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Markov (state) models (MSMs) have attracted a lot of interest recently as they (1) can probe

long-term molecular kinetics based on short-time simulations, (2) offer a way to analyze great

amounts of simulation data with relatively little subjectivity of the analyst, (3) provide insight into

microscopic quantities such as the ensemble of transition pathways, and (4) allow simulation data

to be reconciled with measurement data in a rigorous and explicit way. Here we sketch our

current perspective of Markov models and explain in short their theoretical basis and

assumptions. We describe transition path theory which allows the entire ensemble of protein

folding pathways to be investigated and that combines naturally with Markov models.

Experimental observations can be naturally linked to Markov models with the dynamical

fingerprint theory, by which experimentally observable timescales can be equipped with an

understanding of the structural rearrangement processes that take place at these timescales.

The concepts of this paper are illustrated by a simple kinetic model of protein folding.

1 Introduction

Folding of proteins and other macromolecules depends on their
ability to undergo conformational transitions between substates.
A hallmark of protein dynamics is that these substates are often
metastable sets of structures, i.e. the protein will typically fluctuate
within a set of structures for a long time before enough thermal
energy is accumulated to leave this set and transition to another
metastable set. Such dynamics has been conceptualized as a walk
on a complex energy landscape with basins corresponding to
metastable sets of structures and energy barriers separating these
basins.27 It is the interest of chemical physicists and biophysicists
to identify the essential metastable states, quantify their free
energies or probabilities, the kinetics arising from the transitions
between them, and the structural mechanisms involved.

The study of protein folding has been a particular driving force
in investigating protein dynamics via both experiment and
simulation. The fact that protein folding is an intramolecular
process involving changes to almost the entire structure makes a
variety of physical or chemical probes and measurement techni-
ques available that report on aspects of the folding process. For
small and moderately sized proteins, simulations are now feasible
that can access experimentally resolvable timescales.64,78,87

There is a large body of experimental research indicating that
protein folding is characterized by single-exponential kinetics.7,38,56

This suggests that protein folding is a two-state transition,
where the two states are believed to correspond to an enthal-
pically stabilized native state and an entropically stabilized
denatured state.11,19,20,65 It has been noted, however, that it is
unclear whether such a two-state interpretation is meaningful
as the as-equilibration of the denatured state may not occur on
a timescale faster than folding.9,21 In current research, there is
increased attention to complexity in the kinetics that was
difficult to detect in earlier studies. Moreover, for some
formerly apparent two-state folders, additional relaxation
timescales have been found using measurement methods with
increased resolution.57,63,71 A more disturbing fact is that
although kinetic experiments will in principle measure all
relaxation timescales, any given combination of measurements
and observables will only be sensitive to a few—typically one
or two.63 It is thus conceivable that protein folding has
significantly more complex kinetics than apparent in indivi-
dual experiments. This feeling seems to be supported by care-
ful analyses of single-molecule experiments that have reported
on the existence of multiple metastable states.25,29,30,52,55,73,92

Also ensemble experiments can, with appropriate design,
probe conformational heterogeneity, hidden intermediates
and the existence of parallel pathways.32,46–48,80

In order to overcome the limitation of indirect observability
of experiments, molecular dynamics (MD) simulations are
becoming increasingly accepted as a tool to investigate
structural details of molecular processes and relate them
to experimentally resolved features.64,75,85 In the simulation
community, there is also a tendency to move towards more
sophisticated analysis methods. Previous projections of the
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simulation data onto simple one- or two-dimensional obser-
vables usually suggest simplicity in the kinetics, this however
owing often to a disguise of the true and often complex nature
of the kinetics by creating overlaps between kinetically distinct
structures.44,54,58 In the past few years, there has been a rapid
increase of studies that first partition the simulated structural
data into relatively small substates and then study the kinetics
that emerges from a transition network between these sub-
states.12,17,37,40,54,58,66,70,76,89,90 Early work has focused on
energy-landscape models that use rate theories to generate
transition networks between local potential energy minima.60,61,89

More recently, approaches that are based on directly counting
transitions in MD simulations were established.14,44,54,59,66,76,83

The resulting models are often called transition networks,
Master equation models or Markov (state) models (MSMs),
where ‘‘Markovianity’’ means that the kinetics are modeled by
a memoryless jump process between states.14,15,18,59,64,67,77,79,83,84

MSMs provide access to the complexity of the essential
kinetics without discarding information by projection onto
order parameters. The essential kinetics can be understood by
studying the metastable sets arising from the model59,77,90 or
graph-based visualization tools.70 The ensemble of folding
pathways can be calculated and quantified from MSMs with
Transition Path Theory.64 Kinetic experimental measurements
can be calculated fromMSMs directly and the experimentally-
detectable kinetic features can be linked to structural
changes.63 In the present review, we will explain the essentials
of MSM theory and these analysis methods.

2 Markov models

In this section we outline the basic theory of Markov models,
explain where their limitations are and how well they can
approximate original kinetics, and give approaches for
constructing Markov models from simulation data.

2.1 Basics

We briefly sketch the main mathematical ideas underlying
Markov models of molecular kinetics. The dynamics of a
molecular system can be understood as a long trajectory x(t)
describing the positions and momenta of all atoms considered.
The state space of positions and momenta is huge—6N
dimensions when a molecular system with N atoms are
considered. However, we know that in most macromolecular
systems only a very small subset of this state space is actually
populated—namely the region which contains conformations
of relatively low energies. It is therefore reasonable to ask
whether we can computationally characterize this region by
subdividing it into sets, each of which comprising a group of
similar molecular structures. We then aim at approximately
describing the dynamics in terms of the transition probabilities
between these sets. This state-space discretization and the corres-
ponding transition probabilities will be our Markov model.

More formally, it is assumed that the molecular system studied
lives in a continuous state space O consisting of positions and
momenta, its time evolution x(t) obeys the following properties:

(1) x(t) is a Markov process in the full state space O, i.e. the
instantaneous change in x only depends on the current value
of x and not its history.

