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While  studies  of  protein–ligand  association  have  mostly  focused  on  the  native  complex  and  its  stability
(binding  affinity),  relatively  little  attention  has  been  paid  to  the  association  process  that  precedes  the
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formation  of  the complex.  Here  we  review  approaches  to  study  the  kinetics  of  association  and  association
mechanisms,  i.e. the  probability  distribution  of  association  pathways.  Selected  methods  are  described
that  allow  these  properties  to be calculated  quantitatively  from  simulation  models.  We  summarize  some
applications  of  these  methods  and  finally  propose  a model  mechanism  by which  proteins  may  efficiently
screen  potential  ligands  for  those  that  can  be  natively  bound.
odel simulation

Protein–protein and protein–ligand interactions are essen-
ial for almost any biological process. Protein–ligand and
rotein–substate binding is a prerequisite for signal transduction
nd modulation processes. Protein–protein interactions are for
xample required to form filaments that are stabilized by strong
nteractions amongst the constituting monomers. Due to their
mportance protein interactions have been subject to intensive
nvestigation since the early days of molecular biology (Kauzmann,
959; Pauling et al., 1943). Classically, protein interactions have

argely been characterized in terms of the affinity of the interac-
ion partners involved. For example, a highly affinity interaction is
haracterized by the fact that small concentrations of the respec-
ive interaction partners lead to a high yield of interaction complex.

hile affinity has been proven to be a good measure to indicate for
xample the potency of an enzyme inhibitor it “hides” the kinet-
cs of the underlying structural and biochemical processes. This
inetic aspect can be crucial to assess the effectiveness of a certain
eaction (Tummino and Copeland, 2008) or to foster a biophysical
nderstanding of the reaction process itself. For example, certain

nteractions show a high affinity due to a slow koff rate, which
eans the interaction partners form a complex that is stable for

 rather long time, while other interactions might exhibit the same
ffinity value while with a higher turnover, i.e., a faster associa-
ion rate (kon) and also a faster dissociation rate (koff). A prominent
xample for the biological relevance of kinetically fast interactions

s given by the degradation of the neurotransmitter Acetylcholine
ACh) from the synaptic cleft, which is carried out by the enzyme
cetylcholinesterase (AChE). For this process very fast kinetics are
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indispensable, as fast high frequency transmission of nerve sig-
nals relies on a quick restoration of the transmitting modules. As
a result of this requirement, evolution made AChE to one of the
fastest known enzymes, with a protein–ligand association that is
super-diffusive, i.e. faster than would be realized by free diffusion
(Meltzer et al., 2006; Radic, 1997; Ripoll et al., 1993).

In the following we  give a short overview of theoretical
studies that have contributed to investigate mechanisms and
kinetics of protein interactions and present a new methodology
that in principle allows to compute the ensemble of all reac-
tive protein–protein/protein–ligand association pathways. This
approach is illustrated on an example of binding of a phosphate
ion to the Phosphate Binding Protein, previously published in Held
et al. (2011).  For a more thorough review of existing theoretical
work on protein–protein interactions the reader is referred to pre-
vious studies (e.g., Dell’Orco, 2009; Gabdoulline and Wade, 2002;
Papoian and Wolynes, 2003; Schreiber et al., 2009; Vijayakumar
et al., 1998).

In many studies, protein association dynamics are modeled as
a random diffusion process in an energy landscape that arises
from the electrostatic interaction energy of the proteins involved
(Altobelli and Subramaniam, 2000; Ehrlich et al., 1997; Elcock,
2003; Elcock et al., 1999; Gabdoulline and Wade, 1997, 1999, 2001;
Haddadian and Gross, 2006; McGuffee and Elcock, 2010; Northrup
and Erickson, 1992; Pachov et al., 2011; Zhou, 1993). In these
approaches the influence of individual water molecules in the sys-
tem is approximated via a continuum heat bath that exerts random
kicks on the solute molecules. Furthermore, it is often assumed that
the internal degrees of freedom, e.g., flexibility of side-chains or

internal conformational changes can be neglected and the proteins
are thus modeled as rigid bodies. These simplifications allow to
reach simulation timescales that are relevant for protein associa-
tion events at a comparatively low computational cost compared to

https://core.ac.uk/display/267951076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.ejcb.2011.08.004
http://www.sciencedirect.com/science/journal/01719335
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ll-atom molecular dynamics. It should be noted that with advances
n computational power, such fully detailed molecular dynamics
imulations to study the association process are becoming accessi-
le (Ahmad et al., 2008; Buch et al., 2011). Protein flexibility is likely
o be essential for the actual binding process that occurs after asso-
iation towards a pre-complex, either because the binding induces
onformational changes, or because it proceeds via conformational
election (Lange et al., 2008).

More than 30 years ago, Ermak and McCammon (1978) have
resented an algorithm that allows mixtures of proteins to be sim-
lated with Brownian dynamics. Based on this algorithm, a strategy
as been developed to compute bi-molecular kinetic association
onstants (Northrup et al., 1984). To obtain the association rate of
wo proteins the procedure is the following: one protein is transla-
ionally constrained in the center of a sphere and the other is placed
n random orientations at random positions at the surface of the
phere. Starting from these configurations the Ermak–McCammon
lgorithm is used to simulate the movement of the diffusing protein
or each of the generated setups. Based on the obtained simulation
esults the fraction of proteins that successfully associated with
he center protein is estimated. This fraction together with the
xpected Smoluchowski rate to find both proteins at the radius of
he sphere from where the trajectories started is then used to com-
ute the diffusional association rate. This approach to calculate a
i-molecular association rate constant is often abbreviated as the
AM (Northrup, Allision, McCammon) approach. In the initial pub-

ication (Northrup et al., 1984) this rate was based on branching
iagrams, but later an analytical expression was derived by Zhou
1990).

