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Abstract

We consider Markov processes on large state spaces and want to find low-
dimensional structure-preserving approximations of the process in the sense
that the longest timescales of the dynamics of the original process are repro-
duced well. Recent years have seen the advance of so-called Markov state models
(MSM) for processes on very large state spaces exhibiting metastable dynam-
ics. It has been demonstrated that MSMs are especially useful for modelling
the interesting slow dynamics of biomolecules (cf. Noe et al, PNAS(106) 2009)
and materials. From the mathematical perspective, MSMs result from Galerkin
projection of the transfer operator underlying the original process onto some
low-dimensional subspace which leads to an approximation of the dominant
eigenvalues of the transfer operators and thus of the longest timescales of the
original dynamics. Until now, most articles on MSMs have been based on full
subdivisions of state space, i.e., Galerkin projections onto subspaces spanned
by indicator functions. We show how to generalize MSMs to alternative low-
dimensional subspaces with superior approximation properties, and how to anal-
yse the approximation quality (dominant eigenvalues, propagation of functions)
of the resulting MSMs. To this end, we give an overview of the construction
of MSMs, the associated stochastics and functional-analysis background, and
its algorithmic consequences. Furthermore, we illustrate the mathematical con-
struction with numerical examples.
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1. Introduction

We consider Markov processes on large state spaces that have a unique in-
variant measure. We are interested in the question of whether we can find a
low-dimensional approximation of the process in the sense that the longest
timescales of the dynamics of the original process are reproduced well and
the low-dimensional model inherits the essential structural properties of the
original process: the dynamics transports probability distribution (or densities,
respectively) into probability distributions (or densities), i.e., non-negativity
and normalization are preserved. This is an rather old problem that has been
answered in many different ways some belonging to classical themes in the lit-
erature [1, 2] that have been discussed in hundreds of articles, e.g., Markov
chain decomposition for nearly reducible chains (for example, by aggregation-
disaggregation techniques [3, 2, 4], stochastic complementation [5, 6], Per-
ron Cluster Cluster Analysis (PCCA) [7, 8]), or network partition problems
[9]. In these classical topics most contributions consider finite state spaces
and have been based on linear algebra and associated stochastic analysis
approaches.

Recent years have seen the advance of so-called Markov state models (MSM)
as low-dimensional models for processes on very large, mostly on continuous
state spaces exhibiting metastable dynamics [10, 7, 11, 12, 13]. Recently the
interest in MSMs has drastically increased since it could be demonstrated
that MSMs can be constructed even for very high dimensional systems [11]
and have been especially useful for modelling the interesting slow dynamics of
biomolecules [14, 15, 16, 17, 18, 19] and materials [20] (there under the name
“kinetic Monte Carlo”). Metastable dynamics means that one can subdivide
state space into metastable sets in which the system remains for long periods
of time before it exits quickly to another metastable set; here the words “long”
and “quickly” mainly state that the typical residence time has to be much
longer than the typical transition time so that the jump process between the
metastable sets is approximately Markovian. An MSM then just describes the
Markov process that jumps between the sets with the aggegrated statistics of
the original process.

The approximation quality of a MSM on large time scales has been rig-
orously studied for many different systems, e.g., for diffusion processes, or
Glauber dynamics and Ising models in the limit of vanishing smallness pa-
rameters (noise itensity, temperature) where the analysis can be based on large
deviation estimates and variational principles [21, 22] and/or potential theory
and capacities [23, 24]. In these cases the effective dynamics is governed by
some MSM with exponentially small transition probabilities and its states la-
bel the different attracting sets of the underlying Markov process. Other, quite
general, rigorous approaches to the construction of MSM involve the exploita-
tion of spectral properties, where the relation between dominant eigenvalues
and eigenvectors, exit times and rates, and metastable sets has been studied
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in detail, in some cases even without assumptions about smallness parameters
[25, 26, 12, 13, 7, 19].