(2) x(t) is ergodic, i.e. all states of O could be reached by an
infinitely long trajectory and are visited with a frequency given
by the Boltzmann distribution:

m(x) = Z(b)!1 exp(!bH(x)). (1)

(3) x(t) is reversible, i.e., the probability density of going
from state x to state y in time t, p(x,y;t), fulfills the condition
of detailed balance:

m(x)p(x,y;t) = m(y)p(y,x;t). (2)

These conditions are fulfilled by many dynamical models
frequently used to simulate molecular dynamics, such as
Anderson-thermostatted dynamics or Hybrid Monte Carlo.
We can then perform the following, at this stage purely formal,
trick, and describe the evolution of the dynamics in terms of an
ensemble distribution pt(x):

pt+t(x) = Q(t)"pt(x). (3)

This means when pt(x) is the probability distribution of
molecules in the ensemble at time t, then pt+t(x) is the
probability distribution of the ensemble at a later time t + t.
The evolution of probability density is described by the
operator Q(t). The important fact of this equation is that the
same operator Q(t) holds at all times t and that it is a linear
operator, i.e. a mathematically simple object, which allows us
to propagate to arbitrarily long times by repeated usage:

pt+2t(x) = Q(t)"(Q(t)"pt(x)) = Q(2t)"pt(x). (4)

and so on. The whole purpose of Markov models is to
discretize state space O such that Q(t) can be approximated
by a matrix and pt(x) can be approximated by a vector, such
that the equations above are well approximated. We will
explain below that this is indeed possible even for complex
molecular systems, and that then all interesting long-time
dynamical quantities can be calculated from the discrete
version of Q(t) despite that only short trajectories of length
t are needed. Note that t can be orders of magnitude shorter
than the longest timescales of the system.
Before going into the discrete representation, we shall first

illustrate how Q(t) operates on a one-dimensional example.
Fig. 1a shows a potential energy landscape with associated
Boltzmann density m(x). Fig. 1b is an illustration of the
operator Q(t): the horizontal and vertical axes correspond to
the coordinate x and the color coding quantifies how much
probability density is transported between two points x in a
time t. The dark colour blocks near the diagonal correspond
to the fact that there is a high probability to move around
within an energy basin, while the white colors in off-diagonal
regions correspond to the fact that there is a small probability
to jump between the basins.
Fig. 1c–e show a spectral decomposition of the operator

Q(t) which will be discussed below. The eigenvalues shown in
Fig. 1c and eigenfunctions shown in Fig. 1d fulfill the
equations

Q(t)"f(x) = lif(x).

whose relevance will also be explained below.
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Imagine now that the coordinate x is discretized into sets
{S1,. . .,Sn}. It is obvious that when these sets are many and
small enough, we can approximate Q(t) by discrete transition
probabilities between sets. Tij(t) represents the time-stationary
probability to find the system in state j at time t+ t given that
it was in state i at time t:

Tij(t) = P[x(t + t) A Si|x(t) A Si],

defining a transition matrix T(t)A Rn#n. The transition matrix
can also be written in terms of correlation functions:83

TijðtÞ ¼
ccorrij ðtÞ

pi
ð5Þ

where pi is the stationary probability to be in set Si:

pi =
R
xASi

dxm(x),

and the unconditional transition probability ccorrij (t) = piTij(t)
is an equilibrium time correlation function which is
normalized such that

P
i,jc

corr
ij (t) = 1. Since we assume the

dynamics to fulfill detailed balance, the correlation matrix is
symmetric (ccorrij (t) = ccorrji (t)). If we would manage to generate
a very long trajectory x(t) and simply count transitions in time
steps t, we would obtain a count matrix cij(t) that is propor-
tional to ccorrij (t).
Suppose that p(t) A Rn is a column vector whose elements

denote the probability, or population, to be within a set

Fig. 1 (a) Potential energy function with four metastable states and corresponding stationary density m(x), (b) density plot of the transfer

operator for a simple diffusion-in-potential dynamics defined on the range O = [0,100], black and red indicates high transition probability, white

zero transition probability. Of particular interest is the nearly block-diagonal structure, where the transition density is large within blocks allowing

rapid transitions within metastable basins, and small or nearly zero for jumps between different metastable basins. (c) Eigenvalues of the transfer

operator, the gap between the four metastable processes (li E 1) and the fast processes is clearly visible. (d) The four dominant eigenfunctions of

the operator Q(t), f1,. . .,f4, which indicate the associated dynamical processes. The first eigenfunction is associated to the stationary process, the

second to a transition between A + B 2 C + D and the third and fourth eigenfunction to transitions between A 2 B and C 2 D, respectively.

(e) The eigenfunctions weighted with the m(x)!1.
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j A {1,. . .,n} at time t. After time t, the probabilities will have
changed according to:

pjðtþ tÞ ¼
Xn

i¼1

piðtÞTijðtÞ; ð6Þ

or in matrix form:

pT(t + t) = pT(t)T(t) (7)

Note that an alternative convention often used in the
literature is to write T(t) as a column-stochastic matrix,
obtained by taking the transpose of the row-stochastic transi-
tion matrix defined here.

The stationary probabilities of discrete states, pi, yield the
unique discrete stationary distribution of T:

pT = pTT(t). (8)

2.2 Estimation and statistics

In practice, the transition probabilities cannot be directly
calculated. Instead, we have a microscopic model of the
molecular system which permits us to calculate energies and
forces at every state x and a dynamical model (e.g. integrator +
thermostat) which propagate these dynamics with short
timesteps (typically femtoseconds). Suppose we have this
machinery to generate trajectories of our molecular system.
Then we can use these trajectories to estimate the transition
probability between any pair of discrete sets Si and Sj. Of
course, such an estimation will involve an estimation error
resulting from finite sampling, and this error will become
smaller the more trajectory data are generated.

More formally, consider one trajectory generated under
equilibrium conditions with N configurations stored at a fixed
time interval Dt:

X = [x(t = 0), x(t = Dt),. . .,x(t = (N ! 1)Dt)] (9)

=[x1,x2,. . .,xN] (10)

and consider that a state space discretization has been defined
such that each structure can be assigned to one discrete state
xk A Si - sk = i, and the trajectory information can be simply
stored as the sequence s1,. . .,sN of discrete states.

We also assume that x1 was drawn from the equilibrium
density pertaining to state s1, ms1(x) (see discussion in ref. 64,
69 and 72). We can now define the discrete state count matrix
Cobs(t) = [cobsij (t)] at lag time t, where t now needs to be an
integer multiple of the available data resolution Dt:

cij(t) = cij(lDt) = |{sk = i, sk+1 = j} |k = 1. . .N ! l|.
(11)

which provides an estimator of the correlation matrix defined
in eqn (5) by:

ĉcorrij ðtÞ ¼ cijðtÞ
N ! l

: ð12Þ

C(t) simply counts the number of observed transitions
between discrete states, i.e. cij is the number of times the
trajectory was observed in state i at time t and in state j at
time t+ t, summed over all times t. If multiple trajectories are

available, then the count matrices of these trajectories
are simply added up. It can be shown69 that based on C(t),
the transition matrix can be estimated with maximum
likelihood by:

T̂ ij ¼
cij
ci
; ð13Þ

where ci are the row sums of C:

ci :¼
Xn

k¼1

cik; ð14Þ

which are equal to the total number of times the trajectory was
found in state i. This estimator is asymptotically unbiased, i.e.
for a long enough trajectory it will converge to the correct
transition matrix:

lim
N!1

T̂ ij ¼ Tij : ð15Þ

Since simulation data are finite, all validation procedures
(either consistency checks or comparisons to experimental
data) need to account for statistical uncertainties. For these,
standard deviations or confidence intervals induced by the
posterior distribution of transition matrices are of interest. It
follows from well-known properties of the distribution of
transition matrices2 that the expectation value for transition
matrices is

!Tij ¼ E½T̂ ij ) ¼
cij þ 1

ci þ n
; ð16Þ

and the variance is given by

Var½T̂ ij ) ¼
ðcij þ 1Þððci þ nÞ ! ðcij þ 1ÞÞ

ðci þ nÞ2ððci þ nÞ þ 1Þ
¼

!Tijð1! !TijÞ
ci þ nþ 1

:

ð17Þ

Also everything calculated from T(t) will have statistical error
associated. These errors can be rigorously evaluated.16,35,62,68

It is important to note that T̂ij as given by eqn (13) does not
necessarily fulfill the detailed balance equations: piTij = pjTji,
but generally piT̂ij a pjT̂ji. This is a result of limited statistics
and can be avoided by using a maximum likelihood estimator
that makes sure that the detailed balance equations are
fulfilled.69

2.3 Predicting long-term kinetics from short simulations and
the systematic error done by this

Markov models are an approximation of molecular kinetics in
two ways: as discussed above, a Markov model is estimated
from a finite number of trajectories and thus involves
statistical error. However, there is a systematic source of error,
which is addressed here: the fact that we discretize state space
into sets (S1,. . .,Sn) erases the information where exactly the
continuous process x(t) was. As a result, the jump process on
(S1,. . .,Sn) is no longer Markovian even if x(t) is, nevertheless
we approximate it by a Markov chain. This apparent contra-
diction is what has raised criticism against Markov models.
The purpose of this section is to make clear that this

criticism is equally justified or unjustified as in any other area
of numerics. Consider the numerical evaluation of the area
under a curve by approximating it with a finite number of step
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functions and adding up their areas. Despite the fact that the
curve of interest may not nearly be step-like, we trust
numerical integrators, because we know they can deliver the
desired result to arbitrary precision by making the discretiza-
tion finer—and that ‘‘fine enough’’ is practically feasible. In
other words, we have some way to control the error. For
Markov models we can get a similar result, although Markov
model numerics is not yet as well developed as other areas of
numerics. We can make useful theoretical statements of the
systematic error introduced by the discretization. What may

currently be more important is that a practical test is
available to validate that a Markov model built is quantita-
tively acceptable.
The following two quantities are obtained from Markov

models without systematic error:
(1) The propagation of transition probabilities by one step t,

pT(t + t) = pT(t)T(t).
(2) Stationary properties, such as the stationary distribution

p and associated expectation of state functions Ep(a) = hp,ai.
However, state space discretization introduces systematic

error is in the reproduction of long-time kinetics, i.e. the
prediction:

pT(t + kt) E pT(t)Tk(t), (18)

is only approximately true. However, good approximation of
this equation is essential, because it represents one of the main
advantages of Markov models, namely to predict long-time
kinetics by using short trajectories of length order t. Based on
rigorous theoretical results of ref. 22, 69 and 74, the following
statements are true:
(1) The error of eqn (18) decreases with increasingly small

discretization states. Quantitatively, what matters is how well
the discretization can approximate the slow eigenfunctions
(weighted with the stationary density, see Fig. 1e).
(2) The error of the approximation of timescales ti decreases

when the discretization better approximates the corresponding
eigenfunction.
(3) For a given discretization, the error both of eqn (18) and

of the approximation of timescales ti decreases with increasing
lag time t.
These results are illustrated in Fig. 2 and 3. A diffusion on

the two-well potential shown in Fig. 2a has a sigmodial-shaped
eigenfunction (when weighted by the stationary density)
shown in Fig. 2b. When only using two states to discretize
the state space, the separatrix is best placed on the transition
state (Fig. 2b), or otherwise may generate a very large error
(Fig. 2c). However, the error of the Markov model decreases

Fig. 2 Illustration of the eigenfunction approximation error on the

slow transition in the diffusion in a double well (top, black line). The

slowest eigenfunction is shown in the lower four panels (black), along

with the step approximations (green) of the partitions (vertical black

lines) at x=50; x=40; x=10, 20,. . .,80, 90; and x=40,45,50,55,60.

The eigenfunction approximation error d2 is shown as red area and its

norm is printed. Figure adapted from ref. 69.

Fig. 3 The so-called Chapman–Kolmogorov test. This corresponds here to compare between MSM and original dynamics how the probability of

being in the left minimum relaxes when starting in the left basin. The test was done for the two-well potential using a trajectory of length 106 steps.

Tested are Markov models that use lag times t = 100, 500, 2000 and (a) 2-state discretization (split at x = 50), (b) 6-state discretization (split at

x = 40, 45, 50, 55, 60). Figure adapted from ref. 69.
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when more than two states are used (Fig. 2d and e). Thus, in
contrast to previous assumptions, it is not the most metastable
partition of state space that produces the best Markov model.
Fig. 3 compares the propagation of probability by the Markov
model and the true dynamics, shows the result of using the
two- and the six-state partitions on the error in eqn (18) over
time. The six-state partition clearly outperforms the two-state
partition.

2.4 Spectral properties

At the end of our theoretical investigation of Markov models
we come to the spectral properties of the operator Q(t) and
the associated transition matrix T(t). Although this point is
somewhat difficult to understand at first, it is essential in order
to see what metastable states are, why some Markov models
work better than others, and eventually also how kinetics
experiments work. At this point a comparison to another
approach that is more commonly used in the Chemical Physics
community may be useful: consider the principal component
analysis method,1 where the relative distances of a set of data
points (e.g. molecular structures) are captured by a covariance
matrix. When performing an eigenvalue decomposition one
obtains eigenvectors and eigenvalues. The eigenvectors with
the largest eigenvalues are called ‘‘principal components’’ and
describe the directions along which the data set has the greatest
spatial extent. The corresponding eigenvalues capture the
variance of the data set along these principal directions.
Analogously, a transition matrix T(t) can also be decomposed
into eigenvectors and eigenvalues. The eigenvectors also
represent ‘‘principal modes’’, but since the transition matrix
contains probabilities these modes are vectors that contain
changes of the probability for each discrete state Si. The
principal modes with the largest eigenvalues are indeed the
main modes of probability flow between the system’s
substates. The corresponding eigenvalues have magnitude
expressing how slow or fast the corresponding probability
flow occurs. Thus, the eigenvalue decomposition of a transi-
tion matrix may be understood as a principal component
analysis of the dynamics.

