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ABSTRACT: Markov state models parametrized using molecular simulation data are powerful tools for the investigation of
conformational changes in biomolecules and in recent years have gained increasing popularity. However, a Markov state model is an
approximation to the true dynamics of the complete system. We show how Markov state models are derived from the generalized
Liouville equation identifying the assumptions and approximations involved and review the mathematical properties of transition
matrices. Using two model systems, a two-bit flipping model consisting of only four states, and molecular dynamics simulations of
liquid butane, we subsequently assess the influence of the assumptions, for example, of the marginal degrees of freedom, used in the
derivation on the validity of the Markov state model.

1. INTRODUCTION

The dynamics of large biomolecules encompasses processes of
vastly different time scales. Fast processes, such as bond-angle
vibrations, happen on the femtosecond time scale and are
coupled to slow processes, such as large conformational rearran-
gements, which happen on the micro- to millisecond time scale.
For example, the folding of an entire protein can easily take
seconds. In a molecular dynamics (MD) simulation of a biomo-
lecule at the atomic level, the integration step of the simulation is
bound to the order of 1 fs.1,2 Constraining the fast processes to a
fixed value, the only exception being the bond-length vibration,
will distort the dynamics of the slow processes.3-5 Thus, a MD
simulation of a folding process aims at emulating a process with a
time scale of micro- to miliseconds by tracing out trajectories at a
femtosecond resolution, thereby bridging time scales of 9 to 12
orders of magnitude. This together with the fact that MD
simulation programs scale poorly for the parallelization to many
processors makes MD simulations of biomolecular processes
time-consuming. Moreover, by integrating the time evolution of
each degree of freedom explicitly, the amount of detail produced
by an atomic-levelMD simulation is barely manageable and often
far beyond what is needed for the elucidation of a particular
molecular phenomenon.

The combination of MD simulation with stochastic models
such as Markov state models (MSM) has the power to redress
both of these shortcomings. For the construction of a MSM, the
complete coordinate space of the simulated system (i.e., solute
plus solvent) is split into a set of relevant coordinates and a set of
marginal coordinates. In the first instance, the term “relevant
coordinates” denotes any set of coordinates which is of relevance
to the question which is to be investigated by the simulation.
MSMs provide a means to concisely represent the dynamics of
the relevant coordinates, formulated as a transition matrix with a
dimension on the order of typically several hundreds to several
thousands. Properties of interest, such asmean first passage times
and mean life times, can be directly extracted from this transition
matrix.6,7 The conformational equilibrium distribution emerges
as the first eigenvector of the transition matrix, and metastable
states can be identified by grouping the states of the Markov

process in such a manner that the metastability of the groups is
maximized. This corresponds to maximizing the trace of the
coarse-grained matrix.8

MSMs are associated with a time step, called lag time, which is
typically on the order of pico- to nanoseconds. If the dynamics of
the relevant coordinates are indeed Markovian at this lag time,
then the MSM can be parametrized by a large number of short
MD simulations.10 This approach does not necessarily decrease
the required computer time but rather, when the short simula-
tions are run in parallel on several computers, the time one has to
wait for the results.

In aMSM, the configurations of the system are mapped onto a
(typically small) set of states, and the dynamics are modeled by
the transition probabilities between these states. While from a
mathematical point of view, the mapping corresponds to a
projection and can done by a single operator multiplication,9 in
any practical application, this projection is split into two con-
secutive steps: (i) separation of the complete coordinate space
into relevant and marginal coordinates and (ii) discretization of
the relevant coordinates. These models are clearly an approx-
imation of the true dynamics. The idea is that the influence of the
marginal degrees of freedom averages out over time and that one
can often find a time lag τMarkov for which the deviation from
Markovian behavior in the relevant coordinates is small enough
to be neglected. A Markov model with a time resolution of
τMarkov or larger may then represent a realistic model of the true
dynamics. Ultimately, the quality of the Markov model, i.e., how
faithfully the model reproduces the dynamics in the relevant
degrees of freedom, depends on (i) the interaction of the set of
marginal coordinates with the set of relevant coordinates, (ii) the
precise discretization of the relevant coordinates, and (iii) the
statistical errors due to finite sampling of the dynamics of the system.

Since Swope et al.11,12 presented the first extensive and
detailed application of MSM to the analysis of molecular
simulation data, MSMs of biomolecular systems have developed
into a very active field of research.9,13-17
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The extraction of metastable states from a given MSM, which
is equivalent to the coarse-graining of the transition matrix, has
been a major issue in the discussion of the application of MSMs.
Two basic approaches have been published. One maximizes the
metastability of the resulting coarse-grained states using tem-
perature annealing schemes;8,17 the other exploits properties of
the eigenvectors of the fine-grained transition matrix to define
the coarse-grained states.7,18,19

Recently, methods which optimize the amount of simulation
data needed for the construction of a MSM have been published.
These methods either rely on enhanced sampling techniques in
the simulation process16,20-24 or apply an adaptive sampling
scheme which couples the start of new simulations to a quality
estimate of the current MSM.25

A large number of publications deal with the discretization of
the relevant degrees of freedom.No"e et al.7 discretized each back-
bone dihedral angle along the minima of a probability distribu-
tion of this angle, thereby discretizing the conformational space
according to the rotamers of the molecule. More often, however,
the conformations of the molecule are mapped onto more global
descriptors such as secondary structure motifs of amino acids in a
peptide13,20 or the number of intramolecular hydrogen bonds.7

In 2007, Chodera et al.8 published an adaptive discretization
scheme in RMSD space. Jensen et al.26 discretized the two central
dihedral angles of a tetrapeptide according to the most populated
regions in their Ramachandran plots and varied the positions of
the boundaries. They found that the quality of the MSM is
sensitive to the exact position of the boundaries. This finding is in
line with the results of Sarich et al.,9 who demonstrate analytically
that the error caused by the discretization is determined by the
precision with which the transition region is discretized. Moving
the boundary away from the transition point impairs the quality
of the MSM.

Several methods have been developed for the estimation of the
statistical uncertainties in the eigenvalues and eigenvectors of the
transition matrix and properties derived from the transition
matrix.27-29

To the best of our knowledge, no systematic study of the influ-
ence of the marginal coordinates on the dynamics of the relevant
coordinates has been published. Conceptually, this question is
close to the discussion about the influence of the bath degrees of
freedom on the solute coordinates in Brownian dynamics.30

However, some of the assumptions (very large number of bath
degrees of freedom, all coupled with the same coupling constant
to the solute degrees of freedom) clearly do not apply in the
context of MSM of molecular dynamics.

This publication has two objectives: (i) a review of the
mathematical concepts and assumptions which form the basis
of a stochastic model of molecular dynamics and (ii) an illustra-
tion of the effect of the marginal coordinates on the dynamics of
the relevant coordinates. These two parts are closely linked since
the properties of the marginal coordinates determine to a large
extent the quality of the Markov model.

