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The equilibrium kinetics of biomolecules can be probed by techniques such as temperature-jump or fluo-
rescence correlation spectroscopy. These measurements can be described by dynamical fingerprints, i.e.,
densities of relaxation timescales where each peak corresponds to an exponential relaxation process. In
many cases, single- or double-peaked fingerprints are found, suggesting that a two- or three-state model
may provide a satisfactory description of the biomolecule studied, while simulations often reveal a more
complex picture with many kinetically relevant states. Here we sketch an approach combining Markov
models of the simulated dynamics with dynamical fingerprints to link between simulation and experi-
ment. This link sheds light on the relation between experimental setup and sensitivity of the experiment
to particular kinetic processes. Furthermore, our approach can be used to design experiments such that
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T-jump specific processes appear with large amplitudes.This is illustrated by reviewing recent results from the
FRET analysis of the fluorescent 18-mer peptide MR121-(GS)o-W.
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1. Introduction

Complex molecular systems often possess multiple stable or
metastable states which are typically associated with specific func-
tional properties. Metastability of macromolecules is consistent
with the numerous X-ray crystallography and NMR structures of
several different macromolecules, all of which have been found
to exist in multiple conformations. Famous examples are the mus-
cle protein myosin which exists in open and closed states with dif-
ferent nucleotide configurations [1], DNA-enzyme complexes that
have different conformations depending upon the DNA sequence
[2], or the Ribosome the whose domains are found in different
arrangements along the protein synthesis cycle [3]. These exam-
ples show that metastable substates exist within the native state
of the protein, which is usually metastable itself, albeit on a longer
timescale. This native state is in equilibrium with unfolded states,
as well as possibly aggregation-prone misfolded states that are ob-
served in prion diseases such as Alzheimer [4]. Indeed, metastabil-
ity is hierarchical with metastable states containing metastable
sub-states [5].

In the last years it has become increasingly clear how these
metastable states affect the kinetics. Especially single-molecule

* Corresponding author. Tel.: +49 30 838 75354; fax: +49 (0)30 838 75412.
E-mail addresses: bettina.keller@fu-berlin.de (B.G. Keller), jan-hendrik.prinz@
fu-berlin.de (J.-H. Prinz), frank.noe@fu-berlin.de (F. Noé).
! Tel.: +49 30 838 75776.
2 Tel.: +49 30 838 56965.

0301-0104/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.chemphys.2011.08.021

experiments such as fluorescence-based [6-9] or force-probe
[10-13] measurements have explicitly shown that macromole-
cules reside in different metastable states and occasionally transit
between them. Single molecule trajectories can be analyzed by ad-
vanced statistical techniques such as Hidden Markov models or
other likelihood-based methods [14-17].

However, ensemble-averaged kinetic measurements remain an
essential way to access molecular kinetics. Such measurements
may be done by perturbation of an actual ensemble of molecules,
which often can be done simpler and with a better signal- to
noise ratio than manipulation of single molecules. The perturba-
tion, e.g., a jump in temperature [18,19], pressure [20], a change
in the chemical environment [21] or a photo flash [22-25],
changes the equilibrium distribution of the ensemble to a defined
off-equilibrium distribution. The relaxation of the ensemble to-
wards equilibrium is monitored, and the resulting signal reports
on the kinetic processes involved in this relaxation. In the follow-
ing, we will refer to this type of experiments as perturbation
experiments (Table 1), where the term “perturbation” refers to
the initial off-equilibrium distribution rather than to the dynam-
ics of the ensemble.

Kinetic measurements may also consist of dynamical spectro-
scopic measurements such as X-ray or inelastic neutron scattering
which probe time correlations of experimental observables [26].
Alternatively, trajectories of single molecules or fluctuations of
dilute samples may be used to accumulate correlation functions.
This approach is often used in conjunction with fluorescence mea-
surements, such as correlation spectroscopy of the fluorescence
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Table 1
Overview of the expressions for the amplitudes in equilibrium and perturbation
experiments.

Equilibrium Perturbation experiment
experiment
Observable: u“(t) =@ ),k =0 PPOC — (p(0),1;)(a, L)
Autocorrelation: u*(Af) R _ (a 1,)? PO — @, P(0))a, )
Cross-correlation: y'?mb = (a,1;)(b, 1)) },?w).ab = (@ P (0)L)(b,1;)

H(AL)

intensity [27-31] or fluorescence resonance energy transfer (FRET)
efficiency [32,33]. As a result of ergodicity, such a time-average
also corresponds to an ensemble average of the fluorescence corre-
lation. However, such correlation functions probe the Kkinetics
based on instantaneous fluctuations of molecules that are distrib-
uted according to equilibrium, and could therefore not directly
be measured in an ensemble of fluorescent molecules. This type
of experiment is referred to as equilibrium experiment in the follow-
ing (Table 1).

The measured relaxation- or correlation function may be trans-
formed into a dynamical fingerprint that characterizes the mole-
cule under the given observation [34]. Such a fingerprint
typically consists of peaks, each of which corresponds to a kinetic
relaxation process. The position of the peak specifies the timescale
of this process and its amplitude depends on how well the corre-
sponding process is detectable by the given experiment.

The main limitation of kinetic experiments is that kinetic exper-
iments usually probe only one or two structural coordinates simul-
taneously. Exceptions are NMR-based methods [24]. With these
methods, however, only a low time resolution - in the order of sec-
onds - can currently be achieved, and several laborious repetitions
of the experiment are required to obtain a viable signal-to-noise
ratio. Currently, the only technique that can access structure and
dynamics simultaneously and at great detail is molecular dynamics
(MD) simulations, which are becoming increasingly accepted as a
tool to investigate structural details of molecular processes and re-
late them to experimentally resolved features [35-37].

However, there is still a significant gap between experimental
and simulation analyses: experimental analyses often allow only
one or two timescales to be distinguished [28,38], suggesting sim-
ple 2- or 3-state models are sufficient to describe their behavior. In
particular, in the search for the “protein folding speed limit”, a
large number of fast-folding proteins have been measured - and
most of them appear to be two-state systems in current measure-
ment techniques [20,39]. In contrast, MD simulations often reveal a
considerably more complex picture with multiple metastable
states and a multitude of relaxation times [40,36,41].Theoretically,
the macroscopically detectable changes have been proposed to
arise from a stochastic walk on a rugged multidimensional energy
landscape [42], possibly involving a hierarchy of barriers, resulting
in a hierarchy of relaxation time scales [43], or, alternatively, a
jump process on a transition network between conformational
substates [44,40,45] for which a given structural change may in-
volve multiple pathways [36].

Interestingly, subtle experiments with careful analysis do also
indicate that there is additional complexity beyond the one or
two most prevalent relaxation timescales [46-49,8,13,50]. In a
couple of cases, enzyme kinetics has been shown to be modulated
by interchanging conformational substates [51]. Some protein
folding experiments have found conformational heterogeneity,
hidden intermediates, and the existence of parallel pathways
[52-56]. The identification of kinetic processes based on features
of the experimental signals which are on the level of statistical
or systematic measurement errors is always subject to criticism.
It is, therefore, important to understand what such features mean,

and how they could possibly be enhanced by an optimized exper-
imental setup.

Complementary to asking what is resolved by a given experi-
ment is the question what is hidden in a given experiment. Con-
sider the kinetic model of an illustrative protein folding model
shown in Fig. 1. The protein consists of two secondary structure
elements, an «-helix and a g-sheet, linked by short loop regions.
The yellow stars mark possible attachment points for chromoph-
ores, two of which would be chosen in a classical fluorescence
quenching or FRET experiment. It seems obvious that an experi-
ment with chromophores attached to site 1 and 2 would be most
sensitive to kinetic processes involving the folding and unfolding
of the o-helix. In contrast, an experiment with chromophores at-
tached to site 2 and 3 would be most sensitive to the folding-
unfolding transition of the p-sheet. But does this mean that the
first experiment is blind to the conformational changes of the j-
sheet, and vice versa, the second experiment is blind to conforma-
tional changes of the a-helix?

