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Institut für Mathematik, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin,

Germany.

(Dated: 8 June 2011)

In linear control, balanced truncation is known as a powerful technique to reduce the state-space dimension
of a system. Its basic principle is to identify a subspace of jointly easily controllable and observable states
and then to restrict the dynamics to this subspace without changing the overall response of the system. This
work deals with a first application of balanced truncation to the control of open quantum systems which are
modeled by the Liouville-von Neumann equation within the Lindblad formalism. Generalization of the linear
theory have been proposed to cope with the bilinear terms arising from the coupling between the control field
and the quantum system. As an example we choose the dissipative quantum dynamics of a particle in an
asymmetric double well potential driven by an external control field, monitoring population transfer between
the potential wells as a control target. The accuracy of dimension reduction is investigated by comparing
the populations obtained for the truncated system versus those for the original system. The dimension of
the model system can be reduced very efficiently where the degree of reduction depends on temperature and
relaxation rate.

I. INTRODUCTION

Since the advent of suitable pulse shaping techniques
in the 1980s, intense and short laser pulses have been
used to control various quantum systems in physics
and chemistry1,2. Starting from isolated atoms and
molecules, the concept of laser control has been extended
to condensed phases and biological systems3,4. More-
over, tailored laser pulses have also been applied to the
control of chemical reaction dynamics thus opening the
field of femtochemistry5–10. In all these fields, the light-
induced control aims at driving a quantum system from
an initial to a final (target) state both with high quan-
tum yield and with high state specificity. In theoreti-
cal investigations, these targets are modelled by optimal
control theory (OCT) employing forward and backward
propagations iteratively in order to connect initial and fi-
nal state, most often with the constraint of limited pulse
fluence11–15.

The main obstacle for the control of quantum many
body systems is the exponential rise of the number of
quantum states under consideration as a function of the
number of the relevant degrees of freedom. This often
leads to prohibitively long computing time and too large
memory allocation because the numerical effort to solve
the time-dependent Schrödinger equation (TDSE) is pro-
portional to the number of quantum states involved. The
problem is even more complicated if open quantum sys-
tems are to be modeled where an approximate treatment
of (i) the influence of the environment (e. g. coupling to a
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heat bath) and/or (ii) dynamics of non-equilibrium sys-
tems have to be considered. In that case, the dynamics
of a quantum system coupled to a bath can be described
within the Markov approximation by the Liouville-von
Neumann equation (LvNE) with a dissipative part in
Lindblad form16,17. Since the number of entries of re-
duced matrices scales quadratically with the number of
quantum states involved, propagations of these matrices
are considerably more expensive than solving the TDSE
for wave packet propagations.

A possible reduction of the effort could be obtained by
the application of the multiconfiguration time-dependent
Hartree method for density matrices (ρ-MCTDH)18–20.
Systems like a Morse oscillator coupled to 60 harmonic
bath oscillators21 could be simulated successfully. How-
ever, this method is restricted to certain model Hamilto-
nians and certain limitations on the densities. The use of
stochastic wave function methods is an alternative way
to cope with high dimensionality22–24 in density matrix
propagation. However, the method is inefficient for non-
local situations and the statistical error has to be com-
pensated by averaging over a high number of realizations
which is particularly problematic when rare events are
to be treated25. In summary, there still is a strong need
for the development of efficient methods for (reduced)
density matrix propagation in order to progress toward
higher dimensionality.

In the present work we shall explore possibilities for
model reduction of the equations of motions (EOMs)
for open quantum systems. The method of balanced
truncation which stems from the field of engineering and
was originally developed for systems with linear EOMs
ẋ = Ax+ Bu where the external control field u is the in-
put and the desired observable y = Cx is the output. The
balanced truncation method first maps states to certain
linear combinations (called balanced states) which are
ordered according to their ability to (a) react sensitively

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository: Freie Universität Berlin (FU), Math Department (fu_mi_publications)

https://core.ac.uk/display/267951026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

on an external control field (input, controllability) and
to (b) couple strongly to specified target states (output,
observability) at the same time. Based on this trans-
formation the balanced states are restricted to the sub-
space spanned by only those states which exceed a given
threshold of controllability and observability. Hence, this
truncation procedure guarantees that the input-output
behaviour is approximately reproduced and that the re-
maining states can be safely neglected26,27. We would
like to stress that in general this truncation scheme is
not equivalent to truncation of energetically high lying
states. For instance, there can be energetically low ly-
ing states, which are not observable due to too short life
times and/or which are not controllable due to vanishing
coupling moments. In addition to reducing the dimen-
sionality, the balanced truncation method allows to keep
the global approximation error under control28,29, con-
serves the internal energy and equilibrium states30, and
can be generalized to positive systems31 and Hamilto-
nian systems with friction32. Because model reduction
can be understood as a projection onto a lower dimen-
sional subspace which is a priori not unique, there are
different variants of balanced truncation approaches: As
an alternative to simple truncation (i.e., Galerkin pro-
jection) the restriction to the relevant subspace can also
be realized by penalizing the hardly controllable and ob-
servable states. Penalization, which is more in the spirit
of the singular perturbation approximation of balanced
systems, has proven useful in preserving certain algebraic
structures of the original system such as being Hamil-
tonian (see, e.g., Refs.33,34). As a rule of thumb, the
singular perturbation approximation yields a good ap-
proximation of the low frequency modes in the system,
whereas the Galerkin projection better captures the high-
frequency behaviour29.

It is noted that similar approaches to model reduc-
tion already exist: Krylov subspace methods are related
to balanced truncation methods for linear and bilinear
systems35,36. These iterative projection methods allow
to calculate low rank approximations of the propagator
by simple matrix-vector multiplications. Krylov meth-
ods are suitable for extremely high-dimensional systems
(n ≈ 106) and are frequently used for preconditioning. In
contrast to balanced truncation, Krylov subspace meth-
ods are, however, in general not stability conserving and
no error bound for the control of the approximation error
can be given37. An alternative is the Hardy space (H2)-
approximation38. This method allows an optimal control
of the approximation error by minimizing with respect
to the H2-norm. The basic variational principle can be
augmented by algebraic boundary conditions that the re-
duced system conserves stability and positivity. However,
the use of this nonlinear non-convex optimization routine
is prohibitively expensive for high-dimensional systems.

The extension of balanced truncation to more compli-
cated types of dynamics such as non-Markovian systems
or systems with time-dependent coefficients is clearly
possible. Typically this requires embedding of the system

into a (considerably) higher-dimensional space in which
the equations resume their simple form39,40. That is,
though possible in general, such generalization are at the
price of a much higher numerical effort, and for the sake
clarity we refrain from considering these possibilities.