In the first part, we demonstrate how stochastic equations of
motion emerge from deterministic ones when the coordinate set
is split into relevant and marginal coordinates. We list the condi-
tions a stochastic equation of motion must fulfill in order to be
Markovian.We then show how thematrix formalism of transition
matrices arises from a given Markovian equation of motion.
Finally, we review the mathematical properties of transition
matrices and link them to physical concepts such as ergodicity
and equilibrium dynamics.

In the second part, we use twomodel systems to study how the
properties of the marginal coordinates affect the assumption that
the dynamics of the relevant coordinates areMarkovian. The first
system consists of two bits which can flip between “0” and “1”.
One bit represents the relevant coordinates, the other the
marginal ones. We illustrate how the coupling strength and the
relative speed of the two bits influence the quality of the Markov
model. The second system consists of molecular dynamics simu-
lations of a butane molecule (relevant coordinates) immersed in
a solvent of butane molecules (marginal coordinates). The
solvent is modeled on the one hand explicitly (at various tempe-
ratures and pressures) and on the other hand implicitly using sto-
chastic dynamics (with various temperatures and friction coeffici-
ents). The influence of these parameters on the quality of the
Markov model is demonstrated.

2. THEORY

We consider a system of Nx time-dependent variables and an
ensemble of an infinite number of replicas of this system. The
configuration of system n in the ensemble at time t is defined by a
configuration vector xn(t) containing the instantaneous values of
the Nx variables of this system at time t. The dynamics of the
ensemble is said to be Markovian if the individual systems obey
equations of motion of the form

x. nðtÞ ¼ f ðxnðtÞ, ysðt, snÞÞ ð1Þ

where f and ys on the right-hand side are functions that are
identical for all systems in the ensemble, while sn represents a
scalar value attributed to a specific system n. Equation 1 states
that the change of the configuration of the nth system at time t,
_xn(t), only depends on its current configuration xn(t) and the
current values of a set of variables ys(t,sn).

The function ys(t,sn) is used to implement the difference
between deterministic and stochastic ensemble dynamics. If the
ensemble dynamics are deterministic, the parameter sn can be
dropped and ys(t,sn) = ys(t) is the same for all systems; i.e., all
systems in the ensemble follow the same equation of motion.
If the ensemble dynamics involves a set of stochastic variables,
ys(t,sn) represents a particular trajectory with index sn in this
variable space, which was drawn from a stochastic process Y(t).
In this case, the equation of motion, eq 1, differs for each system.

In computational terms, sn can be viewed as the seed for a
pseudorandom number sequence assigned to the system. In
more mathematical terms, sn can also be viewed as defining this
sequence itself, e.g., in the form of the representation of this real
number by an infinite string of bits. The way in which sn, or the
derived pseudorandom number sequence, is exploited by the
function ys, e.g., to generate the time series of stochastic
Gaussian-distributed variables, need not be specified at this point.
However, it is assumed that the resulting probability distribution
of the stochastic variables over all systems in the ensemble at a
given configuration x is time-invariant.

The key assumptions for Markovian ensemble dynamics are
that the single-system dynamics fulfill the following conditions:
(i) deterministic (xn(t) is determined by the sole knowledge of
xn(0) and sn), memoryless ( _xn(t), as expressed by the function f,
involves no explicit dependence on xn(t0) with t0 < t), and
stationary ( _xn(t), as expressed by the function f, involves no
explicit dependence on t); (ii) a common equation of motion (no
stochastic component) or a set of stochastically distributed
equations of motion for the different systems in the ensemble.
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Note that the stochasticity property only becomes apparent at
the level of the ensemble. From the point of view of a single
system n, the dynamics are entirely deterministic, given the value
of sn assigned to this system. Note also that the system dynamics
need not necessarily be continuous in time; i.e., _xn(t) may involve
Dirac delta functions in time.

The instantaneousmacrostate of the ensemble is defined by the
(normalized) configurational probability distribution F(x,t) of the
individual systems at time t in theNx-dimensional space of the system
configurations, which obeys the generalized Liouville equation:

_Fðx, tÞ ¼
^
L Fðx, tÞ ð2Þ

L̂ is called the generalized Liouville operator or the generator. The
assumptions of Markovian dynamics imply that L̂ in eq 2 is time-
independent, corresponding to equilibrium dynamics. Introducing
the requirement that eq 2 be valid for any arbitrary initial configura-
tional distribution F(x,0) and all times (including t = 0), the operator
L̂ is unique, and its exact form can, at least in principle, be derived
from knowledge of the function f(x,y) in eq 1 and of the stochastic
variable probability distribution. Different forms of the generalized
Liouville equation include the Liouville equation31,32 (Hamiltonian
dynamics), the Fokker-Planck equation6,32 (Langevin dynamics), or
the Smoluchowksi equation32 (Brownian dynamics).

By introducing an infinite set of basis functions φi(x), e.g.,
Dirac delta functions, covering the Nx-dimensional space of the
configuration variables, the configurational probability distribu-
tion F(x,t) may be rewritten as a configurational probability vector
p(t) with components pi(t), which are real, non-negative, and
sum up to 1. The generalized Liouville equation, eq 2, may then
be translated into an equivalent matrix equation:

p. ðtÞ ¼ KpðtÞ ð3Þ

in which the generalized Liouville matrix K is a rate matrix with
off-diagonal elements Kij g 0 representing the rate of transition
from configuration point j to configuration point i and the
diagonal element Kjj is equal to -

P
i 6¼j Kij. Consequently, the

elements of each of its columns add up to 0.
Equation 3 can be formally integrated in time over an interval τ

(τ > 0), referred to as a lag-time yielding

pðt þ τÞ ¼ TðτÞ pðtÞ ð4Þ

resulting in the introduction of a corresponding transition matrix
T(τ), defined as

TðτÞ _¼expðτKÞ ð5Þ

Equation 5 effectively introduces a time discretization of the
continuous Markov process. The elements of T(τ) are real and
non-negative

Tij ∈ R,TijðτÞ g 0 " i, j, τ ð6Þ

and satisfy the normalization condition
X

i

TijðτÞ ¼ 1 " j, τ ð7Þ

They represent the probability of a transition from a point j to a
point i in configurational space during a lag time τ. Equations 6
and 7 define a column stochastic matrix. From the definition of
T(τ), one can directly derive the Chapman-Kolmogorov equa-
tion representing the recursivity property

Tðτ1 þ τ2Þ ¼ Tðτ1ÞTðτ2Þ ¼ Tðτ2ÞTðτ1Þ ð8Þ

When formulated as

TðnτÞ ¼ TnðτÞ ð9Þ

this relation can be used as a check of whether a process with a
time discretization of τ is Markovian.6,14