In the past 25 years the described methodology was very
uccessfully applied to study the mechanisms and kinetics of a
umber of biological interaction processes ranging from stud-

es of bi-molecular protein–protein interactions (Altobelli and
ubramaniam, 2000; Elcock et al., 1999; Gabdoulline and Wade,
997, 1999, 2001; Haddadian and Gross, 2006; Northrup and
rickson, 1992; Zhou, 1993), over DNA-chromatin (Ehrlich et al.,
997; Pachov et al., 2011) interactions to studies of heteroge-
ous protein mixtures (Elcock, 2003; McGuffee and Elcock, 2010).

n parallel to the complexity increase of the systems studied
ith Brownian dynamics algorithms, also the underlying models

mproved. For example, the different dielectric nature of protein
nd solvent had been neglected in early works. Gabdoulline and
ade (1996) have developed an effective charge method that

legantly accounts for this difference in an approximate but compu-
ationally efficient way. Furthermore, hydrodynamic interactions
ad been neglected in Brownian dynamics (BD) studies due to their
mall accuracy benefit vs. computational cost ratio. However, recent
lgorithmic advances by Geyer and Winter (2009) substantially
educe the associated computational cost and render their future
nclusion in BD simulations economic.

Despite the success of BD to correctly model association kinet-
cs, little work was devoted to systematically characterize the
ssociation and dissociation pathways that lead to formation of
rotein complexes, i.e. the microscopic mechanism. An exception

n that regard is the work by Spaar et al. (2006),  who analyzed the
raction of trajectories that successfully formed a Barnase–Barstar
ncounter complex. While their analysis provides valuable insights
bout possible association and dissociation pathways, it remains
argely qualitative. It is for example not apparent from their analy-
is which pathways connect the metastable regions present in the
icinity of the Barnase protein.

To overcome this lack of quantitative analysis, we have

ecently developed an approach that allows to compute both
he association kinetics and the ensemble of association path-
ays of protein–ligand association processes in a rigorous way.

his approach is based on Transition Path Theory, which is a
ell Biology 91 (2012) 357– 364

statistical physics approach to characterize transition pathways
between selected subsets of a dynamical system. In the remainder
of this paper this approach will be recapitulated and illustrated as
the example of inorganic phosphate binding to the Phosphate Bind-
ing Protein. Further we propose a kinetic model that models the
binding of anions to the attractive patch of the Phosphate Binding
Protein, revealing a potential kinetic benefit of low-affinity binders
over high-affinity binders.

Calculation of transition pathways and rates

How can the full ensemble of pathways and the overall rate of a
protein–ligand association process be calculated? First, a molecular
model needs to be defined, i.e. the computational representation
of the protein, its ligand, and their interactions with each other
and with the solvent. At very small interaction distances structural
dynamics and explicit water molecules are important. Therefore,
explicit water all-atom molecular dynamics simulations have been
used to investigate questions such as whether ligand binding occurs
via induced fit or conformational selection (Lange et al., 2008).
For binding partners that have relatively stable structures and at
distances where they are still separated by one or two solvation
layers, the internal dynamics of protein and ligand and the explicit
structure of solvent molecules are presumably less important. Con-
sequently, it is common at this stage to use models that keep the
internal structures of protein and ligand rigid and treat the solvat-
ing environment (consisting of water, ions, and other non-resolved
molecules) implicitly by subsuming it into (1) an effective diffusion
constant, governing how fast protein and ligand can move through
this media, and (2) an effective dielectric permittivity, governing
the strength of electrostatic interactions between protein and lig-
and, potentially also accounting for the effect of the ionic strength
of the solution. Based on these two properties and the specific loca-
tion of charges on protein and ligand, their motion can be described
by BD (Gabdoulline and Wade, 1997, 2001; Northrup et al., 1984;
Schluttig et al., 2008; Spaar et al., 2006). Having defined the molec-
ular model and dynamics, all properties of interest are in principle
defined, including the binding affinity, the binding rate, and the
ensemble of binding pathways. However, it is often impractical to
calculate these properties by calculating time averages from direct
simulations, i.e. by running a single or a number of long trajectory/-
ies that bind/s and unbind/s sufficiently often.

Recently, mathematical and computational approaches have
been developed that break down this problem into sub-problems
each of which are practically manageable. We  sketch the approach
here and give the most important expressions for rates and path-
way probabilities. First, the conformation space of protein and
ligand are conceptually divided into the dissociated regime, where
the protein–ligand pair under investigation do not interact and
diffuse freely through the media, and the near regime where one
protein copy and one ligand copy are considered to be close enough
such that they interact, e.g. via electrostatic and hydrodynamic
forces (Fig. 1). The near regime is entered with a rate kDiff that
depends on the concentration of protein and ligand, and the lig-
and can then either diffuse out again or associate with the protein
at a rate kAB. kAB is the rate of a complex formation event of a single
protein–ligand pair from the boundary of the near regime, i.e. it is
measured in s−1 and is not concentration dependent, and it depends
on all details of the interaction between protein and ligand.

While kDiff can be easily calculated from the Smoluchowski rate
equation (see Fig. 1) the calculation of the ensemble of pathways

in the near regime and its associated rate kAB is more difficult. The
key here is to subdivide this near regime into small conformational
substates, calculate the transition rates or transition probabili-
ties between pairs of such substates i and j separately, and then
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Fig. 1. kDiff and kAB as contributors to the overall diffusional association rate kon.
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Diff denotes the rate at which substate particles diffuse into a sphere of radius r, it
s  given by the Smoluchowski rate kDiff = 4�Dr and has the unit M−1 s−1. kAB denotes
he transition rate of a single substate molecule present at distance r to the binding
ite  B, it is given by the A → B transition rate and has the unit s−1.

