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Abstract In this note, we present a new method for the numerical integration of one
dimensional linear acoustics with long time steps. It is based on a scale-wise decom-
position of the data using standard multigrid ideas and a scale-dependent blending
of basic time integrators with different principal features. This enables us to accu-
rately compute balanced solutions with slowly varying short-wave source terms. At
the same time, the method effectively filters freely propagating compressible short-
wave modes. The selection of the basic time integrators is guided by their discrete-
dispersion relation. Furthermore, the ability of the schemes to reproduce balanced
solutions is shortly investigated. The method is meant to be used in semi-implicit
finite volume methods for weakly compressible flows.
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1 Introduction

General circulation models (GCMs) currently used for planetary flow simulations,
are based on the Hydrostatic Primitive Equations. This approximation of the full
compressible flow equations suppresses vertically propagating sound waves, but it
still admits horizontally traveling long wave acoustics, so called “Lamb waves”.
These and other effects of compressibility are increasingly considered to be non-
negligible for planetary-scale dynamics [1, 6]. On the other hand, modern high-
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performance computing hardware is beginning to allow the usage of grids with hor-
izontal spacings of merely a few kilometers in such applications (see e.g. [5]). This
development introduces considerable numerical difficulties. For explicit time inte-
gration schemes, the propagation of sound perturbations introduced by compress-
ibility require very small time steps ∆ t ∼ ∆x/c, where ∆x is the typical computa-
tional grid size, and c a characteristic sound speed. Alternatively, the application of
implicit time discretizations solves the problem of the severe time step restriction,
but it introduces potentially undesirable numerical dispersion: Most – if not all –
existing implicit schemes slow down modes with high wave numbers. Furthermore,
there are quite popular schemes, such as the implicit trapezoidal scheme, which
preserve the amplitude for all wave numbers. Being a desirable feature at the first
glance, it is a potential source of nonlinear instabilities in practice.

In the present work, a new discretization of the linearized acoustic equations is
introduced, which overcomes some of the disadvantages of standard implicit dis-
cretizations with respect to the representation of compressibility. This means that
the scheme should represent the “slaved” dynamics of short-wave solution com-
ponents induced by slow forcing or arising in the form of high-order corrections
to long-wave modes with second-order accuracy. Furthermore, it should eliminate
freely propagating compressible short-wave modes that are under-resolved in time,
while minimizing dispersion for resolved modes. Here, we describe first successful
steps to achieve our goals.

Governing equations. The equations for one dimensional linear acoustics are
given by the system

mt + px = 0

pt + c2mx = q(t, x
ε
) ,

(1)

where p = p(t,x) and m = m(t,x) are the pressure and momentum fields. The speed
of sound is specified by c, and the source term q(t, x

ε
), ε � 1, is assumed to be

slowly varying in time with small scale variations in space. This source term could
simulate the release of latent heat from localized condensation, for example.

For traveling waves (m, p)(t,x) = (m0, p0)exp(i(ωt−κx)), the dispersion rela-
tion of (1) is

ω
2−κ

2c2 = 0 . (2)

Thus ω(κ) =±cκ , so that in the continuous system all waves travel with the same
velocity, c = ±ω/κ , without dispersion. Also, one can show, that the system pre-
serves a global pseudo energy.

2 Implicit second-order staggered grid schemes

Before the new time integration scheme is introduced, we investigate two standard
implicit second-order discretizations. These are the implicit trapezoidal rule and
the BDF(2) scheme, which are commonly used in meteorological applications [3].
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Their ability to compute reliable approximations to solutions of (1) is discussed with
respect to the discrete-dispersion relations of these schemes (see [3, 9] for details).

Furthermore, the capability of the schemes to reproduce balanced modes is dis-
cussed. In the case of slow, short-wave forcing the balance is described by

c2mx = q
(
t, x

ε

)
and p≡ 0 (3)

up to small perturbations introduced by the variation in time of the source term. The
schemes should be able to essentially keep this balance. Furthermore, they should
reproduce the balanced state in one time step by letting the step going to infinity.

Considering a semi-discretization in time, we leave the choice of a spatial dis-
cretization open for the moment. In the subsequent numerical experiments we
choose a staggered grid with central differences for simplicity only.

Implicit trapezoidal rule. The implicit trapezoidal rule is derived by integrating
the differential equation from tn to tn+1. The time integral on the right-hand side
is then approximated by the trapezoidal quadrature rule. For the system of linear
acoustics (1) this results into a Helmholtz problem for pn+1, which is given by

pn+1− c2∆ t2

4
∂ 2 pn+1

∂x2 = pn− c2
∆ t

∂mn

∂x
+

c2∆ t2

4
∂ 2 pn

∂x2 +∆ t qn+1/2 . (4)

The update for m is then obtained by

mn+1 = mn− ∆ t
2

(
∂ pn

∂x
+

∂ pn+1

∂x

)
. (5)

The method is symplectic and A-stable [4]. The discrete-dispersion relation results
in a frequency-wave number relationship of the form

ωr =±
2

∆ t
arctan

(
cfl · sin

(
k∆x

2

))
(6)

where cfl = c∆ t
∆x is the Courant–Friedrichs–Lewy (CFL) number, and the amplifi-

cation factor per time step is given by |A| ≡ 1. Thus, essentially, the frequency ωr
depends not only on the wave number k, as in the continuous case, but it is also a
function of the CFL number.