The matrix T(τ) possesses Nd eigenvalues, λR(τ), with asso-
ciated left eigenvectors, ψR. The eigenvectors are formally
defined within an arbitrary multiplicative factor. To make their
definition unambiguous, it will be assumed that these vectors are
selected such that (i) the sum of the two-norm of the elements of
an eigenvector is always unity; (ii) the first nonvanishing
component of an eigenvector is always real and positive. With
this convention, the eigenvectors with real eigenvalues always
have real components that add up to unity. Because T(τ) is
column stochastic, it also has the following properties:18

1. It possesses a special (real) left eigenvector (which will be
given the indexR = 1),ψ1 =Nd

-1{1, 1, ..., 1} associated with
the eigenvalue λ1 = 1. Therefore, it also possesses at least
one corresponding (real) right eigenvector associated with
this eigenvalue. Note that in the case of uncoupled Markov
chains, i.e., if T(τ) can be permuted into a block-diagonal
form, the eigenvalue is degenerate, i.e., associated with
more than one left and right eigenvector.18

2. Its eigenvalue spectrum has a radius of 1, i.e., |λR(τ)| e 1
for all R.

At this point, one may add a third assumption to the
assumptions underlying Markovian dynamics, namely that of
irreducibility. The Markovian ensemble dynamics is also irredu-
cible when

lim
τ f ¥

τ-1
Z τ

0
dτ0Tðτ0Þ ¼ Tsum > 0 ð10Þ

where Tsum > 0 is a short-hand notation for

Tsum, ij > 0 " i, j ð11Þ

Irreducibility implies that any configuration has a nonvanishing
probability of undergoing a transition to any other configuration
considering all possible lag times. It does, however, not imply that
there exists a single lag time τ0 for which all possible transitions
have a nonvanishing transition probability.

Irreducibility is not identical with the concept of ergodicity,
but it is closely linked to it. A system is ergodic if the time its
(sufficiently long) trajectory spends in any given configuration is
proportional to the probability with which this configuration is
realized in the ensemble at a given time t. Then, the time average
of any property A calculated along its trajectory is the same as the
ensemble average of this property:

ÆAæ ¼ 1
t

Z t

0
Aðxðt0ÞÞ dt0 ¼

Z
AðxÞ FðxÞ dx ð12Þ

A system can only be ergodic if, starting from any given
configuration, all other configurations can and will be reached in
the course of the (sufficiently long) trajectory. Irreducibility
ensures that any state can be reached from any other, but not
necessarily that it will be reached; i.e., irreducibility is a necessary
but not sufficient condition for ergodicity. Intuitively, the fact
that a reducible transitionmatrix cannot lead to ergodic dynamics
arises from the observation that a set of n elements in p(t) will
never undergo transitions to the complementary set of Nd - n
elements in p(t þ τ). As a result, ensemble dynamics initiated
from a specific distribution p(0) solely encompassing nonvanishing
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elements of the former set will never generate probabilities in the
latter set.

According to the Perron-Frobenius theorem,33,34 if a col-
umn-stochastic transition matrix T(τ) is irreducible, it addition-
ally has the following properties:
3. Its eigenvalue λ1 = 1 is nondegenerate; i.e., it is associated

with a unique real right eigenvector ψ1.
4. The components of the right eigenvector ψ1 are all non-

negative.
The unique right eigenvector ψ1 associated with the eigenva-

lue λ1 = 1 is referred to as the stationary probability distribution of
the ensemble dynamics and will be further noted as π. Its
properties are

TðτÞπ ¼ π " τ ð13Þ

and

πi ∈ R "i
πi g 0 "iP
i
πi ¼ 1

ð14Þ

Intuitively,π corresponds to a special probability distributionwithin the
ensemble that is invariant upon propagation byT(τ) for any lag time τ.

At this point, one may add a fourth assumption to the
assumptions underlying irreducible Markovian dynamics,
namely that of primitivity. A non-negative square matrix A is
called primitive if there exists an integer k > 0 for which all
elements of the matrix Ak are positive. A sufficient condition for a
non-negative and irreducible square matrix to be primitive is that
it possesses at least one nonzero element on the diagonal. IfT(τ)
is irreducible and has at least one postive entry on its diagonal,
then there is only one eigenvalue with |λR| = 1 and this is λ1 = 1;
i.e., λ1 = 1 is the only eigenvalue on the unit circle. The condition
of primitivity ensures that in the limit of long lag times any
arbitrary initial probability distribution p(0) converges to the
stationary distribution π:34

lim
τ f ¥

TðτÞ pð0Þ ¼ π " pð0Þ ð15Þ

As a last stipulation, we require that Markovian dynamics (as
defined by eq 1) are detailed balanced with respect to their
stationary distribution. This is the case when

TijðτÞ πj ¼ TijðτÞ πi " i, j, τ ð16Þ

or introducing the diagonal matrix Π with elements equal to π,
i.e., Πij = πiδij:

TðτÞ Π ¼ Π TΤðτÞ " τ ð17Þ

whereTT denotes the transpose of thematrixT. Detailed balance
implies that the number of transitions between pairs of config-
urational points in a stationary ensemble (i.e., characterized by
the probability distribution π) is equal in the forward and
backward directions. When the ensemble dynamics satisfy this
condition, the stationary distribution π will be further referred to
as the equilibrium probability distribution or Boltzmann distribu-
tion of the ensemble. Intuitively, a violation of detailed balance
implies that for at least one pair of configurational points, there
exists a net direct flow in the forward direction from the first point to
the second that must be compensated by an equivalent net indirect
flow via other points in the opposite direction to maintain the
probability stationary. In the language of thermodynamics, this

behavior is characteristic of a steady state rather than an equilibrium
stationary situation as would be encountered, e.g., in a systemwhere
a temperature, pressure, or composition gradient is maintained.
At thermodynamic equilibrium, direct flows in the forward and
backward directions between all pairs of states must compensate
for each other, aswill be the case, e.g., in a systemwhere temperature,
pressure, and composition are homogeneous in space.