More formally, transition matrices can, as any diagonaliz-
able matrix, be written as a linear combination of their left
eigenvectors, their eigenvalues and their right eigenvectors.
For the here assumed case of matrices fulfilling detailed
balance, the right eigenvalues can be replaced by the left
eigenvalues (and vice versa), leading to the decomposition:

TðtÞ ¼ P!1
Xn

i¼1

liðtÞl il?i : ð19Þ

with the diagonal matrix P!1 = diag(p!1
1 ,. . .,p!1

n ). Thus, for
longer timescales:

TkðtÞ ¼ P!1
Xn

i¼1

lki ðtÞl il
?
i : ð20Þ

The transition matrix T(kt) = Tk(t) which transports an
initial probability k time steps forward is again a linear
combination of the eigenvectors and eigenvalues. These linear
combinations (eqn (19) and (20)) are known as spectral
decomposition of the transition matrix. They are very useful

for connecting the dynamics of the molecule to experimentally-
measured signals, which is described in Section 6.
Eqn (20) is the key for understanding how the transition

matrix transforms a probability vector. The complete process

consists of n subprocesses l il
?
i , each of which is weighted by

the eigenvalue li raised to the power k. Because the transition
matrix is a row-stochastic matrix, it always has one eigenvalue
which is equal to one l1 = 1.18 Raising this eigenvalue to the
power k does not change the weight of the corresponding

subprocess l1l
?
1 : 1k = 1. l1l

?
1 is the stationary process, which

we postulated in eqn (8), and l1 = p. All other eigenvalues of
the transition matrix are guaranteed to be smaller than the one
in the absolute value.18

The weights of the processes hence decay exponentially with
the implied timescale ti of the decay process

ti ¼ ! t
ln li

: ð21Þ

Since the relaxation timescales ti are physical properties of
the dynamics, they should be invariant under change of the lag
time t used to parametrize the transition matrix.83 For large
enough t, ti should converge to their true value (assuming
sufficient statistics). Therefore, the convergence of ti with
increasing t has often been employed as an indicator for
selecting t.14,59,69,83 For the two-well potential diffusion
dynamics in Fig. 2, the t-convergence of the slowest timescale
t2 is shown in Fig. 4. These curves illustrate that discretizations
that allow for better approximation of the eigenfunctions also
provide nearly-correct timescales at shorter lag times t.
The smaller the eigenvalue li, the smaller the implied time-

scale ti, the faster the corresponding process decays. To under-
stand the interplay of multiple relevant eigenvalues and
eigenvectors let us review again Fig. 1 which shows the
diffusion dynamics on an energy landscape with four basins
(A, B, C, D) and high intervening energy barriers. Fig. 1d
shows the 15 largest eigenvalues of the transition matrix in
Fig. 1b. There is one eigenvalue, l1, which is equal to one,

Fig. 4 Convergence of the slowest implied timescale t2 = !t/ln l2(t)
of the diffusion in a double-well potential depending on the MSM

discretization. The metastable partition (black, solid) has greater error

than non-metastable partitions (blue, green) with more states that

better trace the change of the slow eigenfunction near the transition

state. Figure adapted from ref. 69.
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followed by three eigenvalues, l2 to l4, which are close to one.
These four dominant eigenvalues are separated by a gap from
the remaining eigenvalues. Hence, the transition matrix con-
sists of a stationary process, three slow processes and many
processes which decay quickly. After a few time steps, only the
four dominant processes contribute to the evolution of the
probability vector. How these processes alter this vector is
determined by the shape of the corresponding eigenvectors.

Fig. 1c shows the four dominant right eigenvectors. The first
eigenvector corresponds to the stationary process and is,
therefore, constant. The second eigenvector corresponds to
the slowest process and has positive signs in regions A and B
and negative signs in regions C and D. This shape effectively
moves probability density across the largest barrier in the
energy surface. Since the eigenvector is approximately con-
stant within the combined regions (A, B) and (C, D) left and
right of the barrier, it does not alter the relative probability
distribution within these regions. The third eigenvector,
analogously, moves density between A and B, the fourth
moves density between C and D.

3 Illustrative protein folding model

We use a simple protein folding model throughout this study
in order to illustrate the concepts described in this paper. We
consider three structural elements called a, b and c that form
independent of each other. A simple energy model has been
designed in which the folding of each structure element con-
tributes a loss in potential energy and also a loss of entropy
(Table 1).

The entropic part is chosen that the formation of a structural
element decreases the accessible conformational space by a

factor a - 2, b - 3 and c - 5 favouring the unfolded state
for high temperatures. A small additive number (0.5) is added
to the conformation space volumes in order to break the
perfect independence of structure elements. In addition, for
each formed structural element the potential energy is lowered
so as to favor the folding at low temperatures.
Thus, at any given temperature T, the free energy Fi =

Ui ! TSi for each of the eight possible foldamers
{0,a,b,c,ab,ac,bc,abc} can be calculated and also the associated
stationary distribution

pi ¼
expð!Fi=kBTÞP
j expð!Fj=kBTÞ :

Assuming furthermore that the model protein can jump
between states by forming or breaking one structure element
with transition probabilities

Tij ¼ exp !Dþmaxð0;Fj ! FiÞ
kBT

! "

with minimum barrier height D = 4, we have a consistent
dynamical model that can be used for analysis. Fig. 5 illus-
trates this model at low, intermediate and high temperatures,
showing that the folded state is stable at low temperatures and
the unfolded state is stable at high temperatures.
Fig. 6 shows the eigenvectors in the protein folding model.

For the low-temperature situation, the folding process is
interestingly not the slowest, but the third-slowest process,
which exchanges probability between unfolded-a–b–c and
states ab–ac–bc–abc. The slowest process corresponds to the
formation of a, while the second-slowest process is a more
complex transition involving the exchange of unfolded, c and
ac with the rest.
In the intermediate-temperature situation, the slowest

process is the one that most closely resembles folding—it
mostly exchanges probability between unfolded-c and ab–abc.
The second- and third-slowest processes correspond to the
formation of c and b, respectively.
In the high-temperature situation, the slowest process is

a folding process which exchanges probability between
unfolded and the rest. It is therefore a different kind of folding
process than the third-slowest process in the low-temperature
case. One might say that the transition state has shifted
towards the unfolded side. The second- and third-slowest
processes again correspond to the formation of c and b,
respectively.