In this contribution we will use the approach via Galerkin discretiza-
tion of the transfer operator of the original Markov process as developed in
[12, 11, 7, 10]; here “transfer operator” just refers to a generalization of the
transition matrix on finite discrete state spaces to general, e.g., continuous
state spaces. In this approach the low-dimensional approximation results from
orthogonal projection of the transfer operator onto some low-dimensional sub-
space. For so-called full partition MSM this subspace is spanned by indicator
functions of n sets that partition state space. Then, the Galerkin approach
has a direct stochastic interpretation since the resulting n-dimensional approx-
imation simply exhibits jumps between the sets with aggegrated statistics as
mentioned above.

However in many cases indicator ansatz spaces do not allow to achieve
good approximation quality for reasonably small numbers of sets [19]. There-
fore other ansatz spaces, e.g., fuzzy ansatz spaces, have also been discussed [27].
This obviously raises the questions of (a) how to find good ansatz functions,
(b) what may be the associated stochastic interpretation, and (c) what can
be said about the resulting approximation quality. Let D = span{q1, . . . , qn}
denote the low-dimensional ansatz space in state space S. We will be interested
in ansatz functions qi that are non-negative functions with

∑

x∈S qi(x) = 1
or

∫

S
qi(x)dx = 1 for any i so that qi(x) can be interpreted as the probabil-

ity (density) that state x belongs to MSM state i. We will herein discuss an
approach that allows to identify such ansatz functions and answers the above
three questions jointly for full partition and fuzzy ansatz functions. The key
idea will be that we consider n sets C1, . . . , Cn that (in general) do not parti-
tion the state space but are just the very cores of the different attracting sets of
the underlying Markov process. These core sets are then used as milestones in
the sense of the milestoning approach as introduced in [28]: The approximating
m-dimensional milestoning process is assigned to state i whenever the last core
entered by the original process has been Ci. We will see that we can relate
the milestoning process to transition path theory [29, 30, 31, 14] and use it
to construct good fuzzy ansatz functions. The resulting low-dimensional MSM
will prove to have very good approximation properties whenever the core sets
have been chosen appropriately.

The remainder of the paper is organized as follows. In Section 2 we introduce
the setting, define transfer operators, introduce full-partition MSM and relate
them to Galerkin projections. Then, in Sec. 3 we introduce the milestoning
process, relate it to transition path theory, and analyse its transition statistics.
Section 4 then discusses Galerkin projection of the transfer operator in general,
gives rigorous approximation results for long-term behavior and for eigenvalues
and related timescales, and then shows how to use the milestoning process to
compute the resulting MSMs efficiently. Finally, the results are illustrated with
numerical experiments in Section 5.
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2. Setting the Scene

We consider a Markov process (Xt)t∈T on a discrete state space S and its
associated family of transition matrices (Pt)t∈N with entries

pt(x, y) = P[Xt = y|X0 = x]. (1)

We restrict our considerations to discrete state spaces just for simplicity of pre-
sentation; all statements made in the following can be generalized to continuous
state spaces as well (see Remark 2.1):

Because (Xt) is a Markov process, the transition matrices have the semi-
group property

PtPs = Pt+s. (2)

If (Xt) is a time-discrete process, i.e. a Markov chain with T = N, we will only
consider P := P1, because (2) implies

Pt = P t. (3)

If (Xt) is time-continuous, it is usually referred to as a Markov jump process.
In this case, the dynamics of the process is given by its generator L with entries
l(x, y) such that

Pt = eLt. (4)

The generator L can also be defined explicitly

L = lim
t→∞

Pt − Id

t
, (5)

so that its entries form a rate matrix

l(x, y) ≥ 0, x 6= y, l(x, x) = −
∑

y 6=x

l(x, y). (6)

For the time-discrete case, we define an analog for the rate matrix by setting
Ld = P − Id which we call discrete generator.