The goal of this article is to introduce the balanced
truncation method into the field of control of open quan-
tum systems and provide an efficient reduction of di-
mension. The LvNE with a dissipative part in Lind-
blad form is, however not of the linear structure men-
tioned above but contains a bilinear term for the cou-
pling of the open quantum system to an external con-
trol field. Consequently, a generalization of the balanced
truncation method beyond linearity is necessary. In a
recent publication41 we showed, that the dimensionality
of a density evolution problem of the classical Fokker-
Planck equation (applied to a dragged Brownian par-
ticle) can be efficiently reduced (to 2-5%) by the bal-
anced truncation method generalized to bilinear systems
ẋ(t) = Ax(t) + u(t)Nx(t) + Bu(t) where structure and
positivity are conserved. For open quantum systems the
Liouville-von Neumann equation with a dissipative part
in Lindblad form has to be rewritten as a bilinear equa-
tion, which exhibits the same structure.

This paper is organized as follows: In Section II we
describe how we transform a dissipative LvNE to a bi-
linear form which is suitable for the balanced truncation
method. In Section III the balanced truncation method
is introduced and applied to an asymmetric double well
model system in section IV. Results are discussed and
summarized in Section V.

II. EVOLUTION OF OPEN QUANTUM SYSTEMS

An open quantum system can be described by the
Liouville–von Neumann–equation16,42:

i~
∂ρ̂(t)

∂t
=

[

Ĥ0 − F (t)µ̂, ρ̂(t)
]

+ LD [ρ̂] , (1)

where the commutator on the rhs represents the closed
system Liouvillian superoperator for the reduced density
operator ρ̂ containing the non-interacting system Hamil-
tonian Ĥ0 and the interaction with the external field
−µ̂F (t) composed in general by a j-fold product F (t) of
field tensors and the corresponding (j − 1)-th order sus-
ceptibility µ̂ (e. g. electric dipole moment, polarizability).
LD is the open system Liouvillian in Lindblad form43

LD [ρ̂] = i~
∑

l

(

Ĉlρ̂Ĉ†
l − 1

2

[

Ĉ†
l Ĉl, ρ̂

]

+

)

, (2)

where l runs over all dissipation channels23. This func-
tional in Lindblad form conserves the non-negativity of
populations (i. e. the diagonal elements ρl,l of the den-

sity matrix)44. The Lindblad operators Ĉl are composed
of the dissipative transition rates Γk→j from the en-

ergy eigenstate |k〉 (with eigenvalue Ek) of Ĥ0 to the
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state |j〉 (the set of eigenstates {|k〉, k = 0, . . . , q − 1} is
supposed to be finite) and a corresponding projection:

Ĉl = Ĉj,k =
√

Γk→j |j〉〈k|. Energy relaxation, dephas-
ing, and decoherence can be expressed in terms of these
rates. A simple model for the treatment of dissipation is
sketched in the following:

Considering anharmonicity in the system part, con-
stant mass of the bath oscillators, and weak coupling
limit, the downward relaxation rates can be determined
by45:

Γm→n,m>n =
|〈m|r|n〉|2

|〈1|r|0〉|2
· E1 − E0

Em − En

× 1 − e
−

E1−E0

kB T

1 − e
−Em−En

kB T

· Γ1→0

(3)

The corresponding upward rates have to be calculated
from detailed balance:

Γn→m,m>n = e
−Em−En

kB T · Γm→n,m>n (4)

As can be seen in Eq. (3), in this model all transition
rates depend on Γ1→0. In the present work we under-
stand Γ1→0 as an adjustable parameter. Non-zero diago-
nal transition rates provide contributions to the dephas-
ing and decoherence in the time evolution of the system.
However, pure dephasing shall not be treated here which
is the canonical choice.

The total dephasing rate can be determined by

γl,m :=
1

2

q−1
∑

j=0

(

Γl→j + Γm→j

)

. (5)

Next we will show how the Liouville–von Neumann–
equation (1) can be cast into a form applicable to the
balanced truncation method. If we introduce the Bohr
frequencies ωl,m := (El − Em) /~ , and matrix elements:
µk,l = 〈k|µ̂|l〉/~, in the energy eigenstate basis, Eq. (1)
can be rewritten as23

ρ̇l,m(t) =

(

−iωl,m − γl,m

)

ρl,m(t) +

q−1
∑

k=0

Γk→lρk,k(t)δl,m

+ iF (t)

q−1
∑

k=0

(

µl,kρk,m(t) − ρl,k(t)µk,m

)

.

(6)

We now establish the relationship between the evolu-
tion equation (6), mean observables (8), and the bilinear
input-output system consisting of the matrices A, N , B,
and C37,38,46. The key point is vectorization of the den-
sity matrix23,47: i. e. the density matrix ρ of size q is
mapped to a vector x(ρ) with n = q2 components. A
detailed illustration for a two state model is given in Ap-
pendix A. Finally, Eq. (6) can be rewritten as:

ẋ(t) = Ax(t) + iF (t)Nx(t) , x(0) = x0 . (7)

In control theory, this equation is called input equation
because it describes the dynamics of the system x(t) de-
pending on the (low dimensional) input field F (t) and
initial value x(0) = x0.

In density matrix notation the expectation value 〈O(j)〉
of the j-th observable Ô(j) can be calculated as:

〈O(j)〉 = Tr
{

Ô(j)ρ̂
}

=

q−1
∑

k,l=0

O
(j)
k,l ρl,k . (8)

In the context of control theory we are interested in
the target of control which means we want to control the
expectation values y:

y =

(

〈O(1)〉
〈O(2)〉

)

, (9)

the vectorization provides a shorthand notation of
Eq. (8), see also Appendix A:

y(t) = Cx(t) , (10)

where C is referred to as the observability matrix and the
number m of observables (here m = 2), is typically small
compared to the dimensionality n of the vectorized den-
sity matrix. Equation (10) is called the output equation
because it represents the dynamics of the target.

In a second step the vectorized density x will be shifted:
x 7→ x̃ = x − xe , where xe = x(ρe) is the equilibrium
density determined by the Boltzmann distribution

ρe
k,k = e

−
Ek

kBT

(

q−1
∑

l=0

e
−

El
kB T

)−1

. (11)

The shift ensures that controllability and observability
conditions hold48 for a system which is in equilibrium
before field excitation. At the same time, xe is the eigen-
vector of A corresponding to the eigenvalue 0 by virtue
of (4) (i. e. Axe = 0). Hence, it follows:

˙̃x(t) = Ax̃(t) + iF (t)Nx̃(t) + iF (t)Nxe , x̃(0) = x0 − xe ,

ỹ(t) = Cx̃(t) , ỹ(t) = y(t) − Cxe .
(12)

Setting B = Nxe and renaming u(t) = F (t) result in
the desired bilinear (where iu(t)Nx(t) is linear with re-
spect to the field u(t) and the density x(t)) input-output
system derived from Eqs. (6) and (8), respectively:

˙̃x(t) = Ax̃(t) + iu(t)Nx̃(t) + iBu(t) , x̃(0) = x̃0 .

ỹ(t) = Cx̃(t) .
(13)

On the one hand, the shift transforms a homogeneous
equation to an inhomogeneous one and seems to com-
plicate things. On the other hand, the shift establishes
the basis for the balancing method described below in
section III, by setting x(0) = 0 for an equilibrium start-
ing condition. In the following we omit tildes to simplify
notation.
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III. BALANCED MODEL REDUCTION

Model order reduction is a branch of systems and con-
trol theory that aims at reducing the complexity of con-
trol systems, while preserving (as closely as possible)
their input-output behaviour. It is better established for
linear than for nonlinear systems and also the basic ideas
and concepts can be most easily understood there, which
is why we review linear systems first.