Using this protein folding model as an illustrative example, we
will address the following questions:

o Is the largest relaxation timescales observed always due to the
folding process?

e Can a given experiment detect all relaxation processes that are
present in the dynamics of the molecule?

e In perturbation experiments, how does the initial state affect
the dynamical fingerprint?

e Are the processes observed in perturbation experiments the
same as those observed in equilibrium experiments?

e How can specific conformational changes be assigned to the
observed relaxation timescales?

e How does one design an experiment, i.e., choose the optimal
attachment points for the chromophores or choose the optimal
site for isotopic labelings, such that a particular process is opti-
mally resolved?
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Fig. 1. Sketch of a protein folding equilibrium. The arrows represent possible
transitions between conformational states. Their thickness corresponds to the
transition probability. The yellow stars represent possible chromophore attachment
points. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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We attempt to assemble a systematic approach of unraveling
the complex kinetics of macromolecules. This is done by building
a Markov model, also often called Markov (state) model (MSM).
Markov models approximate the molecular kinetics by decompos-
ing the molecular state space into many small substates and
specifying a transition probability between each pair of substates
[57-61,44,62-64]. When the system has metastable states, the
slow kinetics can often be described in terms of a reduced model
that only has transition probabilities or rates between metastable
states [65,36,5,66-68]. How to construct Markov models from
molecular dynamics simulations and how to validate them has
been extensively discussed elsewhere [57]. Here, we only repeat
the basic steps in Section 4 of the paper while the subsequent sec-
tions start by assuming that a Markov model description is given
and explain how this description can be related to experimental
observables to arrive at an assignment of structural rearrangement
to measurable features in kinetic experiments.

In the present paper we focus on fluorescence spectroscopy and
FRET spectroscopy, either conducted as equilibrium measurements
by correlating fluorescence fluctuation of dilute samples (FCS), or
by starting an ensemble from a specific off-equilibrium distribu-
tion (e.g., as done by T-jump). However our results are generally
valid and can be applied to any single-molecule experiment includ-
ing experiments which are not based on spectroscopy, such as
atomic force microscopy, optical or magnetic tweezer experiments.

2. Theory
2.1. Dynamical fingerprint

Suppose that a is an observable, i.e., a function that has a scalar
value for each molecular structure. Examples are the fluorescence
intensity, the Forster transfer efficiency, or the distance between
two chemical groups. Next, consider that either a correlation func-
tion or a relaxation function p(t) of a has been measured at real
time points t € {t1,...,ty,}. We expect from physical principles
[34] that this signal is a noisy realization of a function which is
in fact a sum of multiple exponentials with initially unknown time-
scales and amplitudes, i.e., a function that can be represented by

(e = [ at 5e) exp (< ). (1)

p(t') is the inverse Laplace transform of the y(t), and is called the
dynamical fingerprint of the system under study. It is expected to
consist of peaks at the relaxation timescales of the system. To com-
putationally determine this fingerprint the timescale axis t' needs to
be discretized using N spectral time points t;,...,ty, where the
range [t),ty ] must contain the slow relaxation timescales of the
system studied. With a fine timescale discretization we obtain a
good approximation of the correlation or relaxation function:

uo = neww (~£). @)

The dynamical fingerprint is then given by the set of tuples
I'= {(t/lv“/l)v---? (t;\lpyNs)}'

2.2. Markov models

Markov models (MSM) directly yield the rates of the kinetic
processes which are present in the conformational equilibrium of
a molecule. The rates which are measured in experiment are asso-
ciated to these processes. Markov models are typically parame-
trized using data from molecular simulation. In the following we
present a brief outline of the theory of Markov models, and we

show how experimental observables can be predicted from a given
Markov model.
Consider a state space Q consisting of n discrete microstates:

Q=1{5,5,...,5} 3)

In the context of molecules, this state space usually is the con-
formational space spanned by either all or by the most important
conformational degrees of freedom of the molecule. A microstate
is a small volume element in this high-dimensional space. The
microstates cover the entire (accessible) space, but do not overlap.
In practical application using molecular simulation data, the parti-
tion Sy,...,S, is often obtained by data clustering methods. See [57]
for a discussion how this discretization of the continuous state
space affects the quality of the Markov model.

The dynamics of the molecule in this (conformational) state
space is modeled as time-discrete switching process s with time step
7. We can thus map a trajectory of full molecular coordinates onto
a microstate trajectory:

§ = (S0, 5¢,S2¢5 - )- (4)

Skr can assume integer values between 1 and n, depending on which
microstate the molecule occupies at time t = k. In general, the prob-
ability of finding the molecule in a state j at time t = nt, in principle,
depends on the entire history of the process. In a Markov model we
make the approximation that the probability of finding the molecule
in state j at time t = nt only depends on the state the molecule has
been in at the previous time step (memory-free process):

P(snr :j|5(n—1)1) ~ P(Snr :j|s(n—l)rys(n—2)175(n—3)17 ce 750)- (5)

The process s is called Markovian if the above equality holds exactly.
These probabilities do not change in the course of the process (time
invariance) and only depend on the pair of microstates
{Snz =J,S(n—1)c = i} and the time step t of the process. Arranged in a
n x n matrix, they form the transition matrix T(t) with:

T,‘j = P(Sm Ij‘S(n,l)f = l) (6)

This matrix, together with the definition of states Q = {S;,S,,...,S,}
comprises what we call the Markov model. The T-matrix elements
represent the probability that the molecule is found in microstate
S; provided that it has been in microstate S; a time t earlier. The
ith row of this transition matrix represents all options a molecule
in state i has: it can either stay in its current microstate (T;) or move
to any of the other n — 1 microstates (Tj;). Consequently, the ele-
ments of each row in T(z) sum up to 1:

n

dTy=1, Vi 7)

j=1

(row-stochastic matrix).

When considering the molecular system under a fixed set of
thermodynamic conditions, the dynamics can be represented by
a single (time-invariant) transition matrix. Note that this does
not imply that the molecular ensemble is distributed according
to the corresponding equilibrium distribution. For example, in a
diffusion-based fluorescent correlation experiment [27] the mole-
cules probed are usually distributed as in an equilibrium ensemble,
while in a temperature-jump experiment they are not when mea-
sured after the jump [38]. However, in both situations the system
is governed by a single transition matrix with fixed transition
probabilities (in the temperature-jump ensemble the dynamics
are those of the thermodynamic conditions after the jump). On
the other hand, in experimental situations where thermodynamic
conditions change over time, the molecular dynamics cannot be
described by a single transition matrix. Examples include RNA fold-
ing experiments with time-dependent Magnesium concentration
[69] or active pulling experiments [12].
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Given a Markov model, its transition matrix could be used to
generate dynamical trajectories that a single molecule would take
in the state space Q. These trajectories can be of arbitrary length,
and thus the Markov model can in principle describe the full
long-time kinetics although it is based only on transitions observed
at relatively short times 7. Instead of this single-molecule view, we
can also look at the Markov model as a propagator of a molecular
ensemble. Let p(t) be a probability vector with N elements, where
the ith element represents the fraction of molecules in the ensem-
ble which are found in state S; at a time ¢, i.e., >V ,p;(t) = 1. The
time evolution of this vector is completely determined by the tran-
sition matrix T(t):

p'(t+7) =p(OT(7), (8)

where p’(t) denotes the transpose of the vector p(t). Given an initial
probability vector p(0), the probability vector at any discrete time
kt can be calculated by repeatedly applying T(t) to p(0):

P’ (kt) = p'(0)T(kt) ~ P’ (O)T (7). 9)

Egs. (8) and (9) are equivalent, which becomes obvious if one real-
izes that p'(27) = p'(7)T(1) =~ pT(0)T(7)T(z) = p'(0)T?(7). For a perfect
Markov model, the ~ in the above equation becomes an equality,
and Eq. (9) is then known as the Chapman-Kolmogorov equation.