Note that ifT(τ) is detailed-balanced, then so is any transition
matrix T(nτ) = Tn(τ) with n ∈ Z. Note also that a column-
stochastic matrix can only be detailed-balanced with respect to a
vector that is also a right eigenvector associated with the
eigenvalue one. In other words, irreducible Markovian dynamics
can only be detailed balanced with respect to π (and no other
vector). If an irreducible and primitive column-stochastic transi-
tionmatrixT(τ) is detailed balanced with respect to its stationary
distribution π, it also has the following properties:34

1 All eigenvalues are real and lie in the interval ]-1;þ1], so
that all eigenvectors are real.

2 The eigenvectors of T(τ) define a complete eigenbasis
being orthonormal with respect to a weighted inner
product.

The detailed balance condition has a number of very pleasant
implications. First, the transition matrix becomes easier to grasp
in terms of physical intuition because one is relieved from the
necessity to find a physical interpretation for complex eigenvec-
tors and eigenvalues. Second, since the eigenvectors of a detailed
balanced and irreducible transition matrix T(τ) form a complete
basis of RNd, where Nd is the dimension of the transition matrix,
any vector p(t) can be expressed as a linear combination of these
eigenvectors:

pðtÞ ¼
X

R
kRðtÞ ψR ¼

X

R
cR λRðtÞ ψR ð18Þ

After time nτ, p(t þ nτ) is given as

TðnτÞ pðtÞ ¼ TnðτÞ pðtÞ ¼ pðt þ nτÞ ð19Þ

Using

pðt þ nτÞ ¼
X

R
cR λnRðtÞ ψR ð20Þ

the probability distribution p(t) can be interpreted as consisting
of modes {ψR}which show a temporal behavior according to the
corresponding eigenvalues {λR}. More precisely, the temporal
behavior is an exponential decay, as can be seen from the
following transformation:

λRðt ¼ nτÞ ¼ λnRðτÞ ¼ λt=τR ðτÞ ¼ expðlnðλt=τR ðτÞÞÞ

¼ exp
t
τ
lnðλRðτÞÞ

! "
¼ exp -

t
μR

 !

ð21Þ

where t = nτ and the mean lifetime μR is given as

μR ¼ -
τ

lnðλRðτÞÞ
ð22Þ

In the context of Markov models, μR is typically referred to as the
implied time scale of the decay process. The mode that corre-
sponds to the eigenvalue λ1 = 1 does not decay, which can be
seen either by realizing that λ1

n = λ1 = 1 for any n or by noting that
the argument in the exponential in eq 21 becomes 0 if λR = 1.
This result corresponds to the earlier result that the eigenvector
associated with λ1 is the equilibrium distribution: ψ1 = π. The
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other modes, which all correspond to an eigenvalue with |λR| < 1,
will vanish for nf¥. The smaller the value of λR, the faster the
corresponding mode will decay.

The derivation of the implied time scales has been based on
the assumption that T(τ) represents a Markov process. In this
case, the eigenvector expansion can be based on T(τ) or any
other T(nτ) and will lead to the same implied time scale, i.e.,

μR ¼ -nτ
jλRðnτÞj

¼ const n ¼ 1, 2, :::: ð23Þ

Conversely, eq 23 can be used as a check for Markovian
behavior. Plotting the implied time scales of transition matrices
with various lag times nτ yields a set of constant functions if the
underlying dynamics are Markovian.7,8,11

In the limit τf¥, all eigenmodes except for the stationary one
have decayed, and there must be a matrix

T1 z lim
τ f ¥

TðτÞ ð24Þ

which immediately returns the equilibrium distribution ψ1 = π
when multiplied by any arbitrary distribution p(t), i.e.

T1pðtÞ ¼ π ð25Þ

We will call the matrix T1 the equilibrium matrix.

3. MODELS

3.1. Bit-Flip Model. The coupling between the environment
and a system can be studied on a simple bit-flip model consisting
of two bits, S and E. Bit S represents the system and bit E the
environment. Either of these bits can assume two states: v (“up”)
or V (“down”). The time scale of the dynamics of these two bits is
not the same and is determined by their flipping probabilities pS
and pE, respectively. The two bits can be coupled or uncoupled.
The complete system (consisting of S and E) has four states: vv

(state 1), vV (state 2), Vv (state 3), and VV (state 4), where the first
arrow stands for bit S and the second for bit E. The dynamics of
the complete system are modeled using a 4% 4 transition matrix
Tbit(τ) which contains the transition probabilities between those
four states. To obtain a transition matrix which only represents
the dynamics of S, we project the matrixTbit onto the states of bit
S. This procedure intrinsically assumes that the dynamics of S are
Markovian, where we identified S with x and E with y. Using the
implied time scales as a meausure forMarkovian behavior, we can
study how a coupling between E and S violates this assumption.
The transitionmatrix of the complete system dynamicsTbit(τ)

is constructed in the following fashion. The probability that the
bit S will flip, i.e., that it will make a transition vfV or a transition
Vfv, within time τ is given by pS, and the probability that it will
stay in its current state is given as 1 - pS. Consequently, the
transition matrix for a single bit S (bit E not present) is given as

TSðτÞ ¼
1- pS pS
pS 1- pS

 !

ð26Þ

where TS,11 represents the transition probability for vfv, TS,21
the transition probability for vfV, TS,12 the transition probability
for Vfv, andTS,22 the transition probability for VfV. Likewise the
transition matrix for a single bit E (bit S not present) is given as

TEðτÞ ¼
1- pE pE
pE 1- pE

 !

ð27Þ

where pE denotes the probability that bit E will flip within τ. The
transition for the complete system consisting of the two non-
interacting bits is given by the Kronecker product (sometimes
called tensor product) of TS and TE:

TbitðτÞ ¼ TSðτÞ X TEðτÞ

¼

ð1- pSÞð1- pEÞ ð1- pSÞpE pSð1- pEÞ pSpE
ð1- pSÞpE ð1- pSÞð1- pEÞ pSpE pSð1- pEÞ
pSð1- pEÞ pSpE ð1- pSÞð1- pEÞ ð1- pSÞpE
pSpE pSð1- pEÞ ð1- pSÞpE ð1- pSÞð1- pEÞ

0

BBBB@

1

CCCCA

ð28Þ

This matrix represents transitions between states vv (state 1), vV
(state 2), Vv (state 3), and VV (state 4) where the first arrow stands
for bit S and the second for bit E. A coupling is introduced into
the dynamics of the complete system by selectively modifying
elements of Tbit(τ) and renormalizing its columns.
In order to obtain the transition matrix of bit S, one needs to

project Tbit(τ) onto the state of bit S using a projection

TS, projðτÞ ¼ PT TbitðτÞ P ð29Þ

with

P ¼

1 0
1 0
0 1
0 1

0

BBBB@

1

CCCCA
ð30Þ

Note that if Tbit represents the dynamics of the two uncoupled
bits, i.e., if Tbit(τ) = TS(τ)XTE(τ), then eq 29 recovers TS(τ).
In the present application of the bit-flip model, a coupling

between the environment E and the system S was introduced by
multiplying the elements T11, T14, T41, and T44 of Tbit by a
(positive) coupling factor k and renormalizing the columns. This
increases the probability of states in which the two spins are
aligned (vv and VV). The coupling constant kwas varied between 1
(no coupling) and 100 (strong coupling). The flipping prob-
ability of system S was set to pS = 0.100. In order to examine the
influence of the relaxation time of the environment on the
system, the flipping probability of E, pE, was varied between
0.001 (very slow dynamics, long relaxation time) and 0.150
(dynamics of the environment faster than the dynamics of the
system, short relaxation time).
3.2. ButaneModel.The other test system is liquid butane. We