Table 1 Energy model of the simple protein folding model. Shown is
the potential energy DU and the entropy DS depending on the folding
state. The potential energy drops with the number of structural
elements formed, while the entropic part mimics a reduction of
conformational space when one of the elements forms (by a factor
of a - 2, b - 3 and c - 5)

U S

Unfolded 0 103 804 = log(60 + 120 ! 0.5)
a !1.5 6.76878 = log(30 ! 0.5)
b !1.5 5.94083 = log(20 ! 0.5)
c !1.5 4.88469 = log(12 ! 0.5)
a/b !3.75 4.50258 = log(10 ! 0.5)
a/c !3.75 3.4095 = log(6 ! 0.5)
b/c !3.75 2.50553 = log(4 ! 0.5)
a/b/c !4.5 0.81093 = log(2 ! 0.5)

Fig. 5 Illustrative protein folding model for low, intermediate and high temperatures. The colours indicate the stationary probability of states,

while the thickness of the arrows and the numbers next to them quantify transition probabilities (within some fixed but arbitrary timescale).



This journal is c the Owner Societies 2011 Phys. Chem. Chem. Phys., 2011, 13, 16912–16927 16919

4 Metastable states

The protein folding model used here for illustration consists
of only 8 states and is thus easy to comprehend. When
building Markov models from clustered molecular dynamics
data one often requires several thousands of states in order
to approximate the system kinetics well. Network approaches
have been developed to visualize the network of transitions
arising from such a model,70 but especially when the
network is dense, this is not straightforward. It is thus
desirable to find an effective representation that communicates
the essential properties of the kinetics. In this section we
describe a way to cluster the large discrete state space into a
few metastable sets that have the property that they capture
the dynamics for long times before jumping to another set.
Let us stress that the purpose of finding these sets is purely
illustrative (e.g. for lumping fluxes, see Section 5). For
quantitatively calculating kinetic properties, the full Markov
model should be used, as the approximation of the system’s
kinetics will generally deteriorate when using a lumped
Markov model.45,69,74

Let us consider the coarse partition of state space O =
{C1, C2,. . .,Cn} where each cluster Ci consists of a set of states
Sj. We are interested in finding a clustering that is maximally
metastable. In other words, each cluster Ci should represent a
set of structures that the dynamics remains in for a long time

before jumping to another cluster Cj. Thus, each cluster Ci can
be associated with a free energy basin.
As shown above (see Fig. 1 and Section 2.4), we can

understand the slow kinetics in terms of probability transport
by the dominant eigenvectors of the transition matrix.
Consequently, these dominant eigenvectors can also be used
in order to decompose the system into metastable sets.77,90

Consider the eigenvector corresponding to the slowest process
in Fig. 1 (yellow line): this eigenvector is almost a step function
which changes from negative to positive values at the saddle
point. When we take the value of this eigenvector in each state
and plot it along one axis, we obtain Fig. 7a. Partitioning this
line in the middle dissects state space into the two most
metastable states of the system (Fig. 7b). The two most
metastable states exchange at a timescale given by the slowest
timescale t2. If we are interested in differentiating between
smaller substates, we may ask for the partition into the three
most metastable states. In this case we consider two eigen-
vectors simultaneously, r2 and r3. Plotting the coordinates in
these eigenvalues for each state yields the triangle shown in
Fig. 7c whose corners represent the kinetic centers of meta-
stable states. Assigning each state to the nearest corner parti-
tions state space into the three most metastable states (Fig. 7d)
that exchange at timescales of r3 or slower. The same partition
can be done using three eigenvectors, r2, r3 and r4, yielding
four metastable states exchanging at timescales t4 and slower,

Fig. 6 Dominant eigenvectors and eigenvalues of the protein folding model.
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and so on (Fig. 7e and f). Generally, it can be shown that when
n eigenvectors are considered, their coordinates lie in an
n-dimensional simplex with n+ 1 corners called vertices which
allow the dynamics to be partitioned into n + 1 metastable
sets.59,90

Each of these partitionings is a valid selection in a hierarchy
of possible decompositions of the system dynamics. Moving
down this hierarchy means that more states are being
distinguished, revealing more structural details and smaller
timescales. For the system shown in Fig. 1, two to four states
are especially interesting to distinguish. After four states there
is a gap in the timescales (t5 { t4) induced by a gap after the
fourth eigenvalue (Fig. 1c). Thus, for a qualitative under-
standing of the system kinetics, it is not very interesting to
distinguish more than four states. However, note that for
quantitatively modeling the system kinetics, it is essential to
maintain a fine discretization as the MSM discretization error
will increase when states are lumped (see Section 2.3).

Fig. 8 shows the metastable states of the protein folding
model. Interestingly, there is no simple partition that splits
unfolded and folded states. In the intermediate temperature
case this is most closely the case as the unfolded state is a
metastable state and separated from all other states with a
partial structure. The remaining space and the conformation

space at other temperatures are clustered in a non-obvious
manner. Sometimes these clusters are defined by the presence
of particular structural elements (e.g. red cluster in the
high-temperature case is characterized by having c formed).

5 Transition pathways

Understanding the folding mechanism of macromolecules,
and proteins in particular, is one of the grand challenges in
biophysics. The field was driven by questions such as:21 how
does an ensemble of denatured molecules find the same native
structure, starting from different conformations? Is folding
hierarchical?4,5 Which forms first: secondary or tertiary
structure?31,94 Does the protein collapse to compact structures
before structure formation, or concurrently?3,36,80 Are there
folding nuclei?39 Is there a particular sequence in which
secondary structure elements are formed?
Heterogeneity in folding pathways has been found in a

number of experimental studies. For example, using time-
resolved FRET with four different intramolecular distances,
it was found in barstar81 that there are multiple folding routes,
and that different routes dominate under different folding
conditions. Moreover, changing the denaturant can change
the dominant pathway.46 Extensive mutational analysis of the
seven ankyrin sequence repeats of the Notch ankyrin repeat
domain has revealed its funnel landscape.10,48,82 Some folding
is sequential, as in FynSH3,43 cytochrome,26 T4 lysozyme,13

and Im7,28 and some folding is parallel, as in cytochrome C32

and HEW lysozyme.47

Formally, the question about folding pathways boils down
to the following: let A and B be two subsets of state space,
defined so as to specify the transition process one wants to
investigate. For example, A may correspond to the strongly
denatured set of sets while B is the metastable set around the
known crystal structure.64 All remaining states are unassigned
‘‘intermediate’’ states I. What is the probability distribution of
the trajectories leaving A and continuing on to B? I.e., what is
the typical sequence of I states used along the transition
pathways?
When an MSM is already available, the information of

transition pathways is easily accessible via transition path
theory,50,64,91 which is explained below. Transition path
theory is related to transition path sampling (TPS) in the sense
that both are trying to generate statistical information about
the ensemble of A - B pathways. TPS is a direct approach to
sampling pathways directly8 and could in principle be used to
sample folding pathways. However, in TPS the sampled
trajectories are in practice of limited length and it is thus

Fig. 7 Metastable states of the one-dimensional dynamics (see

Fig. 1a) identified by PCCA+. (a), (c), (e) Plot of the eigenvector

elements of one, two, and three eigenvectors. The colors indicate

groups of elements (and thus conformational states) that are clustered

together. (b), (d), (f) Clustering of conformation space into two, three,

and four clusters, respectively.

