 12 shows the resulting marginal invariant
distribution of exp(−βU )/ZU ,

ρU (φ,ψ) = 1

ZU

∫

S
exp(−βU (x))δ[Φ(x)− φ]δ[Ψ (x)− ψ]dx,

for optimally controlled MD computed from the eigenvalue problem (17) and the
resulting target population πσ for different σ .
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Fig. 12 Marginal invariant density ρU for optimally controlled MD (σ = 1.2; left) and optimal target
population πσ as a function of σ (right)

6 Summary and outlook

We have outlined a numerical scheme for solving high-dimensional stochastic control
problems on an infinite time horizon that appear relevant in the context of MD. The
scheme relies on the interpretation of the corresponding HJB equation as a nonlinear
eigenvalue problem that, using a logarithmic transformation, can be recast as a linear
eigenvalue problem, for which principal eigenvalue and its eigenfunction are sought.
We have given a proof of concept that (under certain conditions that are typically met
in MD) the linear eigenvalue problem can be computed efficiently by approximating
the underlying stochastic process with a coarse-grained Markov state model for the
dominant metastable sets. A nice feature of the proposed scheme is that the MSM can
be sampled from MD simulation data using the uncontrolled dynamics.

Our proposal is sketchy and a lot of work remains to be done. First and foremost,
error bounds for the MSM approximation, along with an analysis of the backward
stability of the approximation in terms of the optimal control are still lacking. Fur-
thermore the exact relation between the optimal cost (more precisely: its Legendre
transform) and free energy of nonequilibrium steady states needs to be explored. Other
open issues involve optimal control on finite time horizons or optimal stopping, both
for non-degenerate (i.e., uniformly elliptic) and degenerate ergodic (i.e., hypoelliptic)
diffusion processes.

Acknowledgments The work of CS and CH is partially supported by the DFG Research Center Matheon
“Mathematics for Key Technologies” (FZT86) in Berlin.

Appendix A: Hamilton–Jacobi–Bellman equation of ergodic control

The ergodic cost functional (8)–(9) is somewhat special in that the corresponding nec-
essary optimality condition (i.e., the HJB equation) does not follow directly from a
dynamic programming principle, but rather turns out to be the zero-discount limit of
the following discounted control problem:
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u∗
α = argmax

u∈A
E

⎛

⎝
∞∫

0

e−αs g(xs, us) ds

⎞

⎠. (21)

Here A is the set of admissible Markov controls and α > 0 denotes the discount
factor that enforces convergence of the indefinite integral. The HJB equation for the
discounted control problem is obtained as follows: let

Vα(x) = E

⎛

⎝
∞∫

0

e−αs g(x∗
s , u∗

s ) ds

∣
∣
∣
∣ x0 = x

⎞

⎠

be the optimal cost-to-go or value function of the discounted problem (21), for a given
optimal control u∗

t = u∗
α,t . Using the linearity and the tower property of the conditional

expectation, it can be readily seen that

Vα(x) = Ex0

⎛

⎝
τ∫

0

e−αs g
(
x∗

s , u∗
s

)
ds

⎞

⎠ + Ex0

⎛

⎝
∞∫

τ

e−αs g
(
x∗

s , u∗
s

)
ds

⎞

⎠

= Ex0

⎛

⎝
τ∫

0

e−αs g
(
x∗

s , u∗
s

)
ds

⎞

⎠ + Ex0

⎛

⎝e−ατ
∞∫

τ

e−α(s−τ)g
(
x∗

s , u∗
s

)
ds

⎞

⎠

= Ex0

⎛

⎝
τ∫

0

e−αs g
(
x∗

s , u∗
s

)
ds

⎞

⎠ + Ex0

⎛

⎝e−ατExτ

⎛

⎝
∞∫

τ

e−α(s−τ)g
(
x∗

s , u∗
s

)
ds

⎞

⎠

⎞

⎠

= Ex0

⎛

⎝
τ∫

0

e−αs g
(
x∗

s , u∗
s

)
ds

⎞

⎠ + Ex0

(
e−ατV (xτ )

)
,

where we have used the shorthand Ex0 (·) = E(·|x0 = x). Rearranging the last equation
and dividing by τ > 0, we obtain

0 = 1

τ
Ex0

⎛

⎝e−ατVα(xτ )− Vα(x0)+
τ∫

0

e−αs g
(
x∗

s , u∗
s

)
ds

⎞

⎠,

which upon using Itô’s formula for e−ατVα(xτ ),

Ex0

(
e−ατVα(xτ )− Vα(x0)

) = Ex0

⎛

⎝
τ∫

0

e−αs
(

Lu∗ − α
)

Vα(xs) ds

⎞

⎠,

implies
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0 = 1

τ
Ex0

⎛

⎝
τ∫

0

e−αs
((

Lu∗ − α
)

Vα(xs)+ g
(
x∗

s , u∗
s

))
ds

⎞

⎠ .

If we relax the assumption on the control, we have

0 ≥ 1

τ
Ex0

⎛

⎝
τ∫

0

e−αs (
(Lu − α)Vα(xs)+ g(xs, us)

)
ds

⎞

⎠,

where equality is attained for u = u∗
α . Letting τ → 0 formally yields

0 = sup
c∈Rn

{
(Lc − α)Vα + g(x, c)

}
, (22)

which is the HJB equation for the discounted control problem (21) [46].
The ergodic control functional can be treated as the limit of (22) when α → 0.

To this end, we define λα = αVα and Wα = Vα − Vα(0). Formally Wα satisfies the
equation

0 = sup
c∈Rn

{
(Lc − α)Wα − αVα(0)+ g(x, c)

}
,

and under suitable assumptions, it can be shown that [47]

lim
α→0

λα = λ, lim
α→0

Wα(x) = W (x),

where the pair (λ,W ) solves the HJB equation

λ = sup
c∈Rn

{
LcW + g(x, c)

}
.

This is (10). Note that the reference point x̂ = 0 for which Wα(x̂) = 0 is arbitrary,
since the limiting value function W is defined only up to an additive constant.
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