eassemble the entire dynamics within the near regime from it. We
nd others have developed and established such ensemble dynam-
cs or Markov models in the past few years (Bowman et al., 2009;
uchete and Hummer, 2008; Chodera et al., 2007; Keller et al., in
ress; Noé, 2008; Noé and Fischer, 2008; Noé et al., 2007, 2009;
rinz et al., 2011, in press; Schütte et al., 1999; Swope et al., 2004;

oelz et al., 2010). The typical application of Markov models is

o analyze complex processes such as protein folding where large
mounts of molecular simulation is clustered into small confor-
ational substates and the overall process can be understood by

ig. 2. Illustration of TPT on a simple two-dimensional protein–ligand binding model. The
nergy  landscape. (b) Resulting stationary density, i.e., probability to find the ligand at a c
ite  for areas on top of the charged protein than for the uncharged protein. (d) Reactive flu
uxes  f +

ij
.
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analyzing the resulting transition probabilities between these sub-
states (Buchete and Hummer, 2008; de Groot et al., 2001; Hubner
et al., 2006; Karpen et al., 1993; Muff and Caflisch, 2007; Noé
and Fischer, 2008; Pan and Roux, 2008; Rao and Caflisch, 2004;
Schultheis et al., 2005; Wales, 2003; Weber, 2003). The dynami-
cal data may be generated with any dynamical model, including
all-atom molecular dynamics, coarse-grained dynamics or BD with
rigid solutes. Such analyses are especially useful in scenarios where
large simulation datasets arise, such as in the folding@home frame-
work (Bowman et al., 2009; Singhal et al., 2004). On the other hand,
in situations such as protein–protein or protein–ligand binding,
essential degrees of freedom are often known a priori. For example,
obviously relevant coordinates are the 6 rototranslational degrees
of freedom that describe the relative position and orientation of the
second protein or ligand with respect to the first protein. In such
cases, the conformation space can be discretized a priori and many
short simulations can be started from many different substates,
without having to wait for the dynamics to sample these substates.
One advantage of Markov models over standard analyses is then
that their substate-to-substate transition probabilities Tij(�) can be
estimated from many short trajectories of length � that may  be
much shorter than the slowest relaxation times of the system, thus
becoming somewhat independent of the rare event character of the
molecular system (Noé et al., 2009; Prinz et al., 2011). This approach

introduces statistical uncertainty in the results whose magnitude
can be estimated with novel statistical methods (Chodera and Noé,
2010; Hinrichs and Pande, 2007; Noé, 2008; Singhal and Pande,
2005).

 dissociated state of the ligand A and the associated state B are shown. (a) Potential
ertain position. (c) Committor q, revealing a higher probability to reach the binding
x density and integrated flux lines calculated from the flux field resulting from the



3 al of C

p
d
t
i
a
o
m
t
w
t

r
�
b
t
b

c
a
r
p
t
t
a
a
D
T
A
c
a
t

F

w
q
c
s
V
r
t

f

w
o

k

k
I
l
t
l
t
(

k

w
c
o
t

60 M. Held, F. Noé / European Journ

In simple cases, such as the diffusive binding of an ion to a rigid
rotein, the conformational substates can be defined by a three-
imensional grid in the space of ion location around the protein. In
his case, there are even no simulation trajectories needed because
t is possible to calculate transition rates kij between substates from

 direct spatial discretization of the dynamical equations and with-
ut statistical error (Held et al., 2011; Song et al., 2004). Markov
odels can be expressed in terms of either transition probabili-

ies Tij(�) or transition rates kij, and the subsequent analysis also
orks with both approaches. For simplicity, we continue with the

ransition rates kij.
A number of quantities can be calculated from the transition

ates kij. Each conformational substate has a stationary distribution
i (the Boltzmann distribution, see Fig. 2b) for which the detailed
alance equation �ikij = �jkji holds, i.e. in equilibrium, the flux of
rajectories from state i to j, �ikij, equals the flux of trajectories
ackward, �jkji.

We  now want to concentrate on those trajectories only that
ome from the dissociated state A (i.e. the boundary between far
nd near regime) and progress to the associated state B without
eturning to A in between. We  are interested in characterizing the
robability distribution of these reactive trajectories, and in the flux
hese trajectories generate between the state. For this, we require
he concept of the committor qi, which is, for each state i, the prob-
bility that a trajectory being in this state will next move on to
ssociate (to B), rather than dissociate (to A) (Bolhuis et al., 2002;
u et al., 1998; Vanden-Eijnden, 2006), see Fig. 2 for illustration.
he committor can be easily calculated from kij (Noé et al., 2009).
s qi quantifies the kinetic progress of the ligand association pro-
ess, it can be used as a reaction coordinate or order parameter for

 free energy profile. The free energy profile of ligand association is
hen given by:

(q∗) = −kBT log
∑

i|qi≈q∗
�i, (1)

here kB is the Boltzmann constant, T the absolute temperature and
* the value of the committor coordinate. More importantly, the
ommittors can be used to calculate the reactive fluxes f +

ij
between

ubstates via transition path theory (TPT) (Metzner et al., 2009;
anden-Eijnden, 2006). The reactive flux is the number of trajecto-
ies passing from i to j per time unit moving from the dissociated
o the associated state, and is given (at the equilibrium) by:

+
ij

= max{�ikij(qj − qi), 0}. (2)

hich defines a flux field that can be used to show the streamlines
ut of A and into B along with their probabilities (see Fig. 2d).

Finally the A → B reaction rate is given by (Noé et al., 2009):

AB =
∑

i∈A

∑
j/∈A�ikijqj∑

i�i(1 − qi)
.