Fig. 8 Metastable sets of the folding model.
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unpractical to use TPS when the intermediate states I contain
metastabilities. One can run multiple TPS-samplings between
pairs of metastable states after having identified them.88

5.1 Transition path theory

The essential ingredient required to compute the statistics of
transition pathways is the committor probability q+i . q+i is the
probability when being at state i, the system will reach the set
B next rather than A.8,24,86 In protein folding contexts, it is the
probability of folding.24 By definition, all states in A have
q+i = 0 while all states in B have q+i = 1. For all intermediate
states, the committor gradually increases from A to B
(see Fig. 9), and its value can be calculated by solving the
following system of equations:

X

k2I
Tikq

þ
k ¼ !

X

k2B
Tik

(see ref. 64 for derivation). Fig. 9 shows the committor
(color-coding) for the protein folding model: at low tempera-
tures, the committor changes rapidly after leaving the
unfolded state and forming the first structure elements. At
high temperatures, it changes rapidly when entering the full-
structured native state. At both temperatures, the folding
process has thus essentially two-state character, although with
different definitions of the two states. At intermediate
temperatures, the committor increases gradually from the
unfolded to the native state, indicating that it is important
to consider the intermediate states in the folding process.

We further need the backward-committor probability, q!i .
q!i the probability, when being at state i, that the system was in
set A previously rather than in B. For dynamics obeying
detailed balance (which is assumed here) this is simply

q! = 1 ! q+.

Consider the probability flux between two states i and j,
given by piTij (absolute probability of finding the system at this
transition). We are only interested in trajectories that success-
fully move from A to B without recurring to A beforehand.
The flux pertaining to these reactive trajectories only is given
by multiplying the flux by the probability to come from A and
to move on to B:

fij = piq!i Tijq
+
j .

This flux is the quantity that could be obtained directly from
a converged TPS sampling by counting transitions of the
reactive path ensemble. However, we further want to remove
contributions that come from recrossings or detours.

For example, a trajectory that would jump on its way from
A to B multiple times between two substates i and j would
produce an increase in the flux i - j and the backward flux
j - i. However, we only want to consider a single transition
per pathway and thus define the net flux, given by:

f+ij = max{0, fij ! fji}.

Considering detailed balance dynamics and when ordering
states along the reaction coordinate q+i such that q+i r q+j , an
equivalent expression is:6

f+ij = piTij(q
+
j ! q+i ).

f+ij defines the net flux and is a network of fluxes leaving states
A and entering states B (see Fig. 9). This network is flux-
conserving, i.e. for every intermediate state i, the input flux
equals the output flux (see ref. 50 and 64 for proof). There the
only set in the network that produces flux is A and the only set
that consumes flux is B. Due to flux conservation, these
amounts of flux are identical and are called total flux F of
the transition A - B:

F ¼
X

i2A

X

j=2A
piTijq

þ
j ¼

X

i=2B

X

j2B
piTijð1! qþi Þ:

The value of F gives the expected number of observed
A - B transitions per time unit t that an infinitely long
trajectory would produce. Of special interest is the reaction
rate constant kAB (see ref. 64 for derivation):

kAB ¼ F

,

t
Xm

i¼1

piq!i

 !

:

Note that all states that trap the trajectory for some time
will reduce kAB. The effect of these traps is properly accounted
for in the folding flux, even if they do not contribute to
productive pathways.

5.2 Transition paths between macrostates

Since the number of n conformational states used to construct
a Markov model is often very large, it is convenient for
illustration purposes to compute the net flux of A - B
trajectories amongst only a few coarse sets of conformations.
We consider a coarse partition of state space S =
{C1, C2,. . .,Cn} which may be based on a decomposition
into metastable states as described in Section 4, or another
partition that the user defines e.g. based on order parameters
of interest. We make the restriction, however, that this

Fig. 9 Committor and net flux from unfolded to folded state.
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decomposition preserves the boundaries of sets A, B and I, i.e.
A and B are either identical to individual Ci, or to a collection
of multiple Ci.

The coarse-grained flux between two sets is then given by:

Fij ¼
X

k2Ci ;l2Cj

fkl ;

and the net flux by

F+
ij = max{0, Fij ! Fji}.

We note a technicality here: the second step of again
removing backfluxes to obtain a coarse-grained net flux is
necessary only if the clusters used do not partition state space
along the isocommittor surfaces. Thus it may be desirable to
use a partition that only groups states with similar committor
values.

Fig. 10 shows the coarse-grained flux from the unfolded to
the folded states where the coarse-graining has been done
according to metastable states. At low and intermediate
temperatures, the topology of the folding network is equal,
but the flux becomes smaller and the ab intermediate is used
less. At higher temperatures, the topology of the folding
network changes due to a change in the boundaries of
metastable states and the unfolded state first splits into three
intermediate states before converging to abc.

Coarse-graining generates a simplified but correct view on
the folding flux. The actual dynamics, represented by the
Markov model T(t) cannot easily be coarse-grained without
loosing information, and no statement is made here about the
transition probability between two coarse sets Ci and Cj.

5.3 Pathway decomposition

The flux network can be decomposed into pathways from
A- B. When the dynamics are reversible, then the flux can be
completely decomposed into such A - B pathways and no
cycles will remain. Consider a pathway consisting of k nodes

P = (i1 A A - i2 - " " " - ik!1 - ik A B)

Along each of its edges, say il - il+1, the flux network can

carry a flux of up to f þil ilþ1
. Thus, the capacity or flux of the

pathway is given by the minimum of these fluxes:

f ðPÞ ¼ minff þil ilþ1
jl ¼ 1 . . . kg

A pathway decomposition consists of choosing a pathway
P1, and then removing its flux f(P1) from the flux along all the
edges of P1. This may be repeated until the total flux F has been
subtracted and the network is thus free of A - B pathways.