If s is ergodic, then T(7) has a unique stationary distribution .
The stationary distribution emerges as the first left eigenvector

Energy U(x)
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of T(t) associated with the eigenvalue 4, = 1 [70]. This mathemat-
ical fact is in accordance with physical intuition, which tells us that
under equilibrium conditions, there must be a unique stationary
distribution &, and that this distribution will not change under
the action of T(7), i.e.

' =a'T(7). (10)

In constant-temperature ensembles, 7 is given by the well-known
Boltzmann distribution. If the molecular system is furthermore
measured in a dynamical equilibrium, i.e., when the only source
of dynamics are thermal fluctuations at a fixed temperature, it fol-
lows from the second law of thermodynamics that the dynamics of
a molecular systems obey detailed balance:

7'C,‘T,‘j = 7'CjTﬁ7 (11)
with respect to this stationary distribution 7. This means that the
number of systems in the ensemble, which go from state i to state
j, is the same as the number of systems going from state j to i. This
condition at least conceptually holds for experiments where the
dynamics occur at equilibrium, such as in fluorescence correlation
experiments or temperature-jump experiments after the system
has adopted the target temperature. “Conceptually” means that in
principle there could be a significant interaction between the
molecular system and the measurement apparatus used to probe
it that could cause deviations from detailed balance. For example,
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Fig. 2. Markov model of a diffusion dynamics in a 1-D energy surface. (a) Potential energy function with four metastable states and corresponding equilibrium distribution 7.
(b) Plot of the transition matrix T(7) for a diffusive dynamics in this potential. T(7) is defined on a states space 2 of 100 equally sized bins along the reaction coordinate. Black
and orange indicate high transition probability, white zero transition probability. (c) The four dominant right eigenvectors r;. (d) Eigenvalue spectrum of T(z). (e) The four
dominant left eigenvectors ;. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) Source: Reprinted

with permission from Prinz et al. [57]. Copyright 2011, American Institute of Physics.
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it is conceivable that a laser used to probe the conformation of a la-
beled molecule in an fluorescence experiment puts energy into the
system such that the transition probabilities are actually changed
depending on the molecular state. The experimenter needs to make
sure that such undesirable interactions are kept small. Detailed bal-
ance does usually not hold for experimental conditions with time-
varying conditions such as Magnesium cycling or active pulling
experiments. Detailed balance has a number of convenient conse-
quences on the properties of the MSM, as will be explained below.

In the limit of k — oo, Eq. (9) returns the stationary distribution
for any initial vector p(0):

lim pT(0)T(1) = 7", (12)

where 7 is the first left eigenvector of T(7). This reflects the physical
experience that under equilibrium conditions, any initial distribu-
tion will eventually converge to the stationary distribution. The
transition matrix is, however, considerably more than a black box
which converts the probability at some point in time t to the prob-
ability at some time kt later. The way the probability vector
changes with time and eventually converges to the stationary prob-
ability vector can be understood in terms of the eigenvectors of the
transition matrix, and this interpretation is essential for under-
standing how kinetic experiments work. This is illustrated in
Fig. 2 (adapted from [57]) for a simple example.

The upper part in Fig. 2(a) shows an energy landscape along a
single degree of freedom with four energy minima (A,B,C,D) with
a high energy barrier between the two minima on the left side of
the coordinate (A,B) and those on the right (C,D). The coordinate
is discretized into one hundred microstates. The lower part of
Fig. 2(a) shows the corresponding equilibrium probability vector
7 at a given temperature T. In Fig. 2(b) a transition matrix, which
is given by a diffusion process on this energy landscape (see [57]
for details), is presented. The matrix elements are color-coded:
red represents high transition probabilities between two micro-
states, and white or light blue represents transition probabilities
which are zero or close to zero. Reading the ith row from left to
right, one finds the transition probabilities of from state S; into
states which belong to minimum A (1 <j<25), to minimum B
(25 <j <50), to minimum C (50 <j < 75), and eventually to mini-
mum D (75 < j < 100). The four blocks along the diagonal structure
of T(t) correspond to the four minima in the energy surface. They
reflect the fact that transitions within a minimum are much more
likely than transitions from one minimum to the other.

These properties can be used in order to identify the metastable
states of the system. The mathematical foundation for this was
worked out in [60] and further developed in [66]. Metastability
analysis has been subject to various studies and applications
[5,71,36,34] and is now a major tool to reduce the complexity of
macromolecular kinetics to humanly understandable terms.

The transition matrix can, as any diagonalizable matrix, be writ-
ten as a linear combination of their left eigenvectors, their eigen-
values and their right eigenvectors:

n

T(1) = Au(orl]. (13)

i=1

and thus, for longer timescales:
n

T(1) = > #(rl;. (14)
i-1

The transition matrix T(kt) = T(t) which transports an initial prob-
ability k time steps forward is again a linear combination of the
eigenvectors and eigenvalues. These linear combinations (Egs.
(13) and (14)) are known as spectral decomposition of the transition

matrix. They are very useful for connecting the dynamics of the
molecule to the measured signal, which is described in Section 2.3.

Eq. (14) is the key for understanding how the transition matrix
transforms a probability vector. The complete process consists of nn
sub-processes riliT, each of which is weighted by the eigenvalue /;
raised to the power of k. Because the transition matrix is a row-sto-
chastic matrix, it always has one eigenvalue which is equal to one
J1=1 [70]. Raising this eigenvalue to the power of k does not
change the amplitude of the corresponding sub-process
rl] : 1¥ = 1. ;1] is the stationary process, which we postulated
in Eq. (10), and 1; = = is the stationary distribution.

All other eigenvalues of the transition matrix are guaranteed to
be smaller than one in absolute value [70]

il <1 Vi (15)

The absolute weights of the corresponding processes, hence, decay
exponentially:

|/1i|" =exp (kln|%4|) = exp (% ln|2,-\> = exp (— t£>’ (16)
i
with the implied timescale t; of the decay process:
T
5= {17

The smaller the absolute value of eigenvalue /;, the smaller the implied
timescale t; and the faster the corresponding process decays. Note that
in transition matrices obtained from a discretization of state space,
negative eigenvalues can occur and the above interpretation in terms
of relaxation timescales t;is then only straightforward for the slow pro-
cesses with eigenvalues close to 1. Fig. 2(d) shows the 15 largest eigen-
values of the transition matrix in Fig. 2(b). There is one eigenvalue, /,,
which is equal to one, followed by three eigenvalues, 2, to 14, which are
close to one. These four dominant eigenvalues are separated by a gap
from the remaining eigenvalues. Hence, the transition matrix consists
of a stationary process, three slow processes and 96 processes which
decay quickly. After a few time steps, only the four dominant processes
contribute to the evolution of the probability vector. The way in which
these processes alter this vector is determined by the shape of the cor-
responding eigenvectors.

Fig. 2(c) shows the four dominant right eigenvectors, and Fig. 2(e)
shows the corresponding left eigenvectors. The first right eigenvec-
tor represents the stationary process and is therefore constant. The
first left eigenvector is equal to the equilibrium distribution in the
state space.The second eigenvector represents the slowest kinetic
process and has positive signs in regions A and B and negative signs
in regions C and D. This shape effectively moves probability density
across the largest barrier in the energy surface. Broadly speaking, the
right eigenvectors select the group of states between which proba-
bility density is transferred by a given kinetic process: (i) density
is transferred between states of opposite sign, (ii) states for which
theright eigenvector is zero are not affected by this particular kinetic
process. The left eigenvectors additionally contain information on
how much density is transferred. Analogous to the interpretation
of the second eigenvector, the third eigenvector moves density be-
tween A and B, the fourth eigenvector moves density between C
and D.