A. Linear systems

The simplest approximation to Eq. (13) is obtained by
linearizing about the origin, x = 0, which results in a
linear system of the form

ẋ(t) = Ax(t) + iBu(t) , x(0) = x0 ,

y(t) = Cx(t) .
(14)

As before, the state vector x ∈ Cn represents the vector-
ized density matrix with the system matrix A ∈ Cn×n

containing differences of energy eigenvalues of H0 and
transition rates from LD (see Eq. (A2) in Appendix A).
The inhomogeneous part, Bu with the control matrix
B ∈ Rn×p and the control variable u ∈ Rp is meant to
model a general time-dependent external field acting on
the system; again the output vector y ∈ Rm describes the
relevant observables in terms of the observability matrix
C ∈ Rm×n. In almost any application of practical rele-
vance, the state vector x ∈ Cn is very high-dimensional,
even though u and y may be low-dimensional.49 There-
fore one wishes to reduce the dimensionality of the sys-
tem while preserving the overall response of the observed
quantities y to the external field u. Here the essential idea
is to regard (14) as a map u 7→ y(u; x0) that describes
the observable y as a function of the control u (so-called
transfer function).50 The method of balanced truncation

aims at keeping only those states that are most sensitive
to the input field u (controllability) and, at the same
time, strongly coupled to specified output states y (ob-
servability). Then, by construction, the remaining states
hardly contribute to the transfer function of the system
and therefore can be neglected.26,27 In addition, balanced
truncation allows for a global control of the approxima-
tion error by keeping or discarding as many states as
desired.28,29

The concept of balanced truncation builds on the no-
tion of controllability and observability Gramian matrices

Wc =

∫ ∞

0

eAtiB(−i)B∗eA∗td t ,

Wo =

∫ ∞

0

eA∗tC∗CeAtd t ,

(15)

that can be computed as the symmetric positive
semidefinite solutions of the Lyapunov equations

AWc + WcA
∗ + BB∗ = 0 , A∗Wo + WoA + C∗C = 0 .

(16)

Here and in the remainder of this chapter we assume
that all eigenvalues of A have strictly negative real parts
so that the integrals in (15) exist and are equal to the
solutions of the Lyapunov equations.

Qualitatively, the controllability Gramian Wc is a mea-
sure for the control effort (in terms of the integral over
|u|2) that is needed to drive the system to a state x:
given two states x1, x2 ∈ Cn with |x1| = |x2|, then
x1 can be reached with less control energy than x2 if
x∗

1Wcx1 > x∗
2Wcx2; in particular, if Wcx2 = 0 then the

state x2 cannot be reached at all, regardless how strong
the control field is; hence it cannot contribute to the
transfer function of the system.

To see this, let ξ ∈ Cn an arbitrary vector and note
that any admissible control that drives the system from
the origin x(0) = 0 to a prescribed terminal state x(tf ) =
xf must be of the form

u(s) = −iB∗eA∗(tf−s)ξ (17)

Together with the solution of (14)

x(t) =

∫ t

0

eA(t−s)iBu(s)d s (18)

for the initial value x(0) = 0, we find that

x(tf ) =

(
∫ tf

0

eAsBB∗eA∗sd s

)

ξ . (19)

Calling the non negative matrix

Wc(t) =

∫ t

0

eAsBB∗eA∗sd s , (20)

the finite time controllability Gramian, it readily follows
that x(tf ) = xf can be reached if and only if

xf = Wc(tf )ξ (21)

has a solution. If, moreover, the Hermitian matrix
Wc(tf ) is invertible, we can solve for ξ = W−1

c (tf )xf .
The corresponding control law

û(s) = −iB∗eA∗(tf−s)W−1
c (tf )xf (22)

then minimizes ‖u‖2 =
∫ tf

0
|u(s)|2d s among all admis-

sible controls u ∈ L2(0, tf). The latter can be seen
by the following simple calculation: for any admissible
u ∈ L2(0, tf) we have

〈û, u〉 =

∫ tf

0

û∗(s)u(s)d s

=

∫ tf

0

ix∗
f

(

W−1
c (tf )

)∗
eA(tf−s)Bu(s)d s

= x∗
fW−1

c (tf )xf .

(23)

Therefore, 〈û, u〉 = ‖û‖2 which implies that

‖û‖2 = ‖u‖2 − ‖u − û‖2 . (24)
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Hence, û is the optimal control that minimizes ‖u‖2.
Conversely, the quadratic form x∗Wox with Wo being

the observability Gramian measures how much “output
energy” (i. e. the time integral over |y|2) can be extracted
from the system when u = 0 and the system has been
initialized at x(0) = x; in particular, Wox = 0 means
that no output energy can be extracted; the state is then
called unobservable and does not contribute to the trans-
fer function.

Let us assume that (14) has neither unobservable nor
uncontrollable states. Then, clearly Wc and Wo are pos-
itive definite, but it may still happen that some states
are easier to control and observe than others; in partic-
ular there may be states that are hardly controllable or
observable and we expect that they will not play such
a big role for the system’s transfer function. The very
idea of balancing is to find a coordinate transformation
x 7→ T−1x under which controllability and observability
Gramians become equal and diagonal, i.e.,26,27

T−1Wc

(

T−1
)∗

= T ∗WoT =







σ1 0
. . .

0 σn






= Σ . (25)

The σi > 0 are Hankel singular values (HSVs) of the sys-
tem. They are independent of the choice of coordinates
as can be readily seen by noting that the squared HSVs
are the eigenvalues of WcWo, namely,

T−1WcWoT = Σ2 .

The transformation T is a contragredient transformation

and exists whenever Wc, Wo are symmetric and positive
definite.28 In the balanced representation, states that are
least influenced by the input also have the least influ-
ence on the output and vice versa. Balanced truncation
consists of first changing to the balanced coordinates,
and then truncating the least controllable and observ-
able states i. e. those states that have little effect on the
transfer function.

A useful property of balanced truncation is that it ad-
mits easy control of the approximation error when trun-
cating states. For example, we may obtain a reduced
order system by projecting all the coefficients A, B, C
onto the space spanned by the first r < n columns of the
inverse balancing transformation T . For the associated
low-rank transfer function, ŷ(r) = ŷ(r)(u; x0 = 0), the
following upper error bound holds28

sup
‖u‖2=1

‖y(u; 0)− ŷ(r)(u; 0)‖2 < 2(σr+1 + . . . + σn)

where

‖w‖2 =

∫ ∞

0

|w(t)|2dt .

Moreover any reduced order model of rank r satisfies the
lower bound

sup
‖u‖2=1

‖y(u; 0)− ŷ(r)(u; 0)‖2 ≥ σr+1

which is typically close to the upper bound when the
HSVs decay sufficiently fast. Note that also for time-
dependent observability matrices C(t)51 balanced trun-
cation is applicable by an iterative procedure for the cal-
culation of the observability Gramian. For example, a
linear or quadratic time dependence of C(t) requires the
solutions of three or five standard Lyapunov equations,
respectively.