Note that while the flux network is unique, such a decomposition
is not unique, because one may choose different strategies to
select pathways. Nevertheless pathway decompositions are
useful in at least the following aspects:
(1) The strongest pathway, i.e. the pathway whose minimum

flux f(P) is the largest of all pathways, is of special interest.
Especially so, if f(P) is not much smaller than the total
flux F.
(2) One reasonable way to perform a pathways decomposi-

tion is to first remove the strongest pathway, then remove the
strongest pathway of the remaining network, and so on.51 This
decomposition is useful to estimate how many A - B are
necessary to obtain a certain percentage of the flux.64

(3) Any pathway decomposition, even a decomposition in
which pathways are chosen randomly, gives the same answer
when calculating the probability of certain events. Let us
consider the probability that, in the protein folding model,
one of the three structural elements, a, b, and c, is formed
before the other ones in the intermediate-temperature case.
The network can, e.g. be decomposed into the pathways with
corresponding fluxes:

unfolded - a - ab - abc 0.000241655

unfolded - a - ac - abc 0.000276008

unfolded - b - ab - abc 0.000782191

unfolded - b - bc - abc 0.000175341

unfolded - c - ac - abc 0.000306848

unfolded - c - bc - abc 0.000592429

and the probability of forming a, b or c first is given by the flux
fraction of pathways where this occurs:

Pða firstÞ ¼ 1

F

X

i

f ðPiÞwiða firstÞ ¼ 60:11%

Pðb firstÞ ¼ 1

F

X

i

f ðPiÞwiðb firstÞ ¼ 29:44%

Pðc firstÞ ¼ 1

F

X

i

f ðPiÞwiðc firstÞ ¼ 10:44%

Where wi is 1 if a/b/c forms first in pathway Pi, respectively,
and 0 otherwise.
The pathway decomposition is usually done on the original

flux network. It can also be done on a coarse-grained flux

Fig. 10 Coarse-grained folding fluxes.
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network, provided that the coarse-graining does not lump
states which need to be distinguished in order to calculate
the probabilities of the events investigated.

6 Experimental observables/dynamical
fingerprints

In experimental studies of protein folding, the conformational
dynamics is mapped onto an observable a which is measured.
a could be a fluorescence or transfer efficiency in a fluorescence
experiment, the chemical shift in an NMR experiment, the
intensity of a given spectral peak in an IR experiment, the
distance in a pulling experiment, and so forth. In the following
we assume that a has a scalar value for every state Si, i.e. there
is a mapping Si - ai, where ai is the mean values of a over the
state Si. We note that vector- or function-valued observables
(such as entire spectra in IR or NMR data) could be treated in
a similar way, although this is not done here. Given the
observable vector, various experimental measurements can
be expressed as derived in ref. 41 and 63.

In equilibrium experiments, the observed molecule is in
equilibrium with the current conditions of the surroundings
(temperature, applied forces, salt concentration etc.), and the
mean value of an observable a, Ep[a], is recorded. This may be
either done by measuring Ep[a] directly from an unperturbed
ensemble of molecules, or by recording sufficiently many
and long single molecule traces a(t) and averaging over them.
The expected measured signal is

Ep½a) ¼
Xn

i¼1

aipi ¼ ha; pi: ð22Þ

where E[x] denotes the expectation value of an observable x(t)
and hx,yi denotes the scalar product between two vectors
x and y. Since p is the eigenvector to eigenvalue 1 of the
transition matrix T(t), it can easily be calculated from the
MSM. Ep[a] does not depend on time and therefore bears no
kinetic information.

Kinetic information is available through time-correlation
experiments. These may be realized by taking trajectories from
time-resolved single molecule experiments, such as single
molecule fluorescence or pulling experiments, and computing
time correlations from these trajectories. Given a partition
into states Si, the autocorrelation of a for time kt can be
expressed as:

E½aðtÞaðtþ ktÞ) ¼
Xn

i¼1

Xn

j¼1

aiPðst ¼ SiÞ " aj

Pðstþkt ¼ Sj jst ¼ SiÞ:

ð23Þ

The terms under the summation signs contain the product the
signal in state i and the signal in state j, aiaj, where ai is
weighted by the probability of finding the system in state Si,
and aj is weighted by the conditional probability of finding the
system in state j given that it has been in state i at k timesteps t
earlier. In equilibrium, the former probability is given by the
equilibrium probability p. Assuming that the process is
Markovian, the latter probability is given by the transition
matrix element of the corresponding transition matrix.

Eqn (23) can be rewritten as a matrix equation in which T(t)
appears explicitly

E½aðtÞaðtþ ktÞ) ¼
Xn

i¼1

Xn

j¼1

aipi " aj ½TkðtÞ)ij

¼ a?PTkðtÞa:

ð24Þ

Replacing Tk(t) by its spectral decomposition (eqn (20)), one
obtains

E½aðtÞaðtþ ktÞ) ¼ a?
Xn

i¼1

exp ! kt
ti

! "
l il

?
i

" #

a

¼ ha; pi2 þ
Xn

i¼2

exp ! kt
ti

! "
ha; l ii2:

ð25Þ

Likewise, cross-correlation functions can be computed as

E½aðtÞbðtþ ktÞ) ¼ ha; pihb; pi

þ
Xn

i¼2

exp ! kt
ti

! "
ha; l iihb; l ii: ð26Þ

Eqn (25) and (26) have the form of a multiexponential decay
function

f ðtÞ ¼ gcorr1 þ
X

i¼2

gcorri exp ! t

ti

! "
; ð27Þ

with amplitudes

gcorri = ha,liihb,lii. (28)

Each of the amplitudes is associated with an eigenvector of the
transition matrix and the decay constant ti is the implied time
scale of this eigenvector, ti = !t/ln li.
Alternatively, relaxation experiments can be used to probe

the molecules’ kinetics. In these experiments, the system is
allowed to relax from a nonequilibrium starting state with
probability distribution p(0). Examples are temperature-jump,
pressure-jump, or pH-jump experiments, rapid mixing
experiments, or experiments where measurement at t = 0
starts from a synchronized starting state, such as in processes
that are started by an external trigger like a photoflash. After
time t = 0 the conditions are governed by a transition matrix
T(t) with stationary distribution p a p(0). The ensemble
average Ep(0)[a(t)] is recorded while the system relaxes from
the initial distribution p(0) to the new equilibrium distribution
p. The expectation value of the signal at time t = kt depends
on the current probability distribution p(kt) and is given by

Epð0Þ½aðktÞ) ¼
Xn

i¼1

aipiðktÞ ¼ ha; pðktÞi: ð29Þ

Eqn (29) is analogous to eqn (26). p(kt) evolves under the
influence of the transition matrix T(t) (eqn (18)). Using the
spectral decomposition of T(t) (eqn (20)) and expressing lki via
implied timescales ti, we obtain

Epð0Þ½aðktÞ) ¼ hp0ð0Þ; piha; pi

þ
Xn

i¼2

exp ! kt
ti

! "
hp0ð0Þ; l iiha; l ii

ð30Þ
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where p0(0) is the excess probability distribution p0(0) =
P!1p(0). Ep(0)[a(kt)] is again a multiexponential decay function
with amplitudes

grelaxi = hp0(0),liiha,lii. (31)

A summary of the amplitudes of various types of experiments
is given in Table 2.