AB is the rate at which a ligand molecule binds starting from set A.
n order to compute the bi-molecular association rate of protein and
igand, the rate at which ligand molecules arrive at the A sphere has
o be taken into account. Based on the assumption that protein and
igand diffuse freely with diffusion constant D outside the A sphere,
he diffusion limited association constant kon can be obtained by
Erban and Chapman, 2009):

on = 4�D

(
r −
√

D

kAB
tanh

(
r

√
kAB

D

))
, (3)
here r denotes the radius of the A sphere. Note that kon is a con-
entration dependent rate (e.g. in M−1 s−1), while kAB is the rate
f a single complex binding event (in s−1). In the derivation of
his formula Erban and Chapman assume that molecules X diffuse
ell Biology 91 (2012) 357– 364

to the surface of a sphere of radius r, which is centered around
molecule Y. Once molecules X hit the surface of the sphere they
are removed from the surface with rate kAB, i.e. the rate at which
ligands bind given they are found on the surface of a sphere with
radius r. The approach described here is an alternative to the NAM
approach (Northrup et al., 1984) for calculating binding rates kon.
Both approaches converge to the exact binding rates when statis-
tical and discretization errors approach zero. Our  approach has the
advantage that it can deal with substate-based dynamical models
such as Markov models that can be generated even for processes
that are much slower than affordable simulation lengths.

Phosphate binding to the Phosphate Binding Protein

A number of studies, especially using BD simulations of rigid
proteins and ligands, have been used to study protein–ligand asso-
ciation kinetics (Gabdoulline and Wade, 1997, 2001; Held et al.,
2011; Spaar et al., 2006, 2009). These studies have found relatively
broad ensembles of association pathways that narrow down when
the ligand approaches the binding site. In some systems, the depen-
dence of these pathways on mutations were investigated (Held
et al., 2011; Spaar et al., 2006, 2009). Examples have been found
that association might occur via pre-binding sites outside the native
binding site that metastably associate ligands, and from which
either binding or dissociation might occur. In Held et al. (2011),
the binding of phosphate (Pi) to the Phosphate Binding Protein was
studied in detail using the systematic approach described in the
previous section. The rate matrices K, which served as input for the
TPT analysis, were computed by discretizing the surrounding space
of the Phosphate Binding Protein mutants into a number of volume
elements. Given this discretization the transition rates kij between
volume elements were calculated based on the joint diffusion con-
stant of protein and ligand and the electrostatic potential associated
to each volume element. The unbound set of states A was  chosen
to comprise all elements with a distance larger then 25 nm to the
protein center, the set of bound states B was  chosen to comprise
elements in the vicinity of the bound Pi conformation, please see
Held et al. (2011) and Latorre et al. (2011) for details. While previ-
ous work on this system was  mainly concerned with investigating
the binding kinetics by experimental means (Brune et al., 1998;
Ledvina et al., 1998) or direct simulation (Huang and Briggs, 2002),
our study was the first to provide a systematic description of the Pi
binding pathway ensemble.

Similar to diffusion-controlled enzymes (Stroppolo et al., 2001)
we find that the wild-type shows association rates greater than
the diffusion-limited rate which would be expected for finding the
binding site by pure undirected diffusion. By investigating several
in silico mutants of the Phosphate Binding Protein this super dif-
fusive binding effect could be attributed to a positively charged
patch (“anion attractor”) which strongly attracts anions by elec-
trostatic steering. For the purpose of this review, we pick four of
the studied proteins that are most instructive to explain the gen-
eral biophysical mechanisms that alter the binding kinetics and
association pathway ensemble.

The results are summarized in Fig. 3. The left column shows the
free energy profile of phosphate associations along the commit-
tor coordinate and the calculated association rate. For the selected
mutants the free energy decreases with increasing committor
value, indicating that binding of phosphate is energetically favor-
able. Inspection of the free energy profiles of different mutants

shows the existence of several minima along the committor coor-
dinate. Such minima indicate that the phosphate ion is more likely
to be found at certain positions in space with corresponding com-
mittor values and these configurations may  be metastable.
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Fig. 3. Free energy profiles and association pathways of Pi associating to the Phosphate Binding Protein. First column – Free energy profile of the ligand when it travels
from  the dissociated (q = 0) to the associated state (q = 1). Second column – Streamlines of the reactive flux of ligand association, which represent the ensemble of association
pathways. A brighter streamline coloring corresponds to a higher local reactive flux. Third column – Here the positions of mutated residues are shown. Red/blue corresponds
t
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o  negative/positive charged mutations relative to the wild-type structure.

In particular, the free energy profile of the wild-type protein
hows two free energy minima that indicate two  metastable con-
gurations of the phosphate before it reaches the binding site.
hile this indicates a kinetic trapping of phosphate ions before

hey reach the binding site the calculated association rate of
7.9 × 108 M−1 s−1 is still three times greater than the pure diffu-
ion rate. When the positive patch formed by R134, K167 and K175
s neutralized, as in the R134Q/K167Q/K175Q/D21N/D51N/D61N
6mut.) mutant, the anion attractor is disrupted. Interestingly, los-

ng this kinetic trap along the binding coordinate does not increase
he association rate of phosphate: in contrast it is decreased by

 factor of 3 (9.3 × 108 M−1 s−1), now being similar to the purely
iffusional association rate.
In  the mutant D137T a negative charge close to the binding site
is neutralized, causing the opposite effect: The association rate is
increased by a factor of about 3 compared to the wild-type. Due to
this stronger attraction of the negatively charged phosphate ion, the
minimum associated to trapped configurations close to the binding
site vanishes, while trapping at the anion attractor is still present,
although with an increased probability to reach the binding site
from these configurations.

In order to assess the association mechanism, the ensembles of

association pathways are shown in the middle column of Fig. 3. The
plotted pathways are streamlines that follow the reactive flux field
of binding. The number of reactive trajectories that pass a volume
element per unit of time is expressed by streamline coloring, i.e.
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Fig. 4. Reaction diagram showing a possible kinetic scenario of anion attraction to
a  pre-binding site. Starting from the bulk two possible reaction channels can be
taken: In the case of a ligand (L) the upper path is chosen, in case of a non-ligand
(0)  the lower one. Both species are attracted to the pre-binding site PL/P0 with their
respective concentration dependent rate kon, but only the ligand can move further
to  the bound state PL.  If the concentration of non-ligand is increased with respect to
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Fig. 5. Mean binding time of a ligand in a mixture of “right” and “wrong” ligands
at  concentrations cL and c0 depending on the relative concentration cL : c0 and the
he  ligand concentration the lower channel will dominate the reaction system and

he pre-binding site will be blocked by the non-ligand more often, which results in
 lower yield of PL*.

righter color means more flux. This manifests as a nearly white
oloring in the vicinity of the binding site, where the trajectories
onverge to form a strong current.