performed molecular dynamics (MD) simulations of boxes of
512 butane molecules at various temperatures (T = 298.15 K and
T = 400.00 K) and densities (d: 50-500 u/nm3, where u denotes
the atomic mass unit). For each density, a box with regularly
placed butane molecules was constructed using the program
build_box of GROMOSþþ,35 which was then heated to the
target temperature over a period of 105 time steps (200 ps). For
each system, a trajectory of 2 ns was generated using the
GROMOS05 software,35 which implements the leapfrog
intergrator,36 and the GROMOS 45A3 force field.37 All bond
lengths were constrained using the SHAKE algorithm38 with a
relative tolerance of 10-4, allowing for a time step of 2 fs.
Configurations of all 512 molecules were saved every 0.08 ps.
The system was simulated in a rectangular box using periodic
boundary conditions. The volume was kept constant, and the
molecules were weakly coupled to one temperature bath of
298.15 K or 400.00 K39 with a coupling time of 0.1 ps. We used
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0.8 nm/1.4 nm as a twin-range cutoff and 1.4 nm as a reaction
field cutoff with εrf = 1.0. The atom pair list for short-range
interactions and the intermediate-range forces were updated
every five steps.
We performed stochastic dynamics (SD) simulations of a

single butane molecule at two different temperatures, 298.15 K
and 400.00 K, using various friction coefficients, γfric: 0.5-126.3
ps-1. The friction coefficients were calculated from the diffusion
constants obtained from the above-described MD simulations
using the relation:

γf ric ¼
kBT
Dmsolv

ð31Þ

where kB is the Boltzmann constant, T is the temperature of the
MD simulation, D is the diffusion constant, and msolv is the mass
of butane (58.124 g/mol). The diffusion constant was calculated
as an average of the diffusion constants of 50 arbitrarily picked
butane molecules where each diffusion constant was estimated
from a least-squares fit to the Einstein equation:

D ¼ lim
t f ¥

Æ½r0 - rðtÞ'2æ
2Nt

ð32Þ

Here, r0 is the center of geometry of the first configuration in the
trajectory, r(t) is the center of geometry at time t, and N is the
number of dimensions taken into account, which was set to 3.
As in the MD simulations, all bonds were constrained using

the SHAKE algorithm,38 and a time step of 2 fs was used. Each
system was simulated for 1 μs, and the configuration of the
molecule was saved every 0.1 ps. Vacuum boundary conditions
were applied, and the temperature was maintained by the
stochastic dynamic integrator.
A summary of all performed simulations, the obtained diffu-

sion constants, and the corresponding friction coefficients is
reported in Table 1 .
3.3. Generation of the TransitionMatrices T(τ) for the Test

System Butane. We consider a single butane immersed in a
solvent of butane molecules where the solvent is modeled either
explicitly using MD or implicitly using SD. The dominant degree
of freedom of butane is the C1-C2-C3-C4-dihedral angle,
which we discretize into equally sized microstates (bins). For
most analyses, we use a bin size of 5! (72 bins per dihedral angle);
only in Figure 6, we varied the bin size from 5! to 120! (72 to 3

bins per dihedral angle). For various values of the lag time τ (ranging
from 80 fs to 100 ps), the configurations at time t = 0, τ, 2τ, 3τ,
etc. are mapped onto the microstates, and the transitions from
microstate i to microstate j for each combination of i and j are
counted.We enforce detailed balance by counting each transition
ifj also as a transition jfi. This “backward counting” inherently
assumes that the trajectory is in global equilibrium and the
deviation from detailed balance is only due to statistical errors.
The numbers of transitions are sorted into a matrix, and the
columns of the matrix are normalized by the total number of
transitions in each column to obtain the column-stochastic
transition matrix. When constructing the transition matrix from
aMD trajectory, we regard one butanemolecule as solute and the
remaining 511 as solvent and count the transitions of the solute.
Since the choice of the solvent molecule is arbitrary, we repeat
this procedure 511 times, where in each round another molecule
represents the solute. The transition matrix for a single butane is
then constructed from the added transition counts of all 512
evaluations of the MD trajectory.
The implied time scales μi of each transition matrix T(τ) are

calculated as

μiðτÞ ¼ -
τ

ln jλiðτÞj
ð33Þ

where τ is the time step of the transition matrix and |λi| is the
absolute value of its ith eigenvalue. We plot the implied time
scales of the dominant eigenvalues and evaluate the reference
implied time scales and τMarkov by visual inspection.

4. RESULTS

We use twomodel systems—(i) a single butane immersed in a
solvent of butane and (ii) a bit-flip model as described in section
3—to illustrate some important properties of transition matrices
and to study the effect of marginal degrees of freedom on the
dynamics of the relevant degrees of freedom.
4.1. Colormaps of TransitionMatrices. Figures 1 and 2 show

colormaps of various transition matrices of the dihedral angle
degree of freedom of butane. The dihedral angle has been
discretized into 72 microstates of 5! per microstate, and each
point in the colormaps represents a transition probability Tij
from microstate j to microstate i. A high transition probability is
marked in red, and a transition probability close to zero is marked

Table 1. Overview of the Simulations Performed

MD setup SD setup

T (K) density, F (u/nm3) number of molecules simulation length (ns) D (σ) (10-2nm2/ps) γfriction (1/ps) number of molecules simulation length (μs)

298.15 300 512 2 1.403(1.224) 5.0 1 1

298.15 345 512 2 0.7113(0.5612) 10.0 1 1

298.15 400 512 2 0.3952(0.2815) 17.9 1 1

298.15 450 512 2 0.1981(0.2009) 35.8 1 1

298.15 500 512 2 0.0561(0.0469) 126.3 1 1

400.00 50 512 2 18.18(16.31) 0.5 1 1

400.00 100 512 2 8.904(7.293) 1.1 1 1

400.00 150 512 2 5.273(5.009) 1.8 1 1

400.00 200 512 2 4.075(3.610) 2.3 1 1

400.00 250 512 2 2.630(2.502) 3.6 1 1

400.00 300 512 2 1.501(1.446) 6.3 1 1

400.00 345 512 2 1.321(1.134) 7.2 1 1
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in blue. The right-most column in Figure 1 and the lower row in
Figure 2 show colormaps of differencematrices in which negative
elements are marked blue, elements close to zero are green, and
positive elements are red. Taking the first matrix in the upper row
of Figure 1 as an example, one can clearly distinguish the three
metastable states of butane as three red areas along the diagonal
of the matrix. For any initial microstate in the gauche state of
butane between 0! and 120!, the molecule has a high transition
probability to anymicrostate within this state and a low transition
probability to any microstate outside this state within lag time τ.
The microstates between 0! and 120! are said to be “kinetically
close”. Analogously, microstates which correspond to the trans
state (120-240!) are kinetically close, as are microstates which
correspond to the second gauche state (120-360!).
4.2. lllustration of the Chapman-Kolmogorov Equation.