In the following we always assume that (Xt) has a unique invariant measure
µ, that is given by

(Ptµ)(y) =
∑

x∈S

pt(x, y)µ(x) = µ(y). (7)

Now we introduce the family of transfer operators (Tt) that describes the prop-
agation of densities in L2

µ

(Ttf)(y)µ(y) =
∑

x

f(x)pt(x, y)µ(x) (8)
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and set T := T1 for discrete time.
In analogy, we define on L2

µ

(Lf)(y)µ(y) =
∑

x

l(x, y)f(x)µ(x) (9)

and for the discrete case
Ld = T − Id. (10)

In the following we will only consider the scalar product in L2
µ, the induced

2-norm and the 1-norm

〈f, g〉 =
∑

x

f(x)g(x)µ(x), ‖f‖2 = 〈f, f〉, ‖f‖1 =
∑

x

|f(x)|µ(x). (11)

In the theory of building standard Markov state models (MSM) one chooses a
partitioning of state space, i.e. sets A1, ..., An, such that

Ai ∩Aj = ∅, i 6= j,

n
⋃

i=1

Ai = S (12)

and a certain lag time τ > 0. Then one can compute the transition probabilities

P[Xτ ∈ Aj |X0 ∈ Ai]

and use the corresponding Markov chain on the index space {1, ..., n} to approx-
imate the original dynamics, switching between those sets. The approximation
quality of such MSMs is discussed in [19]. A key feature is, that the Markov
chain on the index space represents the dynamics of a projection of the transfer
operator, that is QTτQ, where Q is the orthogonal projection onto

D = span {1A1
, ...,1An

} .

As outlined above, we will not restrict our attention to full partitionings of
state space. However, we will return to the analysis of Galerkin projections of
transfer operators QTτQ, also to projections onto step-function spaces.

Remark 2.1. On continuous state space the transfer operator Tt : L
2
µ → L2

µ is
defined via
∫

C

Ttf(y)µ(dy) =

∫

S

P[Xt ∈ C|X0 = x]f(x)µ(dx), for all measurable C ⊂ S,

for the general case where the transition function p(t, x, C) = P[Xt ∈ C|X0 = x]
as well as the invariant measure may contain singular as well as absolutely
continuous parts. Then, all of the above and subsequent sums have to be replaced
by respective integrals. Further details, in particular regarding the respective
generators for, e.g., diffusion processes, can be found in [12].
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3. Milestoning and Transition Path Theory

We will now follow the approach first introduced in [32]. While the approach in
[32] is restricted to reversible processes with generators, we will herein present
the general framework for non-reversible processes.

3.1. Core sets and committors. Motivated by standard Markov state
model approach we define sets C1, ..., Cn ⊂ S, that we will call core sets, such
that

Ci ∩ Cj = ∅, i 6= j. (13)

That is, we relax the full partition constraint in (12). We denote the region that
is not assigned to any core set by

C = S \
n
⋃

k=1

Ck.

For analyzing the switching dynamics of the original process between the core
sets we introduce the milestoning process (X̂t)

X̂t = i ⇔ Xσ(t) ∈ Ci, with σ(t) = sup
s≤t

{

Xs ∈
n
⋃

k=1

Ck

}

, (14)

i.e. the milestoning process is in state i, if the original process came last from
core set Ci, cf. [28].

Now let q+i (x) denote the probability that the process (Xt) will visit the
core set Ci next, conditional on being in state x. q+i is usually referred to as
the forward committor and, as for example in [30], one can derive that q+i is
the solution of

(Lq+i )(x) = 0, ∀x ∈ C,

q+i (x) = 1, ∀x ∈ Ci,

q+i (x) = 0, ∀x ∈ Cj , j 6= i.

(15)

In a similar way it can be shown, that the backward committor
q−i (x) = P[X̂t = i|Xt = x], i.e. the probability that the process (Xt) came
last from core set Ci, conditional on being in state x, solves

(Lq−i )(x) = 0, ∀x ∈ C,

q−i (x) = 1, ∀x ∈ Ci,

q−i (x) = 0, ∀x ∈ Cj , j 6= i.