For the wild-type structure, the phosphate trajectories attack
he protein on both sides of the phosphate binding side, with a
reference for attacking at the anion attractor and then crawling
ver the surface to the binding site. This picture is not qualita-
ively different for the positively charged D137T mutants. Here,
lso both sides of the protein are approached by the phosphate and
he surface crawling still occurs. However, due to the increased
et charge of the protein the number of reactive trajectories is
trongly increased. A strong distortion is observed when the posi-
ive patch is neutralized as in the 6mut. mutant. The flux lines show
hat the pathways are not attracted to the positive patch but rather
traightly approach the phosphate binding site from the bulk.

In the results shown so far, we have investigated the associa-
ion dynamics of a single Pi in the dilute limit, i.e. in the absence of
ther solutes. In a biological scenario, the situation is much more
omplex as the cytosol is densely filled with various species of dif-
erent sizes, shapes and charges. Therefore, it is very interesting to
ork out some of the principles that contribute to the phosphate

inding dynamics, and more generally to potentially all ion-binding
ynamics, in the cell. For example how does phosphate binding
ccur when it competes with other anions or other phosphates?
o model this, we investigate inorganic phosphate association in a
odel where a phosphate ion is already trapped at the positively

harged surface patch. Therefore, a HPO−2
4 ion was placed in the

icinity of Arg134, Lys167 and Lys175 and the association dynam-
cs were computed based on the resulting electrostatic potential.
he computed free energy profile and the binding pathways are
epicted in the last row of Fig. 3. The free energy profile shows
hat the trapping property of the positively charged patch is lost
hen it is already loaded with a negatively charged ion, the minima

orresponding to the first trapping configurations was  not present
nymore. Moreover, the overall binding free energy is nearly zero
nd the binding rate is strongly reduced. The streamlines addition-
lly reveal that the second phosphate does not “crawl” via the anion
ttractor, it rather reaches the binding site from bulk solvent.

apid scanning of ligands

In vivo, the cell is densely filled with molecules of all sorts,
ncluding proteins, ligands, water, ions, RNA, etc. Most complexes,

hen formed, however, are very specific, e.g. a particular protein

ill be able to bind one particular ligand or a small class of lig-

nds, but certainly not every ligand that has roughly the right
ize, shape and overall charge. This is because tight binding is spe-
ific in many sites, i.e. formation of hydrogen bonds, electrostatic
pre-binding affinity Ka = kon/koff. Rates were set to (c0 + cL)kDiff = kAB = kbind = ku = 1 s−1

and koff = kon/Ka.

complementarity or the match of hydrophobic patches need to be
favorable enough to overcome the associated entropic cost.

Let us remind the reader of the comparison to protein folding,
where the entropically favorable unfolded chain is stabilized in
a compact state by native interactions. In the early days of pro-
tein folding, Levinthal raised the so-called Levinthal paradox, which
referred to the kinetics of protein folding: Levinthal assumed that
each amino acid could assume at least two conformations (via its
Backbone rotameric flexibility), all being equally probable except
for the stable native state. If it then takes a certain waiting time (e.g.
pico- or nanoseconds) to try one such combination, then, given the
typical number of amino acids in the protein, so many trials would
be necessary that the protein could not fold in the age of the uni-
verse. The resolution of this paradox is that different non-native
states are not equally likely, but tend to become increasingly likely
as the native state is approached – which has often been modeled by
a protein folding funnel (Onuchic and Wolynes, 2004; Thirumalai
and Woodson, 1996; Dill, 1999).

A similar problem seems to appear in protein–ligand binding.
When each binding attempt of a wrong ligand to a protein takes a
certain time (e.g. nano- or microseconds), can then a correct ligand
be found within a reasonable timescale at all unless the concentra-
tion is very high? It is very likely that cells have developed efficient
sorting and searching mechanisms such that this process is not gov-
erned by a random trial alone. One aspect is certainly that proteins
with related binding partners are often located in proximal posi-
tions in the cell. However, there might be additional mechanisms
that guide binding partners to attract candidates and then rather
quickly reject mismatches.

Consider the Phosphate Binding Protein discussed above in a
mixture of anions, its ligand Pi at concentration cL and other non-
ligand anions with the same polarity at concentration c0. The
protein will attract all anions to its pre-binding site, the anion
attractor, which is a quick way  of screening anions, which are at
least known to be in the same charge class in which the ligand also
is in. Being at the pre-binding site, the non-ligand (0) cannot bind,
and must dissociate some time later, while the ligand (L) can bind
tightly. The reaction diagram in Fig. 4 describes a kinetic model for
this scenario.