Equation 9, according to which taking a transition matrix with lag
time τ to the power n yields a matrix which is equal to a transition
matrix with n times longer lag time if the dynamics are Marko-
vian, is illustrated in Figure 1 using transition matrices of butane
as an example. The first three columns show colormaps of transi-
tion matrices, and the fourth column shows colormaps of differe-
nce matrices.
Transition matrices with short lag times on the order of a few

hundred femtoseconds are depicted in the upper row. The
second matrix is the square of the first one with lag time τ =
160 fs and should be equal to the third matrix, which has been
constructed with a lag time of τ = 2 % 160 fs = 320 fs if the
dynamics are Markovian at this time resolution of the model.
This is clearly not the case, as the second and the third matrix
already visually differ from each other. The difference matrix
correspondingly shows systematic deviations from zero. If one
was to evolve a density with T2(160 fs), its dynamics would
systematically deviate from the dynamics of the same density
evolved with T(320 fs).

The lower row shows transition matrices with longer lag times
on the order of 10 ps. In this time regime, the dynamics of the
dihedral angle can be approximated by aMarkov process.T2(10ps)
and T(20 ps) are visually similar, except for the fact that T(20 ps)
shows more noise than T2(10 ps). This is due to the poorer
sampling for longer lag times. Accordingly, the difference matrix
depicted in the right-most column shows no systematic deviations
from zero but only deviations which are due to the noise in the two
matrices. Note that the amplitude of noise varies with the magni-
tude of the transition probabilities in T2(10 ps) and T(20 ps).
4.3. Illustration of the Equilibrium Matrix. Figure 2 illus-

trates the concept of the equilibrium matrix T1 defined in eq 25
using transition matrices of a butane molecule with a lag time of 5
ps as an example. For this lag time, the dynamics of the system are
Markovian and the equilibrium matrix T1 can be constructed
from the first eigenvector of the transition matrix, which is equal
to the equilibrium distribution. It is depicted in the right-most
panel, and as its columns are all equal to the equilibrium distribu-
tion, its colormap shows a striped pattern.Whenmultiplied by an
arbitrary initial distribution, it returns the equilibrium distribu-
tion. T1 does not contain any information on the kinetic proxi-
mity of groups of microstates, and metastable states cannot be
extracted from this matrix.
The other two panels in the upper row of Figure 2 show the

transition matrix with lag time 5 ps, T(5 ps), and the square of it,
T2(5 ps), which is approximately equal to T(10 ps). At lag time τ
= 5 ps (left-most panel), the three metastable states of butane are
clearly discernible, implying that the equilibration time of the
system is longer than 5 ps. In the middle panel, the metastable
states are less discernible, and the stripe pattern emerges. At time
t = τ = 10 ps, the probability of finding the system in any of the
three metastable states is still slightly biased toward finding it in
its initial state. But the information about the kinetic proximity of
the microstates contained in the matrix is less clear. The lower

Figure 1. Transition matrices for the dihedral angle of a single butane immersed in butane (T = 298.15 K, F = 345 u/nm3). Upper row: non-Markovian
regime, τ = 160 fs and τ = 320 fs. Lower row: Markovian regime, τ = 10 ps and τ = 20 ps. Right-most column: diffence plots of T(2τ) - T2(τ).
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row shows the difference matrices T1-T(5 ps) and T1-T2

(5 ps). For τ = 5 ps (left most panel), the transition matrix shows
large systematic deviations from the equilibrium matrix. For τ =
10 ps (middle panel), we see the same deviations which are,
however, much smaller in absolute value.
4.4. Coupling of Marginal and Relevant Degrees of Free-

dom. When constructing Markov models from MD simulation
data, the complete phase space is split into relevant degrees of
freedom for which themodel is constructed andmarginal degrees
of freedom which are assumed to act as stochastic forces on the
relevant degrees of freedom. Depending on the time scale of the
dynamics of the marginal degrees of freedom and the strength of
the coupling between the marginal and the relevant degrees of
freedom, this assumption can be fulfilled to a greater or lesser
extent. In the bit-flip model, the relevant degrees of freedom are
modeled by the bit S and the marginal degrees of freedom by the
bit E. The time scale of the dynamics of E is determined by the
flipping probability pE: the higher the pE, the faster the dynamics.
The strength of the coupling is determined by the coupling
constant k. In all applications of the bit-flipmodel presented here,
the flipping probability of the system, pS, was set to 0.100.
In Figure 3, the influence of the flipping probability on the

implied time scale of the second eigenvalue ofTS,proj is illustrated.
The brown curve (pE = 0.150) represents the case in which the
dynamics of the environment is faster than the dynamics of the
system. The implied time scale of the projected matrix rises until
it reaches a plateau at about n = 150. This is the threshold in time
resolution τMarkov after which the dynamics of the system are
Markovian until, after n = 750, the curve diverges again from a
constant implied time scale. The latter deviation is caused by the
fact that for a very high number of iterations the transition matrix
approaches the equilibrium matrix, and the second eigenvector
becomes so small that it is susceptible to numerical errors. Note
that the system S has a flipping probability of 1-10 within a time

step τ. If the dynamics of the system are modeled with a time
resolution of 150τ, a single iteration does not yield the prob-
ability of a single transition between the two states but the proba-
bility of finding the system in one of the states after a sequence of
transitions. Each transition in this sequence has occurred under
the influence of the environment; i.e., it was not Markovian, but
the long lag time of the projectedmodel provides for an ensemble
of transitions in which the influence of the environment averages

Figure 2. Transition matrices for the dihedral angle of a single butane immersed in butane (T = 298.15 K, F = 345 u/nm3). Upper row: T(5 ps), T5(5
ps), and equilibriummatrix T1 constructed from the first eigenvectorψ1 ofT(5 ps). Lower row: difference matrices between the equilibriummatrix and
T(5 ps) and T5(5 ps), respectively.