(16)

In the time-discrete case one has to replace L by the discrete generator Ld and
L by Ld. Moreover one can show, that (15) and (16) have a unique solution
under the assumption that the invariant measure is unique and not vanishing
on all core sets.
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Note that L or in time-discrete setting Ld generate the family of transition
matrices (P b

t ) with entries

pbt(y, x) =
µ(x)

µ(y)
pt(x, y), (17)

which describe the dynamics of the process (Xt) running backward in time.
For more details on the definition and properties of committors we refer to

[29, 30, 31, 14]; the discrete setting studied herein is worked out in [30].

3.2. Jump statistics of milestoning process.

Time-discrete case: Transition probabilities. When observing a time-
discrete process (Xn), we can define the transition matrix P̂ of the milestoning
process (X̂n), with entries p̂(i, j) = Pµ(X̂n+1 = j|X̂n = i). Since in general the
milestoning process will not be a Markov process, we cannot assume that it is
essentially characterized by its transition matrix P̂ ; this also holds true for the
generator L̂d whose definition therefore should be understood as a formal one
at this point. We will see that it is not the crucial point whether the dynamics
of the milestoning process is governed by P̂ or not.

Based on the introduced quantities we have

Pµ(X̂n = i,Xn = x) = Pµ(X̂n = i|Xn = x)Pµ(Xn = x) = q−i (x)µ(x).

Therefore, the total probability that the milestoning process is assigned to state
i, i.e. the invariant measure of the milestoning process is

µ̂(i) = Pµ(X̂n = i) =
∑

x

Pµ(X̂n = i,Xn = x) =
∑

x

q−i (x)µ(x) = ‖q−i ‖1.

The following theorem gives us the entries of the discrete generator.

Theorem 3.1. For a time-discrete process (Xn), the entries of the discrete
generator L̂d of the milestoning process (X̂n) are given with

l̂d(i, j) =
1

‖q−i ‖1
〈q+j ,Ldq

−
i 〉. (18)

Proof. Using that

Pµ(Xn+1 = y, X̂n = i,Xn = x)

= Pµ(Xn+1 = y|X̂n = i,Xn = x)Pµ(X̂n = i,Xn = x)

= p(x, y)q−i (x)µ(x),

we can calculate

Pµ(X̂n+1 = j,Xn+1 = y, X̂n = i,Xn = x) =

= Pµ(X̂n+1 = j|Xn+1 = y, X̂n = i,Xn = x)Pµ(Xn+1 = y, X̂n = i,Xn = x)

=

{

1Cj
(y)p(x, y)q−i (x)µ(x), if i 6= j

1Ci∪C(y)p(x, y)q
−
i (x)µ(x), if i = j.
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Therefore, the one-step transition probability p̂(i, j) from i to j 6= i is given by

p̂(i, j) = Pµ(X̂n+1 = j|X̂n = i) =
Pµ(X̂n+1 = j, X̂n = i)

Pµ(X̂n = i)

=
1

Pµ(X̂n = i)

∑

x,y

Pµ(X̂n+1 = j,Xn+1 = y, X̂n = i,Xn = x)

=
1

‖q−i ‖1

∑

x,y

1Cj
(y)p(x, y)q−i (x)µ(x) =

1

‖q−i ‖1
〈Tq−i ,1Cj

〉.

In addition, when i = j

p̂(i, i) = Pµ(X̂n+1 = i|X̂n = i) ==
Pµ(X̂n+1 = i, X̂n = i)

Pµ(X̂n = i)

=
1

Pµ(X̂n = i)

∑

x,y

Pµ(X̂n+1 = i,Xn+1 = y, X̂n = i,Xn = x)

=
1

‖q−i ‖1

∑

x,y

1Ci∪C(y)p(x, y)q
−
i (x)µ(x)

=
1

‖q−i ‖1
〈Tq−i ,1Ci∪C〉.

Using the properties of committors on core sets for i 6= j, we get that

〈Tq−i ,1Cj
〉 = 〈Tq−i , q

+
j 〉 − 〈Tq−i , q

+
j 1C〉 = 〈Tq−i , q

+
j 〉 − 〈q−i , q

+
j 1C〉

= 〈(T − Id)q−i , q
+
j 〉 = 〈Ldq

−
i , q

+
j 〉,

which yields

l̂d(i, j) = p̂(i, j) =
1

‖q−i ‖1
〈q+j ,Ldq

−
i 〉, i 6= j.