A transition matrix which fulfills detailed balance (Eq. (11)) has
several convenient properties. First, all of its eigenvalues and
eigenvectors are guaranteed to be real. Second, if we define a diag-
onal matrix IT in which the diagonal elements are equal to the
equilibrium distribution 7:

mifi=j
II:1I1; =
v {0 else

the left and right eigenvectors can be interconverted [70]:

, (18)
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l,‘ = IIr;

19
I = Hill,‘. ( )
Hence, the spectral decomposition of the transition matrix (Eq.
(14)) can be written in terms of only the left eigenvectors:

T(t) =1 Z Ko (20)
i=1

In the experiments we discuss in the following sections the
dynamics of the molecule is governed by equilibrium dynamics
(no varying forces, temperatures, etc.). It is, therefore, reasonable
to assume detailed balance and use Eq. (20) as a starting point
for all further derivations.

Representing the conformational dynamics as a Markov model
is a good approximation if:

1. The degrees of freedom (d.o.f.), which are not included in the
model, (marginal d.o.f. or bath d.o.f.) move on faster time-scales
than the d.o.f. included in the model (relevant d.o.f.) and are not
coupled strongly to the latter [64].

2. The conformational states of the molecule are projected onto
disjoint regions in the space of the relevant d.o.f, i.e., they do
not overlap.

3. The transition regions are sufficiently finely discretized
[72,73,57].

4, The time step 7 is large enough [72,57].

While these requirements now have a solid theoretical base,
any practical parametrization of a MSM from a given data set
(typically molecular simulation data) must test whether the ob-
tained model is consistent with this data set within statistical er-
rors [57].

2.3. Calculating experimental expectation values from Markov models

We now consider the case that an experiment is conducted
which measures observable a (and possibly additional observables
b, ¢, ...). This observable has a scalar value for every state S;
although vector- or function-valued observables could be treated
in a similar way. It is assumed that the state space discretization
used in the MSM is fine enough such that the observable averages
rapidly within a given state S;, and we call g; the corresponding
average value. The observable vector a=(ay,...,a,)” contains the
set of all such mean values.

We consider two different types of experiments: (1) equilibrium
experiments, where the molecular ensemble is distributed accord-
ing to the equilibrium distribution 7 at all times, and (2) perturba-
tion experiments, where the ensemble is started from a perturbed,
e.g., off-equilibrium distribution p(0) at time O and then relaxes to-
wards equilibrium. Either type of experiment can be analyzed by
monitoring (a) the time evolution of the ensemble average of
a,Ela(t)] = p(t), (b) the autocorrelation function of
a, Ela(t),a(t + At)] = u*(At), or (c) the cross-correlation function
with another observable b,E[a(t),b(t + At)] = u®(At). E[...] de-
notes the expectation value. Out of the six possible combinations,
the first one, equilibrium experiment in which the time-evolution
of the signal is analyzed, is stationary and therefore does not report
on any kinetic property. We will see that the time-dependence of
the remaining five combinations takes the form of an exponential
decay function:

ue) =7+ e (< ). @

i=2

The expressions for the respective amplitudes - y=%, y=® PO

P09 "and yP©% _ are reported in Table 1, where the first super-

script indicates the type of experiment, and the second superscript
indicates the type of function monitored in the experiment. In Sec-
tion 3, we discuss the interpretation of each of the experimental sig-
nals and how they relate to the kinetic processes of the system
under study.

We first consider the case where the observed molecule is in
equilibrium with the current conditions of the surroundings (tem-
perature, applied forces, salt concentration etc.) and the mean va-
lue of an observable a, u™ “(t), is recorded. This may be either done
my measuring p™%(t) directly from an unperturbed ensemble of
molecules, or by recording sufficiently many and long single mol-
ecule traces a(t) and averaging over them. The expression for the
expected measured value of a is purely stationary, i.e., it does not
depend on the time t:

N
Exla(t)] = i(0) = Y aim; = (a,m). (22)
i=1

(x,y) denotes the Euclidean scalar product between two vectors ¥
and y.

In the second type of experiments, perturbation experiments,
the observed molecule or ensemble is allowed to equilibrate un-
der a given set of conditions to the distribution p(0). At time t=0
these conditions are changed virtually instantaneously to another
set of conditions which are associated with a different equilib-
rium distribution . Now an observable a is traced over time
whose mean value decays from the old expectation Eyqla] to
the new expectation Epfa. The time-dependence of
Epo)[a(t)] = uP@4(t) allows conclusions on the intrinsic dynamical
processes of the molecule. This principle is used in temperature-
and pressure jump experiments [38], rapid-mixing experiments
[21], and optically-triggered perturbation experiments [74].
1P©-4(t) can also be measured with single molecule experiments
by recording many trajectories whose conditions are changed
rapidly changed at certain points in time, and then averaging over
this trajectory ensemble. “Rapidly” here means that the change
must take effect on a much shorter timescale than the slow relax-
ation timescales of interest. Single-molecule perturbation mea-
surements can be realized e.g, by cycling the Mg?*
concentration in single-molecule FRET experiments [69] or by
changing the reference positions in optical tweezer experiments.
Computationally, the dynamics of the molecule after t = 0 are gov-
erned by a transition matrix T(t) which reflects the conditions
after the jump or trigger. At each time t = k7, the ensemble will
be distributed as p’(kz)=p’(0)T¥(t). The expectation value of
a(t) changes accordingly with time:

Ep[a(k)] = pP® (k) = iain(kf) = (a,p(k1)). (23)
i=1

Using Eqgs. (9), and (20) one can expand Eq. (23) to:

1O (k) = (a, [p"(0)T*(7)]")
- <a, {pT(O)Hl iiﬁ‘(r)lilf} >
- <a, {p’T(O)zﬂ:ﬂf(T)lilf} > (24)

where we have replaced the probability distribution p(0) by the ex-
cess probability distribution:

p'(0) =11"'p(0), (25)

with pj(0) = p;(0)/m;. Rearranging the sum and the scalar products,
one obtains:
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, n kt ]
—@mEO.m+ Y e (- @lPO.1). @6

i=2 1
In this notation, it becomes obvious that the time-dependence of
the expected measured signal 2 (kt) has the form of a multiexpo-
nential decay function (Eq. (21) with ¢ = kt). The amplitude of the
ith decay process is given as:

PO = (@,1)(p(0), 1) (27)

The respective decay constant t; is equal to the ith implied timescale
of the underlying transition matrix. Note that the individual compo-
nents of the signal decay until the expected measured signal of the
equilibrium experiment under the target conditions is reached:

(@,m)(p'(0),m) = Pt = k). (28)

p(0).a

llim wPO8 (k) = (a,m) =
The amplitudes 7} in Eq. (27) reflect the extent to which a given
mode (eigenvector) of the dynamics contributes to the time-evolu-
tion of pP® 9(kt). This depends on two factors:

1. How much probability density is transported via this mode dur-
ing the relaxation from p(0) to =, represented by the scalar
product (p(0), I;).

2. How sensitive a is to changes along this mode, represented by
the scalar product (a,l;).

2.4. Calculating experimental correlation functions from Markov
models

Instead of monitoring the expectation value of the experimen-
tal observable directly, one can also monitor its autocorrelation
function which (typically) will show a multiexponential decay
(Eq. (2)). The timescales of this function also report on the intrin-
sic molecular kinetics. One way to measure such correlation func-
tions is by tracing the equilibrium fluctuations of a molecule
subsequently correlating this signal in time. This is e.g., done in
fluorescence correlation spectroscopy (FCS). In experiments, in
which two signals, a and b, are measured simultaneously, also
cross-correlation functions can be extracted from the measured
signal. Multiparameter-FRET experiments [75,76] or multichro-
mophore FRET experiments [7] are examples of this type of
experiment. A way of directly measuring time correlation func-
tions of atomic positions are time-resolved X-ray and neutron
scattering experiments.