Based on this reaction diagram, we  can calculate the mean
time needed to bind a ligand molecule from the bulk, depending
on the relative concentration cL : c0 and the pre-binding affinity
Ka = kon/koff with kon being given by Eq. (3).  The results shown in
Fig. 5 suggest that a high pre-binding affinity is optimal in the case
where no non-ligands are around and thus each binding attempt

results in success. In this case, increasing the pre-binding affinity
reduces the expected time needed for binding as the associated
state PL is then more likely to move on to the bound state PL*
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ather than to dissociate. However, the picture drastically changes
s soon as non-ligands are in bulk. While it is still true that the time
eeded for a trial with the true ligand is reduced, this is not the case

or non-ligands. Whenever a non-ligand is associated, a high pre-
inding affinity will force this non-ligand to stay at the pre-binding
ite for a long time before it can dissociate and free the site for the
ext trial. The optimal settings in this case, i.e. the situation with
inimal time needed to find and bind the ligand, is given for rela-

ively small pre-binding affinities. This illustrates how decreasing
he pre-binding affinity can be favorable to speed up binding in the
ense that the waiting time to the next successful binding event is
ept small since blocking times from “wrong” ligands are avoided.

iscussion

While protein–ligand binding has in the past mostly focused
n measurement or calculation of binding affinities, the field is
ow clearly moving more towards kinetics and mechanisms. This

s in part due to improved experimental techniques, especially
ingle-molecule experiments such as force probe measurements
r single molecule fluorescence, which allow the existence of mul-
iple metastable states and the transition rates between them to
e observable. On the theoretical side, methods in the classes
f transition networks/Markov models have been developed that
llow simulations to be analyzed and interpreted in a way  that
ields rather unambiguous access to the relevant states, interstate
ransition rates and other kinetic quantities. With these methods
vailable, kinetic and mechanistic properties are likely to be in the
ocus of future research in protein–ligand binding.

One of the issues that has been raised here is the question how
 protein can efficiently find its specific binding partner(s) in a vast
nd dense mixture of different possible binding partners present in
he cell. Here we have suggested a simple sorting mechanism that
romotes rapid identification of the right ligand by first quickly
electing all potential ligands that fall within the right category
here carrying the right charge), and then attempting to bind. It was
ound that in the presence of “wrong” ligands, binding is promoted

ost with a pre-binding site that has a low rather than a high affin-
ty, in order to avoid creating kinetic traps with wrong ligands. This

odel is yet to be supported by experimental evidence and further
orting mechanisms, e.g. by size, shape, hydrophobicity, etc. might
xist.

cknowledgements

MH and FN acknowledge financial support by the DFG SFB 449
nd the IMPRS-CBSC. FN acknowledges financial support by the DFG
esearch Center MATHEON.

eferences

hmad, M.,  Gu, W.,  Helms, V., 2008. Mechanism of fast peptide recognition by sh3
domains. Angew. Chem. Int. Ed. Engl. 47, 7626–7630.

ltobelli, G., Subramaniam, S., 2000. Kinetics of association of anti-lysozyme mono-
clonal antibody d44.1 and hen-egg lysozyme. Biophys. J. 79, 2954–2965.

olhuis, P.G., Chandler, D., Dellago, C., Geissler, P.L., 2002. Transition path sampling:
throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem.
53,  291–318.

owman, G.R., Beauchamp, K.A., Boxer, G., Pande, V.S., 2009. Progress and challenges
in the automated construction of Markov state models for full protein systems.
J.  Chem. Phys. 131, 124101+.

rune, M.,  Hunter, J.L., Howell, S.A., Martin, S.R., Hazlett, T.L., Corrie, J.E.T., Webb, M.R.,
1998. Mechanism of inorganic phosphate interaction with phosphate binding
protein from Escherichia coli. Biochemistry 37, 10370–10380.

uch, I., Giorgino, T., Fabritiis, G.D., 2011. Complete reconstruction of an enzyme-

inhibitor binding process by molecular dynamics simulations. Proc. Natl. Acad.
Sci.  U.S.A. 108, 10184–10189.

uchete, N.V., Hummer, G., 2008. Coarse master equations for peptide folding
dynamics. J. Phys. Chem. B 112, 6057–6069.
ell Biology 91 (2012) 357– 364 363

Chodera, J.D., Dill, K.A., Singhal, N., Pande, V.S., Swope, W.C., Pitera, J.W., 2007.
Automatic discovery of metastable states for the construction of Markov
models of macromolecular conformational dynamics. J. Chem. Phys. 126,
155101.

Chodera, J.D., Noé, F., 2010. Probability distributions of molecular observables
computed from Markov models. ii. Uncertainties in observables and their time-
evolution. J. Chem. Phys. 133, 105102.

Dell’Orco, D., 2009. Fast predictions of thermodynamics and kinetics of
protein–protein recognition from structures: from molecular design to systems
biology. Mol. Biosyst. 5, 323–334.

Dill, K.A., 1999. Polymer principles and protein folding. Protein Sci. 8, 1166–1180.
Du, R., Pande, V.S., Yu, A., Tanaka, T., Shakhnovich, E.S., 1998. On  the transition

coordinate for protein folding. J. Chem. Phys. 108, 334–350.
Ehrlich, L., Münkel, C., Chirico, G., Langowski, J., 1997. A Brownian dynamics model

for the chromatin fiber. Comput. Appl. Biosci. 13, 271–279.
Elcock, A.H., 2003. Atomic-level observation of macromolecular crowding effects:

escape of a protein from the groel cage. Proc. Natl. Acad. Sci. U.S.A. 100,
2340–2344.

Elcock, A.H., Gabdoulline, R.R., Wade, R.C., McCammon, J.A., 1999. Computer simu-
lation of protein–protein association kinetics: acetylcholinesterase-fasciculin. J.
Mol. Biol. 291, 149–162.

Erban, R., Chapman, S.J., 2009. Stochastic modelling of reaction–diffusion processes:
algorithms for bimolecular reactions. Phys. Biol. 6, 046001.

Ermak, D., McCammon, J., 1978. Brownian dynamics with hydrodynamic interac-
tions. J. Chem. Phys. 69, 1352–1360.

Gabdoulline, R.R., Wade, R.C., 1996. Effective charges for macromolecules in solvent.
J.  Phys. Chem. 100, 3868–3878.

Gabdoulline, R.R., Wade, R.C., 1997. Simulation of the diffusional association of bar-
nase  and barstar. Biophys. J. 72, 1917–1929.

Gabdoulline, R.R., Wade, R.C., 1999. On the protein–protein diffusional encounter
complex. J. Mol. Recognit. 12, 226–234.