B. Bilinear systems

In contrast to the linear case, there is no comprehen-
sive theory of model order reduction of bilinear systems
(not to speak of general nonlinear systems)48. Especially
quantitative statements such as computationally feasible
upper or lower bounds for the approximation error are
not available. For the sake of simplicity we consider bi-
linear systems of the form

ẋ(t) = (A + iu(t)N)x(t) + iBu(t) , x(0) = x0

y(t) = Cx(t)
(26)

having only a single input variabe u ∈ R (however, this is
not a major restriction). Now recall the definitions (15)–
(16) of the controllability and observability Gramians of
the linear system (14). For bilinear systems, controlla-
bility and observability can be analyzed in terms of the
generalized Gramians52

Wc =

∞
∑

j=1

∫ ∞

0

. . .

∫ ∞

0

Pj(t1, . . . tj)P
∗
j (t1, . . . tj)d t1 . . . d tj

Wc =

∞
∑

j=1

∫ ∞

0

. . .

∫ ∞

0

Q∗
j (t1, . . . tj)Qj(t1, . . . tj)d t1 . . .d tj ,

(27)
where we use the shorthand

P1(t1) = eAt1iB , Pj(t1, . . . , tj) = eAtj iNPj−1

Q1(t1) = CeA∗t1 , Qj(t1, . . . , tj) = Qj−1iNeA∗tj .
(28)

Equivalently (provided that the above integrals exist) the
generalized Gramians can be expressed by means of the
generalized Lyapunov equations (cf. Eq. (16))

AWc + WcA
∗ + NWcN

∗ + BB∗ = 0 ,

A∗Wo + WoA + N∗WoN + C∗C = 0 .
(29)

Again, the uncontrollable or unobservable states are
those states x ∈ Cn for which Wcx = 0 or Wox = 0,
respectively.52 We argue along the lines of the linear
case: Suppose again that controllability and observabil-
ity Gramians are positive definite. We expect that the
weakly controllable and observable states, i.e., these x ∈
C

n for which either x∗Wcx or x∗Wox are small, do not
contribute substantially to the input-output behaviour
of the system and therefore can be discarded.37 The as-
sumption that the system is completely controllable and
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observable is not essential and can be relaxed53. In this
case the balancing transformation acts only on the sus-
bpace of jointly controllable and observable states where
the orthogonal complement that contains only states that
are either uncontrollable, unobservable, or both uncon-
trollable and unobservable can be neglected (cf. also Ref.
49, Sec. 7.3). Under this assumption we may proceed as
in the linear case: first transforming the system (26) to
the balanced coordinates in which weakly controllable
states coincide with weakly observable states and second
truncating these states. As in the linear case, this second
step is not unique and there are various options to trun-
cate the system, depending also on the precise decay of
the control term u as t → ∞; we refer to our recent work
for a discussion of the various possibilities.41

A detailed discussion of solvability and the numeri-
cal solution of the generalized Lyapunov equation is pre-
sented in Appendix B. If the solution of the generalized
Lyapunov equation is too expensive or not feasible, prin-
cipal component analysis (PCA) possibly represents an
alternative to determine the Gramians which are neces-
sary for the balanced truncation. A detailed derivation
is shown in Appendix C.

IV. EXAMPLES

A. Model system

The balanced model reduction approach shall be ap-
plied to a dissipative quantum mechanical model system
in density matrix formulation controlled by interaction
with an external electric field. For simplification we con-
sider one degree of freedom, s. The potential energy
curve is chosen as an asymmetric double well represented
by a fourth order polynomial:

H0 = T + V (s) = −~
2

2I

∂2

∂s2
+ a4(s

2 − d2)2 + a1s . (30)

The model simulates e. g. conformational changes of
molecules which can often be expressed as a function
of one essential coordinate, or other types of molecular
switches. We consider the asymmetric case in order (i)
to get clearly localized wave functions in either well and
(ii) to avoid tunneling between the potential wells.

The barrier height D is a characteristic quantity for
the system. In the symmetric case (a1 = 0) it is given
by D = V (0) − V (±d) = a4d

4 and the two minima are
separated in s-direction by 2d. This almost holds for
small asymmetry a1d ≪ D, and 2a1d is the energy off-
set between both minima. We choose the parameters in
Eq. (30) to d = 1, a4 = D, a1 = 5.5 · 10−2D, I =
1.62 · 102~2D−1 in order to obtain few levels in each well
with maximal spacing. For a typical molecular applica-
tion the barrier height for an inversion vibration is of the
order of 10 kJmol−1 (≈ 0.1 eV) resulting in a moment
of inertia of 5 uÅ2, which is a typical value for a small
molecule.

Numerical solution of the Schrödinger equation uti-
lizing the Fourier grid method54,55 provides the energy
levels shown in Figure 1. It shows six vibrational lev-

 0
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-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

V
(s
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i[D
]
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FIG. 1. Potential energy curve and energy eigenvalues in
the left well (blue), in the right well (green), and over the
barrier (red) for the input parameters d = 1, a4 = 1D, a1 =
5.5 · 10−2D, and I = 1.62 · 102

~
2D−1. The cutoff is set to

twice the barrier height D.

els in the left well and five levels in the right one where
the maximal interlacing (ω1,0 ≈ ω2,0/2) of these levels
minimizes tunneling and causes the high degree of local-
ization of the corresponding energy eigenfunctions. In
contrast, the energy eigenfunctions above the barrier are
delocalized. We include ten additional levels up to twice
the barrier height. Even in this system with only one de-
gree of freedom fairly high dimensional matrices A, N, B,
and C occur. The 21 considered states lead to a gener-
alized tetradic representation of the density matrix (see
Appendix A for details) with dimension n=441. Thus,
reduction of the number of considered density matrix el-
ements by balanced truncation is useful to accelerate dy-
namical simulations occuring, e. g. during a refinement
of the control field in OCT simulations.

The interaction with the electric field u(t) is simplified
to the semiclassical dipole approximation −µu(t). The
transition dipole moments are calculated from the energy
eigenfunctions assuming a dipole moment operator linear
in s with unit slope: µ = s. In addition to the potential
energy curve, the structure of the equations of motion,
the positivity of the populations, and the occurrence of
a simple zero eigenvalue form a common ground with
the semi-discretized Fokker-Planck equation model under
investigation in Ref.41. However, the used basis sets, on
one side a spatial basis and on the other side the basis
of energy eigenstates, are one of the differences between
the classical and quantum mechanical model systems.