Figure 1 shows the discrete-dispersion relation for the trapezoidal rule (dashed
line) applied to the linear acoustic equations for a CFL number cfl = 1. The scheme
slows down modes at almost all wave numbers, and this behavior is amplified the
higher the wave number and the higher the CFL number are. Additionally, the trape-
zoidal rule is free of numerical dissipation. By letting ∆ t→∞, one obtains the rela-
tions

c2

2

(
∂mn

∂x
+

∂mn+1

∂x

)
= qn+1/2 and

∂ pn+1

∂x
=−∂ pn

∂x
. (7)

This reflects the inability to reproduce balanced modes of the trapezoidal rule, and
any perturbation of the system cannot dissipate.
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Fig. 1 Discrete-dispersion relations for the trapezoidal (dashed) and the BDF(2) rules (dot-dashed)
applied to the linear acoustic equations using cfl = 1. Dispersion relation for continuous system is
displayed as black line.

BDF(2) scheme. The BDF(2) scheme is a two-step method from the family of
the so called Backward Differentiation Formulas (BDF). Here, the left-hand side is
approximated by the derivative of a parabola at tn+1, which interpolates the solution
at times tn−1, tn and tn+1. For the acoustic system, this discretization results again
in a Helmholtz problem for pn+1, which is

pn+1− 4c2∆ t2

9
∂ 2 pn+1

∂x2 =
4
3

pn− 1
3

pn−1−c2
∆ t

(
8
9

∂mn

∂x
− 2

9
∂mn−1

∂x

)
+

2
3

∆ t qn+1 .

(8)
The update for m is obtained by

mn+1 =
4
3

mn− 1
3

mn−1− 2
3

∆ t
∂ pn+1

∂x
. (9)

The method is A- and L-stable [4].
The discrete-dispersion relation for the BDF(2) scheme is given again in Fig-

ure 1 (dot-dashed line). Concerning the phase error, it shows the same behavior as
the trapezoidal rule, although it is considerably amplified. On the other hand, the
scheme introduces dissipation for almost all modes. The damping is amplified for
high wave and CFL numbers. In the limit ∆ t→ ∞ one obtains

c2 ∂mn+1

∂x
= qn+1 and

∂ pn+1

∂x
= 0 ,

and the scheme achieves balance in a single, sufficiently large, time step. This be-
havior is characteristic to backward differences formulas by construction [2].

This analysis reveals the dichotomy a practitioner is faced with when having to
choose between the two time integrators: Either he could choose to minimize dis-
persion and preserve the amplitude of well resolved modes by using the trapezoidal
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rule, or he could ensure that the solution rapidly relaxes to the balanced mode in
case of short wave number forcing by the application of the BDF(2) scheme.

3 Multilevel method for long-wave linear acoustics

As described above, the ultimate goal is to filter out all acoustic short wave modes,
which are not resolved in time, while sufficiently long wave data is integrated as
accurate as possible. Here, we present a strategy for combining the two aspects into
one single, scale-dependent numerical time integrator. It is exemplified by using
the implicit trapezoidal rule and the BDF(2) scheme as base schemes. One could
also use other time integrators (see [9] for a more general presentation), the only
restriction is that they are linear in pn+1 and mn+1.

Assume that we have scale dependent splittings of the pressure and momentum
fields, i.e.

p =
νm

∑
ν=0

p(ν) and m =
νm

∑
ν=0

m(ν) (10)

which could be a quasi-spectral or wavelet decomposition, splitting p and m into
(local) high and low wave number components. The idea is to use for each scale
component (p(ν),m(ν)) a scale dependent blending of the two time integrators. Tak-
ing the µ-dependent convex combination with µ ∈ [0,1] of the two equations (4)
and (8), and summing over the scales results in the Helmholtz problem

pn+1− c2
∆ t2

νM

∑
ν=0

(
µν

4
+

4(1−µν)

9

)
p(ν),n+1

xx =
νM

∑
ν=0

(
µν Rp,(ν)

TRA +(1−µν)R
p,(ν)
BDF2

)
,

(11)
where

Rp,(ν)
TRA = p(ν),n− c2

∆ t m(ν),n
x +

c2∆ t2

4
p(ν),nxx +∆ t q(ν),n+1/2 ,

Rp,(ν)
BDF2 =

4
3

p(ν),n− 1
3

p(ν),n−1− c2
∆ t

(
8
9

m(ν),n
x − 2

9
m(ν),n−1

x

)
+

2
3

∆ t q(ν),n+1 .