Similarly, for i = j, we get

〈Tq−i ,1Ci∪C〉 = 〈Tq−i ,1Ci
〉+ 〈Tq−i ,1C〉

= 〈Tq−i , q
+
i 〉 − 〈q−i , q

+
i 1C〉+ 〈q−i ,1C〉

= 〈(T − Id)q−i , q
+
i 〉+ ‖q−i ‖1 = 〈Ldq

−
i , q

+
i 〉+ ‖q−i ‖1,

and

l̂d(i, i) = p̂(i, j)− 1 =
1

‖q−i ‖1
(〈q+i ,Ldq

−
i 〉+ ‖q−i ‖1)− 1 =

1

‖q−i ‖1
〈q+i ,Ldq

−
i 〉.
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Time-continuous case: Transition rates. Now we will show that all the
above identities are still valid in a time-continuous case. For a given infinitely
long trajectory and i 6= j, we define a (i, j)-reactive trajectory as a piece of this
infinite long trajectory in a time interval Rm

ij such that for any t ∈ Rm
ij we have

that the next first entry into a core set is in Cj while the last first entry into
a core set happened in Ci. Then, at a certain time t we are on a (i, j)-reactive
trajectory if

t ∈ Rij = ∪∞
m=−∞Rm

ij .

The probability current from x to y generated by (i, j)-reactive trajectories is
then given by

fij(x, y) = lim
s→0+

1

s
Pµ

(

Xt = x,Xt+s = y, t ∈ Rij , t+ s ∈ Rij

)

,

In order to compute this quantities we define Bj =
⋃

k 6=j

Ck and denote the first

hitting time of a set A by τA. Then Py[τCj
< τBj

], is the probability to start at
y and enter the core set Cj next rather than any other core set. Therefore

Pµ

(

Xt = x,Xt+s = y, t ∈ Rij , t+ s ∈ Rij

)

=

= Pµ

(

Xt+s = y, t+ s ∈ Rij |Xt = x, t ∈ Rij

)

Pµ

(

Xt = x, t ∈ Rij

)

= Pµ

(

Xt+s = y|Xt = x
)

Py(τCj
< τBj

)Pµ

(

Xt = x, X̂t = i
)

= ps(x, y)q
+
j (y)q

−
i (x)µ(x).

Since i 6= j we have l(x, y) = lims→0+
1
sps(x, y) and thus

fij(x, y) = l(x, y)q+j (y)q
−
i (x)µ(x).

Now we can compute the rate kij of transitions from i to j, which is defined as
the average number of (i, j)-reactive trajectories per unit time. This quantity is
given by the total probability current through a dividing surface between Ci and
Cj , i.e. by the total probability current generated by (i, j)-reactive trajectories
through the boundary of Ci:

kij =
∑

x∈Ci,y∈S\Ci

fij(x, y)

=
∑

x∈Ci,y∈S\Ci

q+j (y)l(x, y)q
−
j (x)µ(x)

=
∑

x∈Ci,y∈S

q+j (y)l(x, y)q
−
i (x)µ(x),

where the last identity results from q+j (y) = 0 for all y ∈ Ci. Since additionally

q−i (x) = 1 for x ∈ Ci we find

kij = 〈L1Ci
, q+j 〉.



10 Natasa Djurdjevac, Marco Sarich, and Christof Schütte

Therefore, the off-diagonal entries l̂(i, j) of the generator for the milestoning
process X̂t result as

l̂(i, j) =
1

‖q−i ‖1
〈L1Ci

, q+j 〉, (19)

such that the diagonal entries have to be

l̂(i, i) = −
∑

j 6=i

1

‖q−i ‖1
〈L1Ci

, q+j 〉 = −
1

‖q−i ‖1

〈

L1Ci
,
∑

j 6=i

q+j

〉

= −
1

‖q−i ‖1
〈L1Ci

,1− q+i )〉 =
1

‖q−i ‖1
〈L1Ci

, q+i 〉.