Gabdoulline, R.R., Wade, R.C., 2001. Protein–protein association: investigation of
factors influencing association rates by Brownian dynamics simulations. J. Mol.
Biol. 306, 1139–1155.

Gabdoulline, R.R., Wade, R.C., 2002. Biomolecular diffusional association. Curr. Opin.
Struct. Biol. 12, 204–213.

Geyer, T., Winter, U., 2009. An o(n2) approximation for hydrodynamic interactions
in Brownian dynamics simulations. J. Chem. Phys. 130, 114905.

de  Groot, B., Daura, X., Mark, A., Grubmüller, H.,  2001. Essential dynamics of
reversible peptide folding: memory-free conformational dynamics governed by
internal hydrogen bonds. J. Mol. Biol. 301, 299–313.

Haddadian, E.J., Gross, E.L., 2006. A Brownian dynamics study of the interactions
of  the luminal domains of the cytochrome b6f complex with plastocyanin and
cytochrome c6: the effects of the rieske fes protein on the interactions. Biophys.
J.  91, 2589–2600.

Held, M.,  Metzner, P., Prinz, J.H., Noé, F., 2011. Mechanisms of protein–ligand asso-
ciation and its modulation by protein mutations. Biophys. J. 100, 701–710.

Hinrichs, N.S., Pande, V.S., 2007. Calculation of the distribution of eigenvalues and
eigenvectors in Markovian state models for molecular dynamics. J. Chem. Phys.
126, 244101.

Huang, H.C., Briggs, J.M., 2002. The association between a negatively charged lig-
and  and the electronegative binding pocket of its receptor. Biopolymers 63,
247–260.

Hubner, I.A., Deeds, E.J., Shakhnovich, E.I., 2006. Understanding ensem-
ble  protein folding at atomic detail. Proc. Natl. Acad. Sci. U.S.A. 103,
17747–17752.

Karpen, M.E., Tobias, D.J., Brooks, C.L., 1993. Statistical clustering techniques for the
analysis of long molecular dynamics trajectories: analysis of 2.2-ns trajectories
of  YPGDV. Biochemistry 32, 412–420.

Kauzmann, W.,  1959. Some factors in the interpretation of protein denaturation.
Adv. Protein Chem. 14, 1–63.

Keller, B., Prinz, J.H., Noé, F. Markov models and dynamical fingerprints: unraveling
the  complexity of molecular kinetics. Chem. Phys., in press.

Lange, O.F., Lakomek, N.A., Fares, C., Schroder, G.F., Walter, K.F.A., Becker, S., Meiler,
J.,  Grubmuller, H., Griesinger, C., de Groot, B.L., 2008. Recognition dynamics up
to  microseconds revealed from an rdc-derived ubiquitin ensemble in solution.
Science 320, 1471–1475.

Latorre, J., Metzner, P., Hartmann, C., Schütte, C., 2011. A structure-preserving
numerical discretization of reversible diffusions. Comm.  Math. Sci. 9,
1051–1072.

Ledvina, P.S., Tsai, A.L., Wang, Z., Koehl, E., Quiocho, F.A., 1998. Dominant role of local
dipolar interactions in phosphate binding to a receptor cleft with an electroneg-
ative charge surface: equilibrium, kinetic, and crystallographic studies. Protein
Sci.  7, 2550–2559.

McGuffee, S., Elcock, A., 2010. Diffusion, crowding & protein stability in a dynamic
molecular model of the bacterial cytoplasm. PLoS Comput. Biol. 6, e1000694.

Meltzer, R.H., Thompson, E., Soman, K.V., Song, X.Z., Ebalunode, J.O., Wensel, T.G.,
Briggs, J.M., Pedersen, S.E., 2006. Electrostatic steering at acetylcholine binding
sites. Biophys. J. 91, 1302–1314.

Metzner, P., Schütte, C., vanden Eijnden, E., 2009. Transition path theory for Markov
jump processes. Multiscale Model. Simul. 7, 1192–1219.
reveals changes in the denatured state and switch of folding pathways upon
single-point mutation of a sheet miniprotein. Proteins 70, 1185–1195.

Noé, F., 2008. Probability distributions of molecular observables computed from
Markov models. J. Chem. Phys. 128, 244103.



3 al of C

N

N

N

N

N

O

P

P

P

P

P

P

R

R
R

S

S

S

64 M. Held, F. Noé / European Journ

oé,  F., Fischer, S., 2008. Transition networks for modeling the kinetics of confor-
mational transitions in macromolecules. Curr. Opin. Struc. Biol. 18, 154–162.

oé, F., Horenko, I., Schütte, C., Smith, J.C., 2007. Hierarchical analysis of confor-
mational dynamics in biomolecules: transition networks of metastable states. J.
Chem. Phys. 126, 155102.

oé, F., Schütte, C., Vanden-Eijnden, E., Reich, L., Weikl, T.R., 2009. Constructing the
full ensemble of folding pathways from short off-equilibrium simulations. Proc.
Natl. Acad. Sci. U.S.A. 106, 19011–19016.

orthrup, S.H., Allison, S.A., McCammon, J.A., 1984. Brownian dynamics simulation
of  diffusion-influenced bimolecular reactions. J. Chem. Phys. 80, 1517–1524.

orthrup, S.H., Erickson, H.P., 1992. Kinetics of protein–protein association
explained by Brownian dynamics computer simulation. Proc. Natl. Acad. Sci.
U.S.A. 89, 3338–3342.

nuchic, J.N., Wolynes, P.G., 2004. Theory of protein folding. Curr. Opin. Struc. Biol.
14,  70–75.

achov, G.V., Gabdoulline, R.R., Wade, R.C., 2011. On the structure and dynamics of
the complex of the nucleosome and the linker histone. Nucleic Acids Res. 39,
5255–5263.