Figure 3. Implied time scale μ of the bit-flip model as a function of lag
time nτ calculated from the second eigenvalue ofTS,proj(nτ) as a function
of n where Tbit has been constructed with varying the flipping prob-
ability, pE, of E. Coupling constant k = 100. Flipping probability of the
system pS = 0.100. Thin dashed lines: true implied time scales, μ2, as
calculated from the respective Tbit. For pE = 0.001, μ2 = 3828.7, and for
pE = 0.010, μ2 = 383.5, which is well beyond the region shown.
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out. The faster the dynamics of the environment, the smaller the
sequence of transitions has to be until the influence of the
environment is averaged out, i.e., the smaller τMarkov will be.
Unless the time scale of the environment and the time scale of the
system differ by orders of magnitude, a Markov model of the
system dynamics does not represent the probability of a single
transition within lag time τMarkov but the probability of finding
the system in state j at time t = τMarkov, given that it started its
sequence of transitions in state i at time t = 0.
The yellow curve in Figure 3 represents the case in which the

dynamics of the environment have the same time scale as the
dynamics of the system. The implied time scale becomes approxi-
mately constant after 250 iterations, at which time the transition
matrix is, however, so close to the equilibrium matrix that the
model does not contain any significant information on the dyna-
mics of the system. Similarly, the green (pE = 0.040) and the blue
(pE = 0.050) curves represent cases in which the dynamics of the
environment have a time scale which is on the same order of
magnitude as the time scale of the system but slightly larger. In
this case, the implied time scale curves slowly level off but never
reach a plateau region. If one encounters this type of behavior
when constructing a Markov model from MD simulation data,
one should consider to include more degrees of freedom into the
Markov model.
Finally, the black curve (pE = 0.001) and the red curve (pE =

0.010) in Figure 3 represent the case in which the dynamics of the
environment are much slower than the dynamics of the system.
For few iterations of the complete transition matrix, n < 30 and
n < 10, respectively, the environment has hardly changed, and
therefore, the system does not feel its influence. The implied time
scales are constant at about a value of 10. After about 10-30
iterations, the environment has changed noticeably from its state at
t = 0 and starts to influence the dynamics of the system. However,
because the dynamics of the environment are so slow, even 1000
iterations are not sufficient to provide enough statistics to average
out the influence of the environment on the system, and the curve
never reaches a plateau region (data not shown).

Figure 4 shows the influence of the coupling constant on the
dynamics of the system for two time scales of the environment
pE = 0.100 and pE = 0.150. If there is no coupling, i.e., if k = 1, the
dynamics of the system are independent of the environment, and
consequently, the implied time scales are constant (black
curves). As before, the deviation from constant μ after n = 150
is due to numerical errors. Since the transition probabilities are
independent of the state of the environment, the implied time
scales are also independent from the flipping probability of E.
Both have a value of 4.48. Raising the coupling constants to k= 10
and k = 100 changes the implied time scale of the system, in this
case, raising it. We note, however, that this might be caused by
the choice of matrix elements which are modified by k. τMarkov is
larger the stronger the coupling between the environment and
the system is. For a flipping probability of pE = 0.100, τMarkov ≈
100τ for k = 10 and τMarkov ≈ 150τ for k = 100. For a flipping
probability of pE = 0.150, τMarkov≈ 170τ for k = 10 and τMarkov >
300τ for k = 100.
4.5. Behavior of Liquid Butane.As a test system, we consider

a single butane immersed in a solvent of butane at two tempera-
tures, T = 298.15 K and T = 400.00 K, and various densities. In
one set of simulations, we model the solvent explicitly with 511
butane molecules; in the other set of simulations, we model the
solvent implicitly using stochastic dynamics. The dominant
degree of freedom in butane is the dihedral angle between its
carbon atoms C1-C2-C3-C4, which we use for the construc-
tion of the Markov model. All other degrees of freedom (bond-
angle vibrations and solvent degrees of freedom in MD) are
marginal in the model and are assumed to interact stochastically

Figure 4. Implied time scale μ of the bit-flip model as a function of the
lag time nτ calculated from the second eigenvalue of TS,proj(nτ) as a
function of n where Tbit has been constructed with varying values of the
coupling constant k and the flipping probability of the environment pE.
Flipping probability of the system pS = 0.100. Solid black: k = 1, pE =
0.100. Dashed black: k = 1, pE = 0.150. Solid red: k = 10, pE = 0.100.
Dashed red: k = 10, pE = 0.150. Solid green: k = 100, pE = 0.100. Dashed
green: k = 100, pE = 0.150. The solid black and dashed black lines are on
top of each other. Thin lines: corresponding true implied time scales μ2
as calculated from the respective Tbit.

Figure 5. Implied time scale as a function of lag time τ for various
numbers of data points used in the analysis. Implied time scales μ2 and
μ3 calculated from theMD simulation of one butanemolecule immersed
in liquid butane at T = 298.15 K and F = 345 u/nm3. The number of
moleculesN used for the analysis of a total of 512 molecules varied from
10 to 512.
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with the dihedral-angle degree of freedom. The molecule has
three metastable states, represented by the gaucheþ, trans, and
gauche- conformation of the dihedral angle. Correspondingly, it
has two dominant eigenvalues, λ2 and λ3 (λ1 = 1), which we used
to calculate implied time scales and to determine τMarkov.
When constructing a Markov model from simulation data, the

upper bound of a possible lag time is not set by the numerical
accuracy with which the eigenvalue can be calculated for a
transition matrix approaching the equilibrium matrix but by
the extent of the sampling. Because data points are evaluated at
t = 0, τ, 2τ, etc., the longer the τ, the fewer data points are
available in a trajectory of a given length. Figure 5 illustrates this
fact. The first panel shows the implied time scale of the second
eigenvalue, and the second panel shows it for the third eigenvalue
calculated fromMD simulations at T = 298.15 K and a density of
F = 345 u/nm3. We have varied the number of data points, N,
used for the construction of the Markov model by varying the
number of times the MD trajectory is evaluated, where at each
evaluation a different butane molecule was considered to be the
solute. τMarkov is not influenced by the amount of data the
Markov model is built upon. It lies between τ = 5 ps and τ =
10 ps. However, the length of the plateau region is sensitive to the
amount of data. The less data used, the smaller the lag time for
which the implied time scales diverge from the plateau. In
particular, if the trajectory is evaluated only 10 times, the implied
time scales diverge before τMarkov is reached.
Figure 6 illustrates how the resolution of the relevant degrees

of freedom influences the implied time scale. For small lag times
up to 40 ps, there is only a very small but systematic influence of

the resolution of the discretization on the implied time scale
curves that is discernible. More precisely, τMarkov is only slightly
smaller for finer discretizations. The figure also illustrates the
effect of insufficient sampling of the transition probabilities. For
lag times of τ = 40 ps and greater, the number of available data
points becomes so small that the statistical error on the transition
probabilities is too large to yield a reliable Markov model.
Consequently, the curves diverge from the plateau. The effect
is the greater, the finer the resolution of the model. In practice,
one can improve the sampling by using a sliding window, i.e., by
counting the transition from every time step in the simulation to
the time step τ further, instead of using only the time steps at 0, τ,
2τ, 3τ, etc., as done here.
We note that our discretization is special in two aspects. First,

each metastable state corresponds to a single minimum in the
free-energy surface and does not consist of several substates. If by
lowering the resolution of the discretization, several states are
grouped into one microstate, the lag time at which the model
becomes Markovian does change.11 Second, we ensured that

Figure 6. Implied time scale as a function of lag time τ for various
resolutions of the configuration space. Implied time scales μ2 and μ3
calculated from the MD simulation of 1 butane molecule immersed in
liquid butane at T = 298.15 K and F = 345 u/nm3. The number of
microstates (bins per dihedral angle) varied from 3 to 72.