Since 〈L1Ci
, q+i 〉 = 〈1Ci

, Lq+i 〉, we can use the same arguments as above to end
up with

〈L1Ci
, q+j 〉 = 〈Lq−i , q

+
j 〉,

so that we have just proved the following theorem

Theorem 3.2. For a time-continuous process (Xt), the entries of a generator
of the milestoning process (X̂t) are given with

l̂(i, j) =
1

‖q−i ‖1
〈Lq−i , q

+
j 〉. (20)

3.3. Invariant measure and self-adjointness. A Markov process
(Xt) is reversible if

pt(x, y)µ(x) = pt(y, x)µ(y). (21)

This condition is called the detailed balance condition. It obviously implies that

pbt(x, y) = pt(x, y), (22)

so the process running backward in time is equivalent to the process running
forward in time.
Moreover, (21) implies

〈Tf, g〉 =
∑

x,y

p(x, y)f(x)g(y)µ(x)

(21)
=

∑

x,y

p(y, x)f(x)g(y)µ(y) = 〈f, Tg〉.
(23)

This means that T is a self-adjoint operator. The same argument shows that
also L is self-adjoint in the reversible case. Further, (22), (15) and (16) yield
the identity of forward and backward committors, i.e.

q−i = q+i ∀i = 1, ..., n. (24)

Hence, in the following we will use the shorthand notation qi := q−i = q+i .
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First we note some properties of the milestoning generator L̂.

Lemma 3.3. Let (Xt) be a reversible Markov process with unique invariant
measure µ. Then the milestoning generator L̂ has the invariant measure

µ̂(i) =
∑

x

qi(x)µ(x)

and the according operator in L2(µ̂)

(L̂v)(j)µ̂(j) =
n
∑

i=1

l̂(i, j)v(i)µ̂(i)

is self-adjoint. Therefore it also defines a reversible jump process.

Proof. We have
n
∑

i=1

l̂(i, j)µ̂(i) =

n
∑

i=1

〈qi,Lqj〉

= 〈1,Lqj〉 = 0.

Moreover,

l̂(i, j)µ̂(i) = 〈qi,Lqj〉

= 〈Lqi, qj〉 = l̂(j, i)µ̂(j),

which implies reversibility and self-adjointness.

4. Galerkin Approximation

We will now discuss Galerkin projections of transfer operators. For the sake of
simplicity we will restrict our considerations to reversible Markov processes. Be-
fore we enter into the details of Galerkin projections we will shortly address the
properties of the milestoning process induced by reversible Markov processes.

4.1. Galerkin projection and eigenvalues. In this section we will
only consider discrete processes (Xn). If (Xt) is time-continuous with generator
L, we will fix a lag time τ > 0 and just consider the snapshot dynamics of (Xnτ )
with the semi-group of transfer operators (Tn

τ ). In this case the eigenvalues of
the transfer operator Tτ will be given by

λi,τ = eΛiτ , (25)

where Λi < 0 is an eigenvalue of the generator L. Now we want to approxi-
mate the dynamics of (Xn) by its projection to some low-dimensional subspace
D in terms of density propagation. Therefore we will denote the orthogonal
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projection onto D by Q. Assume that the process (Xn) is initially distributed
according to

ρ0(x)µ(x) = P[X0 = x], (26)

where ρ0(x) is a distribution with respect to µ. Then at any time n the distri-
bution of Xn is given by

ρn(y)µ(y) =
∑

x

pn(x, y)ρ0(x)µ(x) (27)

or in matrix notation
ρn = Tnρ0. (28)

Next, consider
ρ̃n = Qρn. (29)

If we assume that ρ0 = Qρ0 ∈ D is a consistent initial distribution, i.e. it
belongs to the subspace D ⊂ S, we find

ρ̃n = QTnQρ0. (30)

So the operator QTnQ describes the propagation of the initial density ρ0 ∈ D
to ρ̃n = Qρn, but we do not have a semi-group property anymore, i.e.