We now use the existing formalism to derive expressions which
predict the autocorrelation function of observable a and the cross-
correlation function of observable a and b. Although, to the best of
our knowledge, the auto- or cross-correlation analysis of the mea-
sured signal has not been applied to perturbation experiments yet,
we also include this possibility into our derivation for complete-
ness. In total, we obtain four different expressions for the four pos-
sible experimental situations (equilibrium or perturbation
experiment combined with either auto- or cross-correlation func-
tion). The respective expressions of the amplitudes are summa-
rized in Table 1.

We start with the most general case: cross-correlation function
in a perturbation experiment. All other results are specializations
of this case. The dynamics of the molecule is represented by the

jump process among discrete microstates S; (Eq. (4)). Each state
is associated with a value of each of the measured signal, repre-
sented by the signal vectors a and b. The correlation of a(t) and
b(t), given an initial probability distribution p(0), is defined as:

Epo[a(t)b(t + AL)] = PO (At)

=" aiP(so =) bP(sa =jlso =)

i-1 j=1

=Y Y an(o)

i=1 j=1

“biP(sac =jlso = 1) (29)

If s; is a Markov processes with transition matrix T(t) and if At can be
split into k times the lag time 7, then the conditional probability
P(Sar = j|So = 1) = P(Sk: = j|So = i) can be replaced by the correspond-
ing matrix element [T"(r)]ij of the transition matrix raised to the power
of k. Introducing a diagonal matrix P(0) in which the diagonal elements
are equal to the initial probability vector P;(0) = p;(0), we can formulate
the cross-correlation function as a vector-matrix equation:

[POD (AL = kT) = a"P(0)T(T)b. (30)

We introduce an excess initial density P’'(0) = II"'P(0) (analogous to
Eq. (25)), replace the transition matrix by its spectral decomposition
(Eq. (20)), use the definition of the implied timescale (Eq. (16)) and
obtain an expression which has the same structure as Eq. (21):

{Z pid® lf}
Z ik Z a,pr {117} b,

i=1 rs=1

—Z "Za”f {1}, {k}bs

rs=1

WO (kr) = a"P(0

n

/@, P (0)L)(b,1)

i=1

u kt ,
— @ POm)b.m) + Y exp (— 7) @POL)b1) (31)

i=2 !

The ith decay constant of this multiexponential decay is given as the

implied timescale associated with the ith eigenvector of the transi-

tion matrix. The corresponding amplitude is given as:

PO = @ P (0)L)(b,L). (32)

The autocorrelation function of a perturbation experiment is ob-
tained by replacing the signal vector b by a in Egs. (30) and (31):

kt

HPO (kr) = (2, p(O))(a,m) + 3 exp (— 7) @ P Ol)al). (33)
i=1 !

with the amplitudes:
PO = @PO)l)@l). (34)

When conducting experiments which track the instantaneous
fluctuations of small or single-molecule concentrations, correlation
functions can be calculated from time averages of the fluctuating
trajectories. In this case, the correlation functions can be recorded
under equilibrium conditions and consequently P'(0) is equal to
the identity matrix. The cross- and autocorrelation are thus given as:

Zﬂal )(b,1)

= (a,m)(b,m) + Z exp (- E) @,1)(b, 1), (35)

i=2

1: ab ](T

with the amplitudes:
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PP = (@, 1) (b, 1;). (36)

and

=@m’+> exp

i=2

™9 (kT) = ;/15%3711.)2 (— kT:E) <a,li>2- (37)

with the amplitudes:

T.aa

Vi

- (38)

@l)?.

3. Application to model systems
3.1. 1D energy surface

Fig. 3 shows the eigenvectors of our one-dimensional diffusion
model shown in Fig. 2, as well as two different observables and two
different initial distributions. The observables resemble a hypo-
thetical fluorescence quenching experiment. With a; the chromo-
phore fluoresces if the system is in state A or B, whereas
fluorescence is quenched in state C and D. With a, fluorescence
is quenched in A, B, and D.

Due to the hierarchical nature of the energy landscape an inter-
pretation of the measured timescales in terms of individual confor-
mational changes can be misleading. In a four state system, there
are six unique pairs of states (conformations) that can interconvert,
i.e., six possible conformational changes. Yet the dynamics in this
state space is described by only three relaxation processes (non-
stationary eigenvectors of the corresponding transition matrix).
Processes three and four indeed correspond mostly to transitions
from one conformational state to another. However, process two
represents the transition between the group {A,B} and the group
{C,D}, i.e., it can be associated to the transition across the barrier
separating B and C.

With an observable vector which has only non-zero entries as in
this example, the stationary process is always detected. The overlap
between the observables and the initial distributions with the eigen-
vectors of the model, represented by the respective scalar product,
are shown to the left and right of the eigenvector plots in Fig. 3. Be-
cause the stationary distribution l; = 7 has only positive entries, the
scalar product with these observables or any initial distribution is
greater than zero. Consequently, y; in Eq. (21) is greater than zero.

99

Although dynamical fingerprints do normally not include this sta-
tionary part [34], we here include the overlap of observable and ini-
tial distributions with the stationary process for completeness.

Not all dynamical processes can be detected. Whether a given
process appears in the experimental fingerprint depends on the
overlap of the observable with the eigenvector of this process.
For example, the overlap of a; with the third and the fourth eigen-
vector is nearly zero. These processes correspond to swaps be-
tween states which have the same signal value (A<« B and
C+ D). Hence, a; is insensitive to them, and y3 = 0, and 74~ 0 in
an autocorrelation experiment (Eq. (37)). Only the second process
can be observed with a;. On the other hand, a, is sensitive to the
second and fourth process but not to the third. Compare the scalar
products in Fig. 3 with the Fig. 4(a) and (b).

Fig. 4(c)-(f) illustrates how perturbation experiments compare
to equilibrium correlation experiments with the same observable.
It is crucial to note that it is not possible to observe processes in a
perturbation experiment which would be invisible in the corre-
sponding equilibrium experiment (Fig. 4(c) and (d)). This is due
to the fact that, in perturbation experiments as well as in equilib-
rium experiments, the amplitude is proportional to the overlap of
the observable a with the eigenvector (Eq. (34)).

However in perturbation experiments, the amplitude is also
proportional to the overlap of the eigenvector with the initial dis-
tribution p(0). This fact can be exploited to selectively measure a
specific process. By choosing the initial distribution appropriately
one can “hide” processes which are visible in the equilibrium
experiment. This allows for the selective measurement of pro-
cesses which might be hard to extract from the multiexponential
decay in the corresponding equilibrium experiment, for example
processes which decay on short timescales (see Fig. 4(f)). An un-
wise combination of observable and initial distribution, on the
other hand, may lead to a situation in which only the stationary
process can be observed (Fig. 4(e)).