Concerning the observables of the system, we investi-
gate how much population is localized in the left well and
the right well, and which part is delocalized over the bar-
rier. The corresponding observability matrix C ∈ R3×441
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is given by:

C1,k =

6
∑

j=1

δk,2j−1 left well

C2,k =

5
∑

j=1

δk,2j right well

C3,k =

10
∑

j=1

δk,11+j delocalized

For the complete description of the system, another
two parameters have to be set: The energy equivalent
of temperature T , β−1 = kBT , and the dissipative tran-
sition rate Γ2→0 (due to wave function overlap the ref-
erence quantity should rather be Γ2→0 than Γ1→0). In
addition, for the consideration of the dynamics of the sys-
tem, the control field u(t) = u0 cos(Ωt−ϕ0)b(t) with the
initial phase ϕ0 and the shape function 0 ≤ b(t) ≤ 1
has to be determined. In order to relate these quanti-
ties to energy differences which characterize the poten-
tial curve we introduce the following dimensionless vari-
ables for the temperature θ = kBT/(~ω2,0), for the
dissipative transition rate ζ = Γ2→0/ω2,0, and for the
control field ξ = µ2,0u0/ω2,0 with the Bohr frequency
ω2,0 = 0.2148D~−1 and the transition dipole moment
µ2,0 = 0.1189ea0~

−1.

B. Example 1: High temperature, fast relaxation

Setting the value kBT = D (i. e. θ = 4.655) reflects
a system at fairly high temperature. Subsequently all
states are populated notably in the equilibrium, even the
delocalized states lying over the barrier. For the equilib-
rium distribution, determined by Eq. (11), population of
the lowest state in the left well is ρe

0,0 = 0.10449 whereas
the population of the highest delocalized state is given
by ρe

20,20 = 0.01597. The populations in the left well
sum up to y1(0) = 0.40356, in the right well the corre-
sponding observable is y2(0) = 0.32838, and the delocal-
ized states lying over the barrier exhibit a total popula-
tion of y3(0) = 0.26806. The dissipative transition rate
Γ2→0 = D~−1 (i. e. ζ = 4.655) causes a fast relaxation of
non-equilibrium states.

As a first step we have a closer look at matrix A (struc-
tured like Eq. (A2) in Appendix A) describing the field-
free quantum dynamics and its eigenvalue spectrum. The
most interesting part is the first, real valued full block of
the block diagonal matrix A. It represents the dissipative
coupling among populations and is displayed in Figure 2.
It consists of the rates Γm→n for the off-diagonal elements
and the total transition rates for the diagonal elements.
The even-odd alternations for m, n < 10 simply reflects
the extremely low overlap between states in the left and
the right well. Diagonalization of the first block of A can
easily be performed and leads to real eigenvalues. Due
to Eqs. (6) and (A2) the second, the diagonal block of A

n

m

log(|A
m,n

|)
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FIG. 2. Example 1: Logarithmic plot of the upper diagonal
block of A which consists of the sum of dissipative reaction
rates matrix Γ and the total transition rates.

which represents the dynamics of the coherences exhibits
a simple structure: The real part is solely determined by
the dephasing rates γm,n whereas the imaginary part of
the diagonal elements of A represents the negative Bohr
frequencies.

Next we perform the balancing transformation which
results in the Hankel singular values displayed in Figure
3 (together with those for the following two examples).
The descent of the HSVs can be roughly characterized
as follows: The first fifty HSVs decrease exponentially
by about seven orders of magnitude. After that, the de-
crease flattens to a exponential decrease of another seven
orders of magnitude between i = 100 and i = 315.

0 100 200 300 400 500
10

−30

10
−20

10
−10

10
0

i

σ i

 

 

high T, fast relaxation
low T, fast relaxation
low T, slow relaxation

FIG. 3. The diagonal elements of Σ, also referred to as Han-
kel singular values for high temperature and fast relaxation
(example 1, blue circles), low temperature and fast relaxation
(example 2, filled red circles), and low temperature and slow
relaxation (example 3, black crosses)
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In the remainder of this work we assess the quality of
the balanced truncation method by comparing the ref-
erence output y(t) = (y1(t), y2(t), y3(t))

T with the bal-
anced, truncated (to r modes), and backtransformed out-
put y(r)(t) = CT (r)(T−1)(r)x(t) , where (T−1)(r) is the
truncated r × n matrix of the balancing transform, T (r)

is the truncated n×r matrix of its inverse (see Figure 4),
and z(r)(t) = T−1)(r)x(t) are the balanced and truncated
(to r components) density matrix elements. Initially, we
have y(t = 0) = ye = Cxe. Because we transform to the
eigenstate basis of A and split off the stationary state
before balancing, reference output at time zero can al-
ways be reproduced, regardless of the number of trun-
cated modes. This is due to the fact the we always con-
sider the equilibrium density whereas truncation acts on
its orthogonal complement, see Section B. In contrast,
using a shift of A → A−αI in order to eliminate the zero
eigenvalue of A, unphysical populations are produced if
the number r of remaining balanced density matrix ele-
ments is too small. For this reason we concentrate on the
case of splitting off the stationary state.

Next, we consider the field driven dynamics for t > 0.
Due to the fast relaxation and the high temperature, we
use a simple non-oscillating sinusoidal half cycle pulse
u(t) = u0 sin(Ωt), Ω = 0.196 D~−1, 0 ≤ t ≤ π/Ω ,
u0 = 7.5 De−1a−1

0 . With ω2,0 = 0.2148D~−1 and
µ2,0 = 0.1189ea0~

−1, the dimensionless parameter ξ can
be determined to ξ = 4.1515. We want to observe how
the populations of localized states in the left well, in the
right well, and of delocalized states over the barrier of
the potential energy curve evolve and relax for the time
intervall 0 ≤ t ≤ 3π/Ω . At time t = 0 the system is
in equilibrium. The control field serves to populate the
states over the barrier and to transfer population between
left and right well.

As a quantitative measure for the quality of balanced
truncation approximation, we monitor the relative root
mean square (rms) deviations ‖y(r) − y‖2/‖y − ye‖2 of
the output integrated over time. The time evolution of
the control target y for x starting from x0 = 0 (cf. Fig-
ure 4) shows for a truncation to r = 5 a relative rms
deviation between 6.71% for the right well and 9.70% for
the left well with the mean value of 8.65% for all popu-
lations (cf. Table I) compared to the propagated original
system, which is a surprisingly good result for only five
components of z and diminishes the number of density
matrix elements by a factor 88. In general, deviations
get even smaller with increasing r: For r = 10, the rms
deviations are spread between 1.22% for the delocalized
states and 5.08% for the states in the right well, for all
states we find 2.01% mismatch. Finally, for r = 20 the
relative rms deviations are about 1%.

A closer look at the coefficients of the balancing trans-
form reveals, that the five highest HSVs are characterized
by populations of the left well (σ1), coherences between
neighboring states in the left well (σ2, σ5), and popula-
tions of the right well (σ3, σ4). Results for r = 10 are bet-
ter since populations of levels near the barrier (σ6, σ10),

0 10 20 30 40
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ou
tp

ut
 y

−
y e

 

 

left well
right well
delocalized
2 ⋅ 10−3 u(t)

FIG. 4. Example 1: Deviation of population from equilib-
rium for states localized in the left (blue) , and in the right
well (green), and delocalized states over the barrier (red) as
a function of time for r = 5 (dashed), r = 10 (dashed-dotted)
and r = 20 (dotted lines). The solid colored lines mark the
untruncated case, and the solid black line is the control field.