QTnQ 6= (QTQ)n. (31)

Subsequently we will consider subspaces D ⊂ L2
µ such that 1 ∈ D, i.e., the

invariant measure with density 1 in L2
µ is still contained in D. In this case we

find in [19] an error bound for the approximation error from (31) ‖QTnQ −
(QTQ)n‖. We now cite Theorem 3.3 from section 3.4 of [19].

Theorem 4.1. Let T = Tτ be a transfer operator of a time-continuous re-
versible Markov process with generator L for lag time τ > 0, or the transfer
operator of some time-discrete reversible process. Let 1 = λ0 > λ1 > ... > λm−1

be the m dominant eigenvalues of T , i.e. for every other eigenvalue λ it holds
λ ≤ r ≤ λm−1 such that r is the upper bound on the remaining spectrum. Fur-
thermore, set η = r/λ1 < 1. Whenever we have a generator, its eigenvalues Λi

then satisfy: Λ ∈ spec(L),Λ ≤ Λm−1 ⇒ Λ ≤ R < 0 with r = exp(τR). Then,
η(τ) = exp(−τ∆) < 1 with

∆ = Λ1 −R > 0, (32)

as a τ -independent measure for the spread in the spectrum between the first non-
trivial eigenvalue and the part of the spectrum that is not taken into account.
Let u0, u1, ..., um−1 be the corresponding normalized eigenvectors. Let Q denote
the projection onto some subspace D ⊂ S with 1 ∈ D and define

δ := max
j=1,...,m−1

‖Q⊥uj‖ (33)
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where Q⊥ = Id−Q. Finally, define the projected transfer operator P = QTQ.
Then the error E(k) satisfies ‖QT kQ − P k‖1 ≤ E(k) = ‖QT kQ − P k‖ and is
bounded from above by

E(k) ≤ min[2 ; C(δ, η(τ), k)] · λk
1 , (34)

with a leading constant of following form

C(δ, η, k) = ((m− 1)δ + η)[Csets(δ, k) + Cspec(η, k)] (35)

Csets(δ, k) = (m− 1)1/2(k − 1) δ (36)

Cspec(η, k) =
η

1− η
(1− ηk−1). (37)

The bound of Theorem 4.1 consists of two prefactors. Cspec depends on the
lag time and the gap ∆ in the spectrum of the generator. It will go to zero, if we
increase the lag time τ , or, alternatively, the number m of eigenvectors that we
have to approximate. The approximation or projection error δ of eigenvectors
that we take into account governs the second part of the bound Csets. More
precisely, for fixed k, i.e., time span kτ , the prefactor Csets will be small, if the
maximal projection error δ is small.

The next question is, how well the eigenvalues of the projected operator
approximate the original eigenvalues of T . Because of self-adjointness of the
transfer operator we can use the results from [33] to show

Theorem 4.2. Let 1 = λ0 > λ1 > ... > λm−1 be the m dominant eigenvalues
of T , i.e. for every other eigenvalue λ it holds λ < λm−1. Let u0, u1, ..., um−1

be the corresponding normalized eigenvectors, D ⊂ S a subspace with

1 ∈ D dim(D) =: n ≥ m (38)

and Q the orthogonal projection onto D.
Moreover, let 1 = λ̂0 > λ̂1 > ... > λ̂m−1 be the dominating eigenvalues of the
projected operator QTQ. Then

E(δ) = max
i=1,...,m−1

|λi − λ̂i| ≤ λ1(m− 1)δ2, (39)

where
δ = max

i=1,...,m−1
‖Q⊥ui‖

is the maximal projection error of the eigenvectors to the space D.

For the proof we refer to [34].