an,  A.C., Roux, B., 2008. Building Markov state models along pathways to determine
free  energies and rates of transitions. J. Chem. Phys. 129, 064107+.

apoian, G.A., Wolynes, P.G., 2003. The physics and bioinformatics of binding and
folding—an energy landscape perspective. Biopolymers 68, 333–349.

auling, L., Pressman, D., Campbell, D.H., 1943. An experimental test of the frame-
work theory of antigen–antibody precipitation. Science 98, 263–264.

rinz, J.H., Keller, B., Noé, F., in press. Probing molecular kinetics with Markov mod-
els:  metastable states, transition pathways and spectroscopic observables. Phys.
Chem. Chem. Phys., doi:10.1039/C1CP21258C, [E-pub ahead of print].

rinz, J.H., Wu,  H., Sarich, M., Keller, B., Senne, M.,  Held, M.,  Chodera, J.D., Schütte, C.,
Noé, F., 2011. Markov models of molecular kinetics: generation and validation.
J.  Chem. Phys. 134, 174105.

adic, Z., 1997. Electrostatic influence on the kinetics of ligand binding to acetyl-
cholinesterase. distinctions between active center ligands and fasciculin. J. Biol.
Chem. 272, 23265–23277.

ao, F., Caflisch, A., 2004. The protein folding network. J. Mol. Biol. 342, 299–306.
ipoll, D.R., Faerman, C.H., Axelsen, P.H., Silman, I., Sussman, J.L., 1993. An elec-

trostatic mechanism for substrate guidance down the aromatic gorge of
acetylcholinesterase. Proc. Natl. Acad. Sci. U.S.A. 90, 5128–5132.

chluttig, J., Alamanova, D., Helms, V., Schwarz, U.S., 2008. Dynamics of
protein–protein encounter: a Langevin equation approach with reaction
patches. J. Chem. Phys. 129, 155106.
chreiber, G., Haran, G., Zhou, H.X., 2009. Fundamental aspects of protein–protein
association kinetics. Chem. Rev. 109, 839–860.

chultheis, V., Hirschberger, T., Carstens, H., Tavan, P., 2005. Extracting Markov mod-
els of peptide conformational dynamics from simulation data. J. Chem. Theory
Comp. 1, 515–526.
ell Biology 91 (2012) 357– 364

Schütte, C., Fischer, A., Huisinga, W.,  Deuflhard, P., 1999. A direct approach to confor-
mational dynamics based on hybrid Monte Carlo. J. Comput. Phys. 151, 146–168.

Singhal, N., Pande, V.S., 2005. Error analysis and efficient sampling in
Markovian state models for molecular dynamics. J. Chem. Phys. 123,
204909.

Singhal, N., Snow, C., Pande, V.S., 2004. Path sampling to build better roadmaps:
predicting the folding rate and mechanism of a Trp Zipper beta hairpin. J. Chem.
Phys. 121, 415–425.

Song, Y., Zhang, Y., Shen, T., Bajaj, C.L., McCammon, A.A., Baker, N.A., 2004. Finite
element solution of the steady-state Smoluchowski equation for rate constant
calculations. Biophys. J. 86, 2017–2029.

Spaar, A., Dammer, C., Gabdoulline, R.R., Wade, R.C., Helms, V., 2006.
Diffusional encounter of barnase and barstar. Biophys. J. 90,
1913–1924.

Spaar, A., Flock, D., Helms, V., 2009. Association of cytochrome c with membrane-
bound cytochrome c oxidase proceeds parallel to the membrane rather than in
bulk solution. Biophys. J. 96, 1721–1732.

Stroppolo, M.,  Falconi, M.,  Caccuri, A., Desideri, A., 2001. Superefficient enzymes.
Cell. Mol. Life Sci. 58, 1451–1460.

Swope, W.C., Pitera, J.W., Suits, F., Pitman, M.,  Eleftheriou, M.,  2004. Describing
protein folding kinetics by molecular dynamics simulations. 2. Example appli-
cations to alanine dipeptide and beta-hairpin peptide. J. Phys. Chem. B 108,
6582–6594.

Thirumalai, D., Woodson, S.A., 1996. Kinetics of folding of proteins and RNA. Acc.
Chem. Res. 29, 433–439.

Tummino, P.J., Copeland, R.A., 2008. Residence time of receptor-ligand
complexes and its effect on biological function. Biochemistry 47,
5481–5492.

Vanden-Eijnden, E., 2006. Transition path theory. In: Computer Simulations in
Condensed Matter Systems: From Materials to Chemical Biology, vol. 1, pp.
453–493.

Vijayakumar, M.,  Wong, K.Y., Schreiber, G., Fersht, A.R., Szabo, A., Zhou, H.X., 1998.
Electrostatic enhancement of diffusion-controlled protein–protein association:
comparison of theory and experiment on barnase and barstar. J. Mol. Biol. 278,
1015–1024.

Voelz, V.A., Bowman, G.R., Beauchamp, K., Pande, V.S., 2010. Molecular simulation
of  ab initio protein folding for a millisecond folder NTL9. J. Am.  Chem. Soc. 132,
1526–1528.

Wales, D.J., 2003. Energy Landscapes. Cambridge University Press, Cambridge.
Weber, M.,  2003. Improved Perron cluster analysis. ZIB Report 03-04.

Zhou, H.X., 1990. On the calculation of diffusive reaction rates using Brownian

dynamics simulations. J. Chem. Phys. 92, 3092.
Zhou, H.X., 1993. Brownian dynamics study of the influences of electrostatic inter-

action and diffusion on protein–protein association kinetics. Biophys. J. 64,
1711–1726.

http://dx.doi.org/10.1039/C1CP21258C

	Calculating kinetics and pathways of protein–ligand association
	Calculation of transition pathways and rates
	Phosphate binding to the Phosphate Binding Protein
	Rapid scanning of ligands
	Discussion
	Acknowledgements
	References