TABLE I. Relative root mean square deviations (rms) be-
tween truncated (to r remaining elements of z) and untrun-
cated dynamics of shifted populations for high temperature
and fast relaxation (example 1)

r left well right well delocalized all

5 9.70% 6.71% 8.45% 8.65%

10 1.53% 5.08% 1.22% 2.01%

20 0.88% 1.31% 0.87% 0.92%

and coherences between neighboring states in the right
well (σ9) and around the barrier (σ7) are included. That
means that the balancing transform builds up balancing
states with the highest HSVs from linear combinations
of density matrix elements of similar type (e. g. popula-
tions of the right well). If all important informations are
included full dynamics will be simulated properly by the
truncated setting. In general, however, the linear combi-
nations are neither intuitive nor representing an ascend-
ing or descending order of energy values. We hope that
future considerations (e. g., in the Floquet picture) will
reveal this situation.

C. Example 2: Low temperature, fast relaxation

In the following we consider the case of lower tem-
perature. The temperature equivalent of the energy,
kBT = 0.1D, which is about the energy level splitting
(θ = 0.4655) leads to an equilibrium population of the
lowest level in the left well of ρe

0,0 = 0.65771 and the
lowest level in the right well exhibits a population of
ρe
1,1 = 0.22182. The total populations of left and right
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well are given by y1(0) = 0.74630 and y2(0) = 0.25364,
respectively, whereas the total population over the bar-
rier can be neglected (y3(0) = 6.1257 · 10−5). Due to the
low temperature, oscillating pulses can be used to effi-
ciently transfer population and we chose a pulse which
extends over three periods with a sine squared envelope:

u(t) = u0 cos(Ωt) sin2
(

πt
tf

)

, u0 = 3.75De−1a−1
0 , ξ =

2.0758, Ω = 0.196D~−1, 0 ≤ t ≤ tf = 100 ~D−1. The
control field amplitude was adjusted in order to provide
population transfer similar to the first example. The
combination of fast relaxation and low temperature ef-
fects that population which is transferred from the left
well to the delocalized states over the barrier are depop-
ulated immediately for the benefit of the states in the
right well. Consequently, no population tranfer between
the wells occurs after the control field excitation has suf-
ficiently died out toward the end of the pulse (cf. Figure
5).

Although the decrease of the HSVs is slightly faster
than in the first example, see Figure 3, in this case more
balanced states are needed to reproduce the reference
propagation with a sufficient quality. Below r = 21 pop-
ulations in the delocalized states over the barrier be-
have unphysical. For r = 21, the relative rms devia-
tion is about 11% for the both wells. The high relative
(94.14%) but small absolute deviation for the delocalized
states over the barrier hardly influence the total devia-
tion (11.31%, see also Table II) which is a consequence
of the almost unpopulated delocalized states at all times.
For r = 29 the rms mismatch is about 4% in the wells
and 18.58% for the delocalized states. If we increase the
number of remaining components of z step by step in the
range between r = 20 and r = 50 we recognize oscilla-
tions of the rms mismatch in each part of the potential as
a function of r. The deviations, both in the wells, and in
all states turn below 1% for r = 40. For the same reasons,
as mentioned above, rms mismatch for the delocalized
states is higher (9.56%) but decreases for increasing r. It
can be seen from the coefficients of the balancing trans-
formation that the coherences between neighboring states
inside the wells don’t play a dominant role. Decreasing
the control field to u0 = 1.5De−1a−1

0 , ξ = 0.8303 im-
proves the rms mismatch of all populations to 10% if
r = 9 which turns below 1% if r increases to 24. By con-
ducting additional tests for all other examples we could
verify that in general r has to be increased if one is inter-
ested in obtaining the same accuracy of model reduction
using higher field energies.

D. Example 3: Low temperature, slow relaxation

In a third example we consider the same low tem-
perature (θ = 0.4655) as in example 2 but we add the
possibility to analyze the depopulation of the delocal-
ized states. Therefore, we chose slow relaxation by set-
ting the dissipative transition rate to Γ2→0 = 10−3 D~−1
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FIG. 5. Example 2: Population (with respect to equilibrium
population) of states localized in the left (blue) , and in the
right well (green), and delocalized states over the barrier (red)
as a function of time for r = 21 (dashed), r = 29 (dashed-
dotted), and r = 40 (dotted lines). The solid line marks the
untruncated case.

TABLE II. Relative root mean square deviations between
truncated (to r remaining components of z) and untruncated
dynamics of shifted populations for low temperature and fast
relaxation (example 2)

r left well right well delocalized all

21 10.24% 11.56% 94.14% 11.31%

29 4.19% 4.14% 18.58% 4.21%

40 0.70% 0.71% 9.56% 0.77%

which leads to ζ = 4.655 · 10−3. The control field is de-
scribed by the function given in the preceeding example.
While Ω takes the same value, the other constants are
changed: u0 = 0.2 De−1a−1

0 , tf = 360 ~D−1, and there-
fore ξ = 0.1107. Consequently the pulse extends over 11
periods which is depicted in Fig. 6. The HSVs decrease
more slowly than in the examples discussed before, see
Figure 3.

In contrast to example 2, populations of the delocalized
states grow at the expense of the major fraction of the
population in the left well and the minor fraction of the
population in the right well. Only toward the end of the
control pulse, when the amplitude of the exciting pulse
has dropped down sufficiently, relaxation becomes visible
and depopulates the states lying over the barrier for the
benefit of the states in the right well (major part) and
left well (minor part, cf. Fig. 6).

For r = 60 the time-dependent output shows the cor-
rect trend, but deviations are enormous (see Table III).
For r = 90 the result is already quite good for left
well (rms=6.56%) and the delocalized states over the
barrier (rms=7.04%) whereas the right well still shows
stronger deviations (rms=35.16%). The rms mismatch
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FIG. 6. Example 3: Population (with respect to equilibrium
population) of states localized in the left (blue) , and in the
right well (green), and delocalized states over the barrier (red)
as a function of time. Dashed lines indicate a truncation to
r = 90 states, dashed-dotted lines mean r = 110 and dotted
lines label r = 180. The solid line marks the untruncated
case.

of all populations is 10.22% . For r = 110 all rela-
tive rms-deviations shrink and the total rms deviation
is 5.36%. In order to confine the mismatch below 1%
r = 180 remaining elements of z are needed. In contrast
to the preceeding examples, the coefficients of the bal-
ancing transform show more state specific behavior and
only few population dominated eigenvectors for the first
60 HSVs.