(12)
The momentum update is derived from the blending of (5) and (9), which is

mn+1 =
νM

∑
ν=0

µν

[
m(ν),n− ∆ t

2

(
p(ν),nx + p(ν),n+1

x

)]
+

(1−µν)

[
4
3

m(ν),n− 1
3

m(ν),n−1− 2
3

∆ t p(ν),n+1
x

]
.

(13)

The scale splitting is obtained by the application of restriction and prolongation
operators used in standard multigrid algorithms. Let ϕ = ∑ϕ(ν) be a grid function,
which is decomposed into parts ϕ(ν) living on the associated grid levels. Then, the
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grid function on the coarsest level is obtained by the operation

ϕ
(0) =

(
R(0) ◦R(1) ◦ · · · ◦R(νM−1)

)
ϕ (14)

and the grid functions on finer levels are computed by

ϕ
(ν) =

(
I−P(ν−1) ◦R(ν−1)

)
◦
(

R(ν) ◦R(ν+1) ◦ · · · ◦R(νM−1)
)

ϕ . (15)

In our current approach the pressure is decomposed using the full weighting (restric-
tion) and the linear interpolation (prolongation) operators [7]. They can be defined
by their stencil, which are

R(ν) =
1
4
[
1 2 1

]
and P(ν) =

1
2
[
1 2 1

]
. (16)

On a staggered grid the matching splitting in the momentum field is then defined by
(for further details, see [9])

R(ν) =
1
8
[
1 3 3 1

]
and P(ν) =

[
1 1

]
. (17)

The description of the scheme is completed by the definition of the weighting
function µ(ν). In the subsequent tests, it is chosen such that the scheme in (11) and
(13) associates the standard implicit trapezoidal scheme with all pressure modes
corresponding to coarse grids with grid-CFL number cfl ≤ 1, while we nudge the
discretization towards BDF(2) for pressure modes living on grids with cfl > 1.

4 Numerical Results

Here, we shortly describe a test case with “multiscale” initial data in a periodic
domain x ∈ [0,1]. Pressure and momentum fields are chosen in such a way that one
obtains a right running acoustic simple wave with a sound speed of c = 1. The initial
conditions are displayed in Figure 2 (top row). No source term is present (for further
details see [9]). We use a grid with 512 cells (i.e. ∆x = 1/512) and a CFL number
cfl = 10. The results are compared at a final time tend = 3.0, which is equivalent to
154 time steps. At this time the exact solution is identical to the initial data, and the
wave has traveled three times across the domain.

The implicit trapezoidal rule produces the results in Figure 2 (bottom left). Here,
and in the following, only pressure is displayed, since the momentum field is essen-
tially the same. The results show what has already been revealed by the discrete-
dispersion relation, i.e., the scheme achieves large-CFL stability by slowing down
the short wave components of the solution. While the long-wave pulse has traveled
at nearly correct speed, the short-wave oscillations have essentially stayed in place.
Furthermore, their amplitude has not diminished.
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Fig. 2 Top row: “Multiscale” initial data. Bottom row: Numerical solution (pressure) with cfl = 10
at time tend = 3 using the trapezoidal rule (left) and the BDF(2) scheme (right). Grid with 512 cells.

A different behavior is displayed by the BDF(2) scheme (Figure 2, bottom right).
It has considerably more dispersion than the trapezoidal rule, and the damping of
the scheme results in a smaller final amplitude, even for the long wave data. On the
short scales, the diffusion is so high that at the final time this part of the solution
has essentially vanished. Thus, the scheme is able to balance the short-wave modes
that are not resolved in time, but it pays the price of simultaneously damping and
dispersing the long scales.

The result of the simulation using the new blended scheme with five grid levels
is displayed in Figure 3. For comparison, the result of the trapezoidal rule applied
only to long wave data is also shown (dashed line). As one can see, the two results
are nearly identical: The short wave data is filtered in such a way that only the long
wave data is left after some time. On the other hand, the long wave data is integrated
as well as one could hope when using a second-order method.
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Fig. 3 Numerical solution (pressure) using the blended scheme on a grid with 512 cells and cfl =
10 at time tend = 3 (black line). For comparison, the result of trapezoidal rule obtained with only
long wave initial data is plotted as gray dashed line.
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5 Conclusion

The presented scheme effectively filters freely propagating compressible short-wave
components, which cannot be accurately represented at long time steps. At the same
time, dispersion and the amplitude errors for long-wave modes are minimized. Fur-
ther tests show that in the presence of a source term, which slowly varies in time but
has rapid spatial variations, solutions relax to an asymptotic balanced state (see [9]).

One of the next goals is to apply this scheme into a semi-implicit scheme for
weakly compressible flows. The latter is an extension of a second-order projection
method for incompressible flows as described in [8]. By using the trapezoidal rule
in the implicit part of the scheme, one is faced with instabilities near shocks. This
can partly be cured by so called off-centering. However, it also decreases the order
of the scheme to one. The authors hope to obtain a second-order version by using
the new scheme described in this note.
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