Figure 7. Normalized implied time scale μ2,norm (eq 34) as function of
the lag time τ for various systems. Left column: MD simulations of 1
butane molecule immersed in liquid butane. Right column: SD simula-
tions of 1 butane immersed in liquid butane modeled by the friction
coefficient γ. Panel A: T = 298.15 K, density F varied from 300 u/nm3 to
500 u/nm3. Panel B:T = 298.15 K, γ varied from 5.0 ps-1 to 126.3 ps-1.
Panel C: T = 400.00 K, F varied from 50 u/nm3 to 345 u/nm3. Panel D:
T = 400.00 K, γ varied from 0.5 ps-1 to 7.2 ps-1. Panel E: Temperature
and density varied. Panel F: Temperature and density varied.



1042 dx.doi.org/10.1021/ct200069c |J. Chem. Theory Comput. 2011, 7, 1032–1044

Journal of Chemical Theory and Computation ARTICLE

there is a microstate boundary exactly at the peak of the free-
energy barrier between themetastable states.Moving this boundary
away from the barrier peak will decrease the quality of the Markov
model.9,26 The error introduced by discretizing the relevant degrees
of freedom has, however, a finite upper bound.9

In the butane test system, the marginal degrees of freedom are
predominantly those of the solvent molecules, exceptions being
the bond-angle degrees of freedom. Their coupling to the relevant
degree of freedom, the dihedral angle, is determined by the model
of the solvent, implicit or explicit; the density; and the temperature.
Their influence on τMarkov is examined in Figure 7.
Since model, density, and temperature do not only influence

τMarkov but also the implied time scales used to determine τMarkov,
we introduce a normalized implied time scale:

μi, normðτÞ ¼ μiðτÞ
μi, reference

ð34Þ

where μi(τ) indicates the implied time scale of the ith eigenvalue
and μi,reference indicates the reference implied time scale, i.e., the
time scale in theMarkovian regime, which we determine by visual
inspection. Table 2 lists the observed reference implied time
scales. The column “MD” corresponds to an explicit solvent
model; the column “SD” to an implicit one. The fact that stochastic
dynamics (SD) underestimate the relaxation times of a system, i.e.,
underestimates the implied time scales, if the fundamental assump-
tion underlying this type of dynamics, a large heavy particle in a
solvent of small light particles, is not fulfilled, is a known effect. The
expectation that the system equilibrates quicker if the temperature
or the density is increased is reflected in the corresponding decrease
of the implied time scale. The only exceptions to this trend are the
simulations with very high friction coefficients (γfriction = 35.8 ps

-1

and γfriction = 126.3 ps-1). In these cases, the velocity of the
dihedral-angle degree of freedom is decreased so drastically at each
simulation step that transitions between the metastable states are
very rare. Consequently, the equilibration between these states is
slow, and the implied time scales are large.
In all three rows of Figure 7, the Markovian regime is reached

much earlier for the implicit solvent model than for the explicit
solvent model; i.e., the influence of the marginal degrees of
freedom vanishes more quickly. This can be explained by the fact

that the set of marginal degrees of freedom is much smaller in
transition matrices constructed from stochastic dynamics simu-
lations. It only consists of the bond-angle degrees of freedom
which equilibrate faster than the solvation shell in an explicit
solvent model. Note that the emulation of the solvent by friction
coefficients and stochastic kicks is by definition Markovian. In
contrast to the simulations with an explicit solvent model, some
of the curves in the right column of Figure 7 deviate already at
small lag times from the constant regime, in particular those
which correspond to small implied time scales in Table 2 . Two
reasons for this are conceivable: (i) similar to in the bit-flip
model, transition matrices with small implied time scales ap-
proach the equilibrium matrix so closely that the numerical error
of the eigenvalue calculation is not negligible or (ii) poorly samp-
led transitions become more and more dominating as the modes
corresponding to the second and third eigenvectors decay and
cause a divergence fromMarkovian behavior. Panel D shows that
τMarkov decreases if the friction coefficient increases. The left
column of Figure 7 shows how τMarkov changes if the density and
the temperature are varied in simulations with an explicit solvent
model. Analogously to the results for stochastic dynamics,
τMarkov decreases if the density increases (panels A and C). At
high density, the kicks among solvent molecules and among
solvent molecules and the solute are more frequent than at low
density, leading to a quicker equilibration of the marginal degrees
of freedom. Intuitively, a high density corresponds to a high value
of the flipping probability pE in the bit-flip model. Likewise,
τMarkov decreases if the temperature increases (panel E). For the
higher temperatures, the kicks among solvent molecules do not
necessarily become more frequent but have a higher impact,
which also speeds up the equilibration of the solvent degrees of
freedom.

5. CONCLUSION

We have presented an overview of the assumptions which are
made when mapping the equations of motion onto the central
quantity in Markov models, the transition matrix. We have also
reviewed the mathematical properties of transition matrices.
Markov models are a powerful tool to describe the dynamics of
the relevant degrees of freedom of a system provided that one

Table 2. Overview of the Implied Time Scales of the Second and Third Eigenvalues Observed in the Markovian Regime of the
Dynamics for Various Temperatures and Densitiesa

system MD SD

T (K) density (u/nm3) γfriction (ps
-1) μ2,reference (ps) μ3,reference (ps) μ2,reference (ps) μ3,reference (ps)

298.15 300 5.0 21.0 20.2 10.2 8.0

298.15 345 10.0 17.0 16.2 11.2 7.2

298.15 400 17.9 15.0 12.4 11.8 7.2

298.15 450 35.8 13.4 9.8 17.4 10.0

298.15 500 126.3 12.8 8.8 43.4 26.0

400.00 50 0.5 30.0 28.0 12.6 10.6

400.00 100 1.1 16.5 16.0 7.6 6.3

400.00 150 1.8 13.0 12.6 5.4 5.2

400.00 200 2.3 11.0 10.8 4.6 4.6

400.00 250 3.6 9.2 9.0 4.0 3.6

400.00 300 6.3 7.8 7.2 3.8 2.8

400.00 345 7.2 6.4 5.8 3.8 2.8
aColumn MD: explicit solvent model. Column SD: implicit solvent model.
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finds a partition of the degrees of freedom of the system into
relevant and marginal degrees of freedom such that the marginal
degrees of freedom are not strongly coupled to the relevant
degrees of freedom and that the former equilibrate on much
shorter time scales than the latter. For liquid butane, we find that
the discretization of the relevant degrees of freedom, if the grid
boundaries do not mask the free energy barriers, has only little
influence on the time resolution τMarkov for which the dynamics
becomes Markovian. The number of data points which are used
to construct the Markov model, on the other hand, has an
influence on the range of lag times for which the model is
Markovian: the smaller the number of data points, the earlier the
system diverges from Markovian behavior.
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