TABLE III. Relative root mean square deviation of the out-
put integrated over time for truncated (to r remaining com-
ponents of z) with respect to untruncated dynamics of shifted
populations for low temperature and slow relaxation (example
3)

r left well right well delocalized all

60 45.81% 48.05% 66.38% 55.21%

90 6.56% 35.16% 7.04% 10.22%

110 4.86% 14.87% 3.50% 5.36%

180 0.58% 1.82% 0.72% 0.74%

V. CONCLUSIONS AND OUTLOOK

This paper represents a first application of balanced
truncation to light-induced control of open quantum sys-
tems. This method efficiently reduces the dimensionality
of the LvNE by constructing states which are control-
lable and observable at the same time. While originally
developed for control problems of linear systems the bi-
linear nature of the system-field coupling necessitates the
solution of generalized Lyapunov equations. In our appli-

cation to a one-dimensional model problem for different
temperatures and relaxation rates, the balanced trunca-
tion method has shown its great potential in simplifying
quantum-dynamical simulations occuring in optimal con-
trol problems. In particular, the input-output behavior
of the original system can be well approximated by dras-
tically reduced systems. For a relative rms deviation of
5% in the output the dimensionality of the system can
be reduced by about 98% for high temperature and fast
relaxation (example 1), while for lower temperatures a
reduction of 94% or 76% can be achieved for faster (ex-
ample 2) or slower relaxations (example 3), respectively.
The differences in the degree of reduction can be partly
attributed to the different decay of the Hankel singu-
lar values of controllability and observability Gramians
which is the foundation of the theory of balanced trunca-
tion method for linear systems. Also for the bilinear sys-
tem considered in the present work, the overall behavior
is a decrease of the error with rising r, the dimensional-
ity of the reduced model. A drawback compared to bal-
anced truncation for linear systems is the non-monotonic
behavior of the error as a function of r. However, the lo-
cation of a local minimum of the error is independent of
the external field amplitude. In contrast, the truncated
dimensionality r needed to obtain a given accuracy for
the output dynamics rises with the field amplitude.

In future work, the dependence of the accuracy of bal-
anced truncated systems on the dimensionless param-
eters representing temperature θ, dissipative transition
rate ζ, and control field amplitude ξ should be investi-
gated systematically for real systems e. g. from atomic or
molecular physics. Furthermore, it would be interesting
to study the effect of different control targets expressed
by different observability matrices C for given controlla-
bility. Especially the sensitivity of the required dimen-
sionality r to achieve a desired accuracy on the nature
of matrix C should be properly examined. In particular,
the rather coarse grained target of population transfer
between the wells of the model potential considered in
section IV could be replaced by finer details like state
selective control targets. Our first test calculations have
shown that these goals are within reach. Finally, the
relation between PCA and balanced truncation could be
further explored. This would also allow to systematically
impose further constraints on the truncation procedure
e. g. positivity of the populations or even a Liouville-von
Neumann structure of the reduced system.

Yet another possible advancement of the balanced
truncation method could be a combination with the Flo-
quet picture of photon dressed states. By eliminating
the fast carrier frequencies the control problem for typ-
ical laser pulses could be reduced to an optimization of
few parameters such as frequencies, intensities and pulse
shape parameters56,57.
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Appendix A: Vectorization of the density matrix

We will illustrate the procedure by means of a two state
model (q = 2) and use the tetradic notation introduced
by Mukamel58:

ρ =

(

ρ0,0 ρ0,1

ρ1,0 ρ1,1

)

7→ x =











ρ0,0

ρ1,1

ρ0,1

ρ1,0











, (A1)

where the order of the matrix elements ρl,m in the vec-
tor x is arbitrary but fixed. Here we start with all the
populations and proceed with the coherences (i. e. the
off-diagonal elements of the density matrices) leading to
the expression:

A =











−γ0,0 Γ1→0

Γ0→1 −γ1,1

0

0
−iω0,1 − γ0,1 0

0 −iω1,0 − γ1,0











(A2)
and

N =











0
−µ1,0 µ0,1

µ1,0 −µ0,1

−µ0,1 µ0,1

µ1,0 −µ1,0

µ0,0 − µ1,1 0

0 µ1,1 − µ0,0











.(A3)

Note, that a generalization to q > 2 is straight forward.

The chosen order in the vectorization (A1) has the ad-
vantage, that A is blockdiagonal with block sizes q and
(n − q) where the latter block exhibits diagonal struc-
ture. The diagonal elements of A contain −iωl,m − γl,m,
i. e. differences of energy eigenvalues and total dephas-
ing rates. Those off-diagonal elements of A which rep-
resent couplings of different populations include a cor-
responding dissipative transition rate. The elements of
N represent the coupling between the external field F (t)
and the vectorized density x(t) through susceptibility µ.
Also the matrix N can be divided in submatrices of size
q × q, q × (n − q), (n − q) × q, and (n − q) × (n − q).
In contrast to A, the upper left q × q submatrix of N
is the zero-matrix47. The off-diagonal ones contain off-
diagonal matrix elements µl,m whereas the diagonal ones
are differences of µl,l.

For the observables given in (9), the vectorization (A1)
provides:

C =

(

O
(1)
0,0 O

(1)
1,1 O

(1)
1,0 O

(1)
0,1

O
(2)
0,0 O

(2)
1,1 O

(2)
1,0 O

(2)
0,1

)

. (A4)

The shift is in the case of the two state model given by
xe = (ρe

0,0, ρ
e
1,1, 0, 0)T , and leads to:

B =











0

0

−µ0,1

µ1,0











(ρe
0,0 − ρe

1,1) . (A5)

Appendix B: Solvability and numerical solution of the
generalized Lyapunov equations

We shall briefly discuss the solution of the generalized
Lyapunov equations (29). To this end recall that a sys-
tem is called stable when the system matrix A has only
eigenvalues in the open left half complex plane (i.e., ex-
cluding the imaginary axis). Stability thus means that
there are constants λ, a > 0 such that ‖ exp(At)‖ ≤
λ exp(−at) where ‖ · ‖ is any suitable matrix norm. If
moreover

λ2

2a
‖N‖2 < 1 (B1)

then controllability and observability Gramians exist46.
In contrast, for the solvability of the “ordinary” Lya-
punov equations (16), stability is the only requirement.
If moreover the pair (A, B) satisfies Kalman’s rank con-
dition

rank(B|AB|A2B| . . . |An−1B) = n (B2)

for the Kalman block matrix
(B|AB|A2B| . . . |An−1B) ∈ Cn×np then Wc is positive
definite (complete controllability).59 In turn, if the pair
(A∗, C∗) satisfies the rank condition, then also Wo is
positive definite (complete observability).

Direct methods for solving generalized Lyapunov equa-
tions have a numerical complexity O(n6) which makes
computing the Gramians a challenge even for medium-
sized systems. For stable matrix A and for the controlla-
bility Gramian, one can resort to iterative schemes such
as60

AXj+1 + Xj+1A
∗ = −NXjN

∗ − BB∗ , X0 = 0 (B3)

which requires the solution of a standard Lyapunov equa-
tion in each step (the iteration for the observability
Gramian follows analogously). Convergence Xj → Wc is
guaranteed if the eigenvalue of A with the largest (neg-
ative) real part is sufficiently separated from the imag-
inary axis.61. In view of the solvability condition (B1),
this can be obtained by either a suitable scaling u 7→ ηu,
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N 7→ η−1N , B 7→ η−1B with η > 1 that leaves the equa-
tions of motion invariant (but, clearly, not the Grami-
ans), or by shifting A 7→ αI with α > 0 so as to further
stabilize the system matrix A.37,62

By reducing the solution of the generalized Lyapunov
equation to nit solutions of an ordinary Lyapunov equa-
tion, the numerical complexity of the iterative scheme
(B3) reduces to O(nitn

3). For even larger systems (n ≈
106), also the iterative scheme may be impractical so
that further pre-conditioning of the matrices A, B, N, C
becomes necessary, e.g., by applying Krylov subspace
methods35–37 and/or by exploiting the sparsity of the
matrices.