3.2. Protein folding model

We return to the protein folding model shown in Fig. 1. As men-
tioned before, the model protein consists of two secondary struc-
ture elements, an «-helix and a B-sheet, linked by a short loop
regions. Each of the two domains is assumed to fold and unfold
in a single distinct step, i.e., simultaneous folding of both

p1(0) {(p1(0),1;) I {p2(0)li) p2(0)
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Fig. 3. Experimental setups for the 1-D energy surface model. The middle columns shows the left eigenvectors of the model. Panel (a) additionally shows two possible initial
distributions, and panel (b) shows two possible observables. The values of the respective scalar productions are shown to the left and right of the eigenvector plots.
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p1(0) and a, combined, (e) p(0) and a; combined, (f) p(0) and a, combined.

secondary structure elements cannot occur. Thus, the model com-
prises four conformational states: state 1=hg; (both domains
folded), state 2 =hg,(o-helix folded, p-sheet unfolded), state
3 = hyfr («-helix unfolded, -sheet folded), state 4 = h,$, (both do-
mains unfolded). We model the folding equilibrium as a Markov
model in which the states correspond to these four conformational
states. Suppose, we have observed the protein and took note of the
transitions after each time step 7. The matrix:

12000 20 2 0
20 7000 O 2
2 0 6000 20
0 2 20 1000

(1) = (39)

contains the total number of observed transitions. By normalizing
each row one obtains the corresponding transition matrix with
the elements Tj; = c¢;j/>_,Cix, OF numerically:

0.9982 0.0017 0.0002 0

0.0028 0.9969 0 0.0003

0.0003 0 0.9963 0.0033
0 0.0020 0.0196 0.9785

The thickness of the arrows in Fig. 1 reflect the transition prob-
abilities between the states. There is a fast equilibrium between
the folded and the unfolded conformation of the g-sheet if the helix
is unfolded. The folding of the complete protein mainly occurs
through a cooperative folding pathway via the state hg,. Folding
of the helix when the g-sheet is already formed is considerably less
likely. The eigenvalue spectrum, as well as the left and right eigen-
vectors of t are shown in Fig. 5.

The timescales observed in kinetic experiments are often inter-
preted in terms of conformational changes in the examined mole-
cule, and the slowest process is typically associated with
the overall folding and unfolding. However, the slowest rate in
the system is not necessarily the “folding rate” of the protein. In

T(1) ~ (40)
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Fig. 5. Markov model and experimental setup for the protein folding model.

the present example, the folding rate could either be defined as the
rate of going from state 4 to state 1, or as the rate of going from the
ensemble of states 2, 3, and 4 to state 1. However, none of the eigen-
vectors corresponds to either of the two processes. Rather they have
the following interpretation: I, represents the folding and unfolding
of the helix, 15 represents the folding equilibrium of the g-sheet
when the helix is already formed, and 1, represents the same equilib-
rium when the helix is unfolded. Care should be taken to differenti-
ate between the folding rate and the rate limiting step in a folding
process which in this case is the formation of the helix.

Fig. 5(b) shows two initial distributions that could be used in
perturbation experiments. The first one (p;(0)) represents an
ensemble in which all molecules are folded, the second one
(p2(0)) an ensemble in which all molecules are completely un-
folded. Note that in practical perturbation experiments, such as
temperature-jump experiments. The choice of p(0) is often much
more indirect. These relatively extreme choices are given here to
illustrate the behavior in two very different cases.

Fig. 5(c) shows observable vectors which resemble FRET con-
structs in which the chromophores are attached at sites 1 and 2
(ay), sites 2 and 3 (ay), and sites 1 and 3 (a3). For all three observ-
ables, we discuss the autocorrelation fingerprints of equilibrium
experiments. We also discuss an equilibrium multichromophore
experiment in which observables a; and a; are combined (donor
at site 2, first acceptor at site 1, second acceptor at site 3). As for
the perturbation experiments, we discuss the combination of the
two initial distributions with observable as.

The three observables are an intuitive example why some
experimental constructs are unable to resolve all slow kinetic pro-
cesses present in the system. From Fig. 1 it is clear that, if the chro-
mophores are attached at site 1 and 2 (observable a;), the
experiment will only be sensitive to processes which involve the
folding or unfolding of the helix. This is reflected in the scalar prod-
ucts of a; with the L,, I3, and 14 (Table 6). a; has a large overlap with
I,, but only small or virtually no overlap with 14, and 5. Corre-
spondingly, a; (chromophores attached at sites 2 and 3) is sensitive
to I3, and 1,4, which represent the folding of the p-sheet, but rather
insensitive to l,. a3 (chromophores attached to sites 1 and 3) is sen-
sitive to all three processes. The expected amplitudes of equilib-
rium experiments with a;, a,, or az are shown in Fig. 6(a)-(c).

Given only the three-dimensional structure of a molecule it is
often impossible to decide whether a particular observable can re-
solve all processes in the conformational equilibrium. However,
with the help of MD simulations one can quantify the sensitivity
of the observable to any process in the equilibrium. This is dis-
cussed in Section 4.

The two initial probability distributions illustrate a pitfall of per-
turbation experiments. Not all kinetic processes are involved in
relaxing a particular initial distribution to the equilibrium distribu-
tion. For example, in the relaxation from the folded state (p;(0)) the
equilibrium between the folded and the unfolded conformation of
the B-sheet is entirely achieved via 15, and not via 1 (Table 2:
(p1(0),15) = 0.50, (p1(0),14) = 0.00). When the system is relaxed from
the unfolded state (p,(0)), however, the situation is reversed: 1, is
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Table 2
Protein folding model: scalar products of the observable vectors and the initial
distribution with the left eigenvectors.

(a1 a; a az (p(0),1;) p1(0) P2(0)
I 1.45 1.39 1.08 L 0.54 0.54
I, 0.78 0.15 0.47 I, 0.29 0.70
I 0.01 0.59 0.57 I; 0.50 0.06
I, 0.12 0.66 0.26 I 0.00 1.09

active, whereas 1 is not (Table 2: (p,(0),15) = 0.06, (p-(0),14) = 1.09).
Therefore, even when an observable which is sensitive to all pro-
cesses is chosen, like a3 in the present example, some processes
might still be undetectable in a perturbation experiment. Fig. 6(d)
and (e) shows the expected amplitudes for the two perturbation
experiments. For p;(0) the fourth process has no amplitude, and
for p,(0) the third process has a very small amplitude.

With multichromophore experiments the trade-off between
selectivity and comprehensiveness is alleviated. An observable like
a3 has the advantage of capturing all slow kinetic processes. How-
ever, it can be very tedious and difficult to extract multiple time-
scales from a possibly noisy data set, especially in the presence
of measurement noise. In principle, it would be possible to perform
several experiments on a given system, each with a different obser-
vable, and combine the obtained results. Unless the sensitivity of
the observables to the processes in the system is known, it will
be hard to decide whether peaks which appear with similar time-
scales in two different experiments are the same conformational
process slightly shifted or two different conformational processes
with similar timescales. By performing a multiple-chromophore
experiment one obtains the information of the two individual
experiments, and additionally can use the information from the

cross-correlation from the two signals to match peaks from the indi-
vidual experiments (Fig. 6(f)). If two peaks in the individual experi-
ments correspond to the same conformational process i, the
amplitude in the equilibrium cross-correlation fingerprint should
be (a;,1;)(az,1;), where (a;,1;) and (a,,l;) are obtained as the square-
root of the amplitudes in the respective auto-correlation fingerprint.
If, on the other hand, the two individual experiments measure dis-
junct sets of processes (as in our example), the amplitudes in the
cross-correlation fingerprint should be close to zero.

4. Experimental design using molecular dynamics simulation
and Markov models

In Section 2 we have described the dynamical fingerprint theory
that explains how the dynamical fingerprint of a given experimen-
tal observation arises from a known Markov model. In practice, the
Markov model is initially unknown and the experimental data is
not in the form of a dynamical fingerprint. This section explains
how to (1) transform experimental relaxation or correlation curves
into dynamical fingerprints and how to (2) estimate a Markov
model of the molecular system from molecular dynamics simula-
tions. The resulting simulated fingerprint can be compared to the
experimental fingerprint, peaks can be matched and can be as-
signed an interpretation in terms of structural changes of the mol-
ecule. Finally, we sketch how this approach can be used in order to
design experiments that optimally probe individual processes.