These equations are useful to calculate based on simulations
which processes a given experiment will be sensitive to. To
illustrate this, consider again the protein folding model and let
us consider three different observables. In observable A, we
measure the formation of structure element a, i.e. a = 1 for
states in which a is formed while a = 0 for states in which a is
not formed. Likewise observables B and C measure the
formation of structure elements b and c. This can be realized
e.g. with a fluorophor and a specific quencher at appropriate
positions.23 We also consider three ways of measuring each of
these three constructs, namely temperature jump experiments
at three different temperatures from 0.15 to 0.2, from 0.6 to
0.65, and from 2.4 to 2.45. We calculate the amplitude that is
in the slowest and second-slowest processes and report the
normalized results in Fig. 11.

It is apparent that the processes that can be measured
drastically depend on the way the measurement is done and
the observable used. For example, at high temperatures, all
observables yield nearly single-exponential kinetics with the
timescale of moving between the unfolded state and the
partially structured state. At low temperature, the kinetics
may appear biexponential, provided that measurement noise is
sufficiently small, with the main amplitude being in the
formation of a(g2) and c(g3).

The combination of Markov models and the spectral theory
given is useful to compare simulations and experiments via the
dynamical fingerprint representation of the system kinetics.63

Furthermore, this approach permits us to design experiments
that are optimal to probe individual relaxations.63

7 Conclusions and perspectives

The combination of Markov models with analysis methods
such as transition path theory and dynamical fingerprinting

provides a theoretically solid and computationally feasible
approach to obtain deep insights into the microscopic
complexity of protein folding and relate molecular simulation
data (or protein folding models) to experiments that probe the
kinetics of the molecular system in reality.
In contrast to projections on few pre-defined order para-

meters, a sufficiently fine clustering in the MSM will retain the
relevant details of the complex energy landscape, specifically
the information which states are kinetically connected and
which aren’t. This allows relatively detailed analyses such as
using transition path theory in order to calculate the ensemble
of pathways that lead from the unfolded to the folded state.
Based on the resulting path ensemble, mechanistic questions
such as ‘‘with what probability does structure element a form
before the others’’ can be answered.
With regard to connecting to experiments, the main advan-

tage of the MSM approach over traditional MD analyses is
that the processes that occur at given timescales are unam-
biguously given by the theory. In the Markov model, this
assignment is present by the one-to-one association of transi-
tion matrix eigenvalues (that correspond to measurable
relaxation timescales) and eigenvectors (that describe structural
changes). When the experimentally-measured relaxation data
are further subjected to a spectral analysis, experiment and
simulation can be reconciled on the basis of dynamical finger-
prints, i.e. by matching peaks of the timescale density. A
comment is in order on the fact that in all cases, the slow
relaxations in kinetic measurements are found to have the
form of a sum of single exponential terms, each term corres-
ponding to an eigenvalue/eigenvector pair in our analysis. This
is a general result which can also be obtained by performing
the analysis in full continuous state space (as opposed to our
discrete-state treatment here). The only assumptions that are
made to arrive at this result are the following: (1) the dynamics
of the system is Markovian in full continuous state space,
(2) the state space is ergodic, i.e. all states of the system can
interconvert, (3) the relaxations are measured under equili-
brium conditions. These assumptions can be assumed to be
fulfilled for most protein folding measurements. However,
even in such a situation, apparent nonexponentiality has been
found over significantly long timescales, such as stretched
exponentials42,49 or power laws.52 Note that this is not a
contradiction because such apparent nonexponentialities can
be easily explained by sums of a few single exponential
relaxations with particular spacings of timescales and ampli-
tudes33,63,93—and thus also correspond to dynamical finger-
prints with multiple peaks (see ref. 63).
The methodology introduced here is generally applicable to

all dynamical processes that possess a stationary distribution,
and especially those which are in equilibrium (i.e. fulfill
detailed balance). Markovian dynamics and transition path

Table 2 Overview of the expressions for the amplitudes in correlation experiments

Equilibrium correlation experiment Relaxation experiment

Relaxation experiment — grelaxi ¼ ha; l iihp0?ð0Þ; l ii
Autocorrelation geq,auto-cori = ha,lii2 gjump,auto-cor

i = ha,P0(0),liiha,lii
Cross-correlation geq,cross-cori = ha,liihb,lii gjump, auto-cor

i = ha,P0(0),liihb,lii

Fig. 11 Normalized amplitudes of the slowest and second-slowest

processes of simulated temperature-jump experiments of the folding

model.
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theory have e.g. been used to calculate ligand binding
pathways.34 Markov models have been used to characterize
different native substates in conformational changes.53

Applications worthwhile exploring include Physics-based
models of matter, such as Ising models. Moreover, chemical
processes treated by ab initio dynamics are an interesting and
challenging field of application, because here direct simulation
of sufficiently long trajectories is unfeasible.
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38 M. Jäger, H. Nguyen, J. C. Crane, J. W. Kelly and M. Gruebele,
The folding mechanism of a beta-sheet: the WW domain, J. Mol.
Biol., 2001, 311(2), 373–393.

39 D. H. Jane, P. E. E. Wright and H. A. A. Scheraga, The role
of hydrophobic interactions in initiation and propagation of
protein folding, Proc. Natl. Acad. Sci. U. S. A., 2006, 103(35),
13057–13061.

40 M. E. Karpen, D. J. Tobias and C. L. Brooks, Statistical clustering
techniques for the analysis of long molecular dynamics trajectories:
analysis of 2.2-ns trajectories of YPGDV, Biochemistry, 1993,
32(2), 412–420.

41 B. Keller, J.-H. Prinz and F. Noé, Markov models and dynamical
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56 H. Neuweiler, M. Löllmann, S. Doose and M. Sauer, Dynamics of
Unfolded Polypeptide Chains in Crowded Environment Studied by
Fluorescence Correlation Spectroscopy, J. Mol. Biol., 2007, 365,
856–869.
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