Finally, we want to remind that the advantage of us-
ing the balanced truncation procedure is based on the
fact that the most time-consuming step has to be car-
ried out only once while every single propagation of the
LvNE is using the truncated system. An alternative to
the solution of the Lyapunov equation is presented in the
following.

Appendix C: Relation to Principical Component Analysis
(PCA)

Here we want to show how balanced truncation is
linked to the more common PCA63–66, also referred to
as proper orthogonal decomposition (POD)67, which is
another frequently used technique for model reduction.
Moreover, as we shall demonstrate below, it offers a
promising alternative to the solution of the generalized
Lyapunov equations discussed in Appendix B. The bal-
ancing method admits an intriguing variational formula-
tion. Consider the stochastic differential equation

dx(t) = Ax(t)dt + (Nx(t) + B) dw(t) , x(0) = 0 (C1)

of Itô type, i. e. the stochastic analogue of the determin-
istic bilinear system

ẋ(t) = (A + Nu(t))x(t) + Bu(t) , x(0) = 0 .

Here w denotes the one-dimensional stan-
dard Brownian motion. Suppose that
{x(t0), x(t1), . . . , x(tM )} ⊂ Rn with 0 = t0 < t1 <
. . . < tM = T is a discrete-time trajectory of (C1). We
want to find the best approximating linear subspace
S ⊂ Rn of dimension k < n that minimizes the mean
squared distance

DM (Q) =
1

M

M
∑

i=0

‖x(ti) − Qx(ti)‖2
G (C2)

of the trajectory from S ⊂ Rn. Here ‖x‖G =
√

x∗Gx
is the Euclidean distance with respect to the (constant)
metric tensor G ∈ R

n×n and Q denotes a projection that
is orthogonal with respect to this inner product, i.e., for
which Q∗G(I − Q) = 0. Since moreover Q2 = Q for any
projection, we have ‖x − Qx‖2

G = ‖x‖2
G − ‖Qx‖2

G which

implies that minimizing DM is equivalent to maximizing
the “energy” of the projection,

EM (Q) =
1

M

M
∑

i=0

‖Qx(ti)‖2
G . (C3)

Now we show that the k-dimensional subspace S ⊂ Rn

that maximizes (C3) is spanned by the dominant k eigen-
vectors of the generalized eigenvalue problem

CMGv = λv , (C4)

where CM is the empirical covariance matrix

CM =
1

M

M
∑

i=0

x(ti)x(ti)
∗ (C5)

of the data. Without loss of generality we may con-
sider the case k = 1. In other words, we seek the best-
approximating one-dimensional subspace for our data.
To this end let w ∈ Rn denote the vector spanning this
subspace, i.e., S = span{w}. Assuming that w is normal-
ized, ‖w‖G = 1, the projection Q must be of the form

Qx = 〈w, x〉G w .

Inserting the last expression into EM , our least squares
problem turns out to be

max
w

1

M

M
∑

i=0

〈w, xi〉2G s.t. 〈w, w〉G = 1 . (C6)

Defining the functional

L(w) =
1

M

M
∑

i=0

〈w, xi〉2G − λ (〈w, w〉G − 1) (C7)

a necessary condition for (C6) is that δL(w) = 0 which
reads

1

M

M
∑

i=0

xi 〈w, xi〉G = λw .

The last equation can be recast as

(

1

M

M
∑

i=0

xix
∗
i

)

Gw = λw ,

which is nothing but the generalized eigenvalue problem
(C4). Iterating the argument with S = span{w1, w2}
where w1 = w and 〈w2, w〉G = 0 and so on and so forth
yields that the solution of the least squares problem (C2)
is obtained by projecting the data {x0, x1, . . . , xM} ⊂ Rn

onto the first k eigenvectors of

CMGw = λw
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with

CM =

(

1

M

M
∑

i=0

xix
∗
i

)

being the unbiased estimator of the covariance matrix of
the data.

Clearly, when CM = Wc is the controllability Gramian
and G = Wo is the observability Gramian, then (up to
scaling) the eigenvectors of (C4) essentially yield the bal-
ancing transformation (25).

We will now argue that CM for M → ∞, tM → ∞,
the asymptotic empirical covariance matrix, converges to
the controllability Gramian Wc. Thus, solving the least-
squares problem (C2) with respect to the observability
metric G = Wo is in indeed equivalent to balancing (un-
der the assumption that Wo is positive definite). To see
this, it is helpful to note that 〈x(t)〉 = 0 when x(0) = 0,
for the increments dw of the Brownian motion are cen-
tered Gaussian random variables. (We use the notation
〈·〉 to denote the expectation over the all realizations of
w.) Then, using Itô’s formula, it follows68

d (x(t)x(t)∗) = x(t)dx(t)∗ + dx(t)x(t)∗

+ (Nx(t) + B) (Nx(t) + B)
∗
dt .

We define C(t) = 〈x(t)x(t)∗〉 to be the covariance matrix
of x at time t. Inserting (C1) in the last equation, taking
the expectation, and interchanging the expectation with
the differentiation, it follows that S solves

Ċ(t) = AC(t) + C(t)A∗ + NC(t)N∗ + BB∗ . (C8)

The solvability condition (B1) for the generalized con-
trollability Gramian, i.e., for the matrices A, B, N guar-
antees that Ċ → 0 as t → ∞ which entails69

Wc = lim
t→∞

C(t) .

Therefore also CM → Wc as M → ∞ which clearly re-
mains true if N = 0, i.e., when the system is linear.41 The
observability Gramian can be computed analogously. To
sum up, we have proved that solving the least-squares
problem (C2) with G = Wo is equivalent to balanced
truncation when the deterministic control u in either (14)
or (26) is replaced by Gaussian white noise dw/dt. Hence,
the method of PCA lends itself as an alternative to the
(expensive) solution of the generalized Lyapunov equa-
tions (see Appendix B) for calculating the controllability
and observability Gramians41.
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25G. Füchsel, T. Klamroth, J. C. Tremblay, and P. Saalfrank,

Phys. Chem. Chem. Phys. 12, 14082 (2010)
26C. Mullis and R. Roberts, IEEE Trans. Circuits Syst. 23, 551

(1976)
27B. Moore, IEEE Trans. Automat. Control AC-26, 17 (1981)
28K. Glover, Int. J. Control 39, 1115 (1984)
29Y. Liu and B. Anderson, Int. J. Control 50, 1379 (1989)
30S. Gugercin and A. Antoulas, Int. J. Control 77, 748 (2004)
31T. Reis and E. Virnik, SIAM J. Control Optim. 48, 2600 (2009)
32C. Hartmann, V.-M. Vulcanov, and C. Schütte, Mult. Mod. Sim.
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