4.1. Experimental dynamical fingerprints

To reconcile our Markov model analysis with measured data, it
is useful to transform the experimental relaxation curve into
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timescales and amplitudes. In practice, this is often done by fitting
a single- or multiexponential model. This approach is not objective
as it requires the number of timescales to be fixed. For example,
multiple exponentials with similar timescales, or a double-expo-
nential where the larger timescale has a small amplitude will both
yield visually excellent single-exponential fits with an effective
timescale that may not exist in the underlying system (see [40]
and SI of [34]). To prepare the experimental data for a systematic
analysis, we propose to use a method that uniquely transforms
the observed relaxation profile into an amplitude density of relax-
ation timescales (here called dynamical fingerprints). Several such
methods have been developed especially maximum entropy or
least squares based methods [77,78]. In [34] we have developed
a maximum-likelihood method which is available through the
package SCIMEX (e.g., https://simtk.org/home/scimex) which is
briefly discussed here.

Let us consider the observed correlation or relaxation function
ft)=(f,....fn,) which has been recorded at discrete time points
t € {t1,...,ty,}. We model the fingerprint y(t') in terms of a dis-
crete set of tuples {(t},y,),..., (t\,. Vn,) }- When each observation
fj comes with a Gaussian-shaped uncertainty oj;, the log-Likelihood
of a given fingerprint having generated the observed signal x is gi-
ven by (up to an irrelevant additive constant):

2
e (5 - Slexn (-4/t)
ogpiroen =3 U T )
J

j=1

(41)

and the amplitudes are estimated as the maximum of this function,
yielding the discretized maximum-likelihood fingerprint
[(t},71)---, (t,7,)]. As an example, we consider a hypothetical
measurement of a correlation function of the form:

F(t) = 0.9 exp <5—t0) +0.1 exp (ﬁ) (42)

with additive Gaussian error having intensities of ¢ = 0.5/t
Fig. 7(c) shows the curve of Eq. (42) along with the measured cor-
relation function, while Fig. 7(a) (black) shows the corresponding
fingerprint. Fig. 7(a) (red), (b), and (c) (green) show the results of
the fingerprint estimation procedure. The experimental fingerprint
shown in Fig. 7(a) is then used for the further analysis.

4.2. Simulation, Markov model, and simulated dynamical fingerprints

Molecular simulation methods are useful to generate structures
that can be assigned to experimentally measurable dynamical pro-
cesses. A popular choice are atomistic molecular dynamics models,
but in some cases higher-order models (such as ab initio or QM/
MM) or coarser methods (coarse-grained models or Go-type mod-
els) may be useful. Furthermore, a simulation setup should be cho-
sen which is able to generate dynamical trajectories from some
well-defined ensemble. At least, one expects a constant tempera-
ture and a unique stationary density (see [57,79] for a discussion
on ensembles and thermostats that have desirable statistical prop-
erties). Based on such a setup, dynamical trajectories can be gener-
ated. At this point, we assume that the setup and the
computational environment has been chosen such that a “statisti-
cally sufficient” amount of trajectories can be generated. In situa-
tions where this is not possible, see [36,80-83] for a discussion
of methods that can be used to enhance the sampling.

Given the simulation data, the molecular state space is discret-
ized by clustering. Various combinations of distance metrics and
clustering methods have been proposed. Frequently used metrics
include Euclidean distance after having fitted the molecule to a ref-
erence structure [36,5], root mean square distance (RMSD) [45,59],
and various clustering methods may be used [36,45,59,71,84].
Interestingly, very simple methods such as choosing generator
structures by picking simulation frames at regular time intervals
or even randomly and then clustering the data by assigning all sim-
ulation frames to the nearest generator structures perform quite
well [57]. Importantly, the clustering must be fine enough such
that the discretization is still allows the metastable states to be dis-
tinguished in order to be useful to build a quantitative Markov
model.

After having discretized the simulation data to discrete trajecto-
ries, the transition matrix T(t) is estimated. The simplest method
to do this is to generate a count matrix C(t) whose entries c; con-
tain the number of times a simulation was found in state i in time ¢t
and inj at time ¢ + 7, and then calculating T; = ¢;;/_,cik. However,
this matrix does not necessarily fulfill detailed balance, and thus
the decomposition Eq. (14) does not have a simple interpretation.
It is therefore desirable to estimate a matrix T(t) that fulfills de-
tailed balance. Reversible counting [40] can be used if one has sim-
ulation trajectories that are much longer than the slowest
relaxation time, otherwise one must use an estimation method
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Fig. 7. Dynamical fingerprint of a model correlation function. (a) True (black) and estimated fingerprint (red). Note that the apparent disagreement in amplitude is a result of
the broadening in the estimated fingerprint which is a consequence of the noise in the data. The areas under the peaks should be the same for a correctly estimated
fingerprint. (b) log-Likelihood of the estimated fingerprint. This likelihood shod be inspected in order to make sure that it is converged. A good rule of thumb is that it should
not increase more than 1 within the last half of the optimization. The inset shows that this is the case here. (c) Comparison of the input (black) with the predicted relaxation
curve (green). The predicted curve is a good fit to the data. The deviation at short times from the true, noiseless, signal (red) are due to statistical noise in the data. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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[57] which allow a reversible T(t) to be estimated based on the
unbiased count matrix C(t).

In order to analyze T(t), we perform an eigenvalue decomposi-
tion, generating eigenvectors I; and eigenvalues 4;. The eigenvec-
tors can be used to identify metastable sets [60,66,5] that help to
understand the essential kinetics. The eigenvectors I; can be inves-
tigated in order to obtain insight between which states the relaxa-
tion process with timescale t; = —t/In/; switches.

The fingerprint is calculated by calculating the amplitudes
depending on the specific type of experiment considered (see Sec-
tions 2.3 and 2.4) and combining them with the timescales t;. Note
that this fingerprint has statistical uncertainty based on the fact
that only a finite number of dynamical trajectories has been used
for the estimation of T(t). This uncertainty can be characterized
based on Monte Carlo methods described in [61,85,34].

The assignment of structural processes to experimentally-de-
tected dynamical features can be made if peaks can be matched be-
tween the experimental and the simulated fingerprint (see Fig. 8).

Programs to calculate Markov models from simulation data are
available in the simulation package EMMA (e.g., https://simtk.org/
home/emma).

4.3. Validation and experimental design

We have discussed and shown in Section 3 that for each given
experimental setup (i.e., combination of measurement technique
and observable chosen by the label placement), the amplitude of
some processes may be large, and the amplitude of many others
may be small. The small-amplitude processes can often not be de-
tected with high reliability since they might affect the signal only
to a degree that is similar to statistical or systematic error present
in the measurement. It is thus desirable to design the experiment
such that specific processes appear with large amplitudes. We
sketch the following systematic approach of experimental design
which has been proposed in [34]:

1. Conduct MD simulations of the molecular system under inves-
tigation and estimate a Markov model to model its essential
kinetics.

=9

Exp n:

WIS

=9

Sim n

1 10 100 1000
Timescale (ns)

Fig. 8. Dynamical fingerprint of the MR121-GSg-W peptide. Upper panel: from
experiment. Lower panel: from simulation. n=9 is the number of Glycine-Serine
repeats in the peptide.

2. For each possible experimental setup (e.g., for each placement
of the labels), estimate the values of the corresponding observ-
ables, a, b and calculate the expected experimental fingerprints
as described in Sections 2.3 and 2.4.

3. For each of the m slowest relaxation processes, select the exper-
imental setup for which the amplitude of this relaxation process
is largest (or largest compared to the amplitudes of the pro-
cesses with similar timescales if the timescale spectrum is
dense).

4. Conduct these m experiments.

This approach attempts to optimally probe each process with a
single experiment, thus also keeping the number of potentially
expensive experiments small. Besides yielding a useful set of com-
plementary experiments, this approach is useful to validate the sim-
ulated results much more solidly than with a single comparison.

This approach is ideally suited for experiments with site-spe-
cific labels that do not significantly affect the kinetics. This is espe-
cially true for techniques that permit the use ofisotope labeling
such as NMR, IR spectroscopy or neutron scattering. In fluores-
cence-based techniques this can be achieved with intrinsic dyes
(e.g., the modulation of Tryptophan fluorescence by the environ-
ment [38] or Tryptophan triplet quenching by Cysteine [86]) or
with extrinsic dyes that have little effect on the conformational
dynamics.
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Fig. 9. Experimental design. Prediction of the amplitudes of fingerprint peaks of the
5 slowest processes in MR121-GSo-W when placing the fluorescence labels at any of
the 190 different possible residue positions from 1-2 to 19-20. The x-axis
enumerates these 190 labeling positions. The magenta, blue, green, orange, red
lines mark the proposed experimental setups to optimally probe the slowest to the
fifth-slowest processes. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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In [34], the method has been demonstrated on the MR121-GS,-
W peptide with a simple heuristic to predict fluorescence autocor-
relation signals for each of 190 possible positions of the MR121 and
W (Tryptophan) dyes along the chain. Based on this, the ampli-
tudes of the five slowest fingerprint peaks were calculated and
are shown in Fig. 9. It is apparent that for most experiments only
one or two amplitudes are strong while the remaining amplitudes
are weak. If this result is also true for other molecules, it is evident
why so many molecules appear to have two- or three-state kinetics
while they are much more complex in molecular simulations.

Based on such a comparison of predicted fingerprints, an ap-
proach is suggested to propose experiments that probe individual
relaxation processes with maximum amplitude. Fig. 9 shows such
a choice of experiments for the five slowest relaxation processes in
the MR121-GSo-W peptide (see [34] for details). Each plot shows
the amplitudes of the corresponding relaxation process probed
by a fluorescence autocorrelation experiment where the labels
have been attached to a given pair of residues. The different label-
ing constructs are simply listed on the horizontal Axis. Consider
now the five constructs highlighted by the colored boxes: The pur-
ple box selects a construct (here the fluorophors MR121 and W are
attached to residue positions 8 and 14 in the chain) in which the
amplitude of the slowest relaxation process is maximal. At
the same time, the remaining amplitudes are mostly small. Only
the third-slowest process also has a significant amplitude, but this
process is more than a factor of three faster, such that the mixture
of these two relaxations should be clearly distinguishable from a
single-exponential decay. Hence, the slowly-decaying part of the
resulting autocorrelation function should be approximately biex-
ponential with about 60% amplitude in a 360 ns relaxation and
about 40% amplitude in a 102 ns relaxation. For other processes,
such as the third-slowest process (green), one can find a construct
where only one relaxation process has significant amplitude while
the others have vanishing amplitudes. Putting the fluorophors at
positions 6 and 14 is thus predicted to yield a single-exponential
autocorrelation function with a timescale of 102 ns. In this way,
for every slow relaxation process a single experiment can be pro-
posed where this relaxation process can be probed with maximal
amplitude and with minimal cross-talk from other relaxation
processes.

This approach of experimental design is ideally conducted with
an experimental setup where the conformational dynamics
changes little when the label positions are changed. While this is
clearly not the case for the MR121-GSo-W peptide which is rela-
tively small compared to the fluorophor labels, this might be
achieved with significantly larger and more stable proteins. On
the other hand, some techniques such as IR, NMR and Neutron
Scattering permit isotopic labels to be used which have little or
no effect on the slow conformational dynamics, and are thus ideal
candidates for the experimental design sketched here.

5. Conclusions

The combination of Markov models and the concept of dynam-
ical fingerprints provides a theoretically solid and computationally
feasible approach to connect molecular simulation data or molec-
ular kinetic models to experiments that probe the kinetics of the
molecular system in reality. The main advantage of this approach
over traditional MD analyses is that the processes that occur at gi-
ven timescales are unambiguously given by the theory. In the Mar-
kov model, this assignment is present by the one-to-one
association of transition matrix eigenvalues (that correspond to
measurable relaxation timescales) and eigenvectors (that describe
structural changes). When the experimentally-measured relaxa-
tion data is further subjected to a spectral analysis, experiment

and simulation can be reconciled on the basis of dynamical finger-
prints, i.e., by matching peaks of the timescale density.

A comment is in order on the fact that in all cases, the slow
relaxations in kinetic measurements are found to have the form
of a sum of single exponential term, each term corresponding to
an eigenvalue/eigenvector pair in our analysis. This is a general re-
sult which can also be obtained by performing the analysis in full
continuous state space (as opposed to our discrete-state treatment
here). The only assumptions that are made to arrive at this result
are the following:

1. The dynamics of the system is Markovian in full state space (i.e.,
the continuous space of all positions and momenta of the molec-
ular systems studied and the solvent molecules). This is a very
weak assumption that is made in all classical simulation models.
The Markovian assumption could also be applied to quantum
mechanical models when the electronic degrees of freedom are
included. It is thus also a reasonable assumption for real molec-
ular systems. The only systems for which such an assumption
would be unpractical are systems which have correlations over
arbitrarily long length scales, such that no finite-size simulation
setup can be made that captures all relevant processes. This can
happen for glassy or crystalline systems.

2. The state space is ergodic, i.e., all states of the system can inter-
change. This assumption may also be untrue for glassy or crystal-
line systems. It is in practice also hard to fulfill for other systems if
the kinetics are slow and are not measured in an ensemble but by
averaging multiple single-molecule trajectories. In this case it
may be difficult to collect sufficiently many trajectories that this
trajectory set is effectively ergodic, and deviations from multiex-
ponentiality may be a statistical artifact.

3. The relaxations are measured at equilibrium conditions. This
does include the possibility that the system relaxes from an
off-equilibrium distribution (e.g., as in temperature jump
experiments), but it does so under equilibrium dynamics which
fulfill detailed balance. This assumption requires that the exper-
iment does not put energy into the system or remove energy
from it. It is unclear whether laser or scattering experiments
obey this condition sufficiently well.

Even in situations where these points can be assumed to be ful-
filled, apparent nonexponentiality has been found over signifi-
cantly long timescales, such as stretched exponentials [87,88] or
power laws [48]. Note that this is no contradiction because such
apparent nonexponentialities can be easily explained by sums of
a few single exponential relaxations with particular spacings of
timescales and amplitudes [89,90,34] - and thus also correspond
to dynamical fingerprints with multiple peaks (see [34], Supple-
mentary Figs. 1 and 2). In practice, however, care must be taken
that such effects are not actually due to the measurement tech-
nique itself. Especially conditions 2 and 3 may sometimes be vio-
lated by the experimental setup itself.

One of the main insights from the present study is that apparent
simplicity in the kinetics is often a result of the experimental
observation itself. It is likely that the apparent two- or three-state
kinetics observed in experiments of macromolecules does not re-
flect the entire complexity of their conformational dynamics. In
particular, the sensitivity of a given experiment with respect to
the kinetic processes depends crucially on the choice of the label
sites. We showed that there are choices of labels sites in which
some kinetic processes are not detectable at all and, therefore,
the kinetics of the system under study will appear simpler in the
experimental results than it actually is. The measured relaxation
times report on the kinetic processes in the system, which can be
represented by the eigenvectors of the MSM transition matrix.
These processes may not correspond to simple conformational
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changes. Hence, there are two reasons why the slowest measured
rate is not guaranteed to be the folding rate because (i) there might
be no process which corresponds to our notion of folding, (ii) the
experiment might be insensitive to this particular process.

The comparison to a Markov model allows for a unambiguous
interpretation of the measured fingerprints. The analysis in terms
of Markov models also shows how equilibrium and perturbation
experiments relate to each other: perturbation experiments report
on the same set of kinetic processes as the corresponding equilib-
rium experiment or a subset thereof. By clever choice of the label
site and the initial distribution (i.e., the perturbation), one can
use perturbation experiments to selectively measure a specific pro-
cess. Last but no least, Markov models can be used to improve the
experimental design by predicting the amplitudes of the finger-
print measured with a specific choice of label sites.
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