Remark 4.1. Inserting (25) into (39), we get the lag time depended eigenvalue
estimate

E(τ, δ) = max
i=1,...,m−1

|λi − λ̂i| ≤ eΛ1τ (m− 1)δ2, (40)
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where (λi) are the dominant eigenvalues of the transfer operator Tτ and (λ̂i)
the dominant eigenvalues of the projection QTτQ.
Since Λ1 < 0,

E(τ, δ) → 0, for τ → ∞. (41)

Furthermore, for the relative eigenvalue error we have, at least for the first
non-trivial eigenvalue

|λ1 − λ̂1|

|λ1|
≤ (m− 1)δ2, (42)

from which we see that by decreasing the maximal projection error we will have
control even over the relative eigenvalue error.

4.2. Estimating the eigenvalues from trajectories. In this sec-
tion we choose the special subspace D that is spanned by the committors asso-
ciated with some core sets C1 . . . , Cn, i.e. D = span{q1, ..., qn}. Because 1 ∈ D,
Theorem 4.1 and 4.2 apply. Moreover we will see that this subspace allows us
to compute the projected operator QTQ, its eigenvalues and all other related
quantities from a trajectory. The first step is

Theorem 4.3. Let D be a the subspace spanned by the committors

D = span{q1, ..., qn} (43)

and let λ̂ be an eigenvalue of the operator QTQ. Then λ̂ solves the generalized
eigenvalue problem

T̂ r = λ̂Mr, (44)

with

T̂ij =
〈qi, T qj〉

µ̂(i)
, (45)

µ̂(i) = ‖qi‖, and the mass matrix

Mij =
〈qi, qj〉

µ̂(i)
. (46)

Proof. Let D be as in (43). Then the orthogonal projection Q can be written
as

(Qv)(y) =

n
∑

i,j=1

S−1
ij 〈v, qj〉qi, (47)

with Sij = 〈qi, qj〉.
Since

T̂ij =
〈qi, T qj〉

µ̂(i)
=

〈qi, (Id+ Ld)qj〉

µ̂(i)
= (L̂d)ij +Mij , (48)

(44) is equivalent to

L̂dr = (λ̂− 1)Mr. (49)
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Let φ be an eigenvector of QTQ with respect to λ̂, i.e.

QTQφ = λ̂φ ⇔ Q(Ld + Id)Qφ = λ̂φ

⇔ QLdQφ = (λ̂− 1)φ.

This is equivalent to

〈QLdQφ, qi〉 = (λ̂− 1)〈φ, qi〉 ∀i = 1, ..., n

⇔ 〈LdQφ, qi〉 = (λ̂− 1)〈φ, qi〉 ∀i = 1, ..., n

⇔
n
∑

j,k=1

S−1
jk 〈φ, qk〉〈Ldqj , qi〉 = (λ̂− 1)〈φ, qi〉 ∀i = 1, ..., n.

(50)

Introducing

rj =

n
∑

k=1

S−1
jk 〈φ, qk〉

(50) can be written as

n
∑

j=1

rj〈Ldqj , qi〉 = (λ̂−1)〈φ, qi〉 = (λ̂−1)
n
∑

j,k=1

SijS
−1
jk 〈φ, qk〉 = (λ̂−1)

n
∑

j=1

Sijrj .

(51)

Deviding both sides by µ̂(i) completes the proof.

Theorem 4.3 states, that we can compute the eigenvalues of the projected
transfer operator QTQ by solving the generalized eigenvalue problem (44). In
general, Theorem 4.3 does not depend on the special choice of D being the
subspace spanned by the committors. The advantage is, that for D as in (43)

the entries l̂d(i, j) and Mij have a stochastic interpretation: We have already

seen that L̂d = P̂ − Id with

p̂(i, j) = P[X̂n+1 = j|X̂n = i].

As well-known, we can approximate the transition probabilities p̂(i, j) of the
process (X̂n) from a (long enough) realization via the maximum likelihood
estimator p̂∗N with entries

p̂∗N (i, j) =
nij(N)

Ni(N)
,

where nij(N) is the number of transition from i to j observed in the finite

trajectory X̂n, n = 0, . . . , N , while Ni(N) =
∑

j nij(N) is the total number of
visits to state i in the trajectory. Since we are dealing with ergodic processes, we
know that P̂ ∗

N → P̂ in the limit of arbitrarily long trajectories, i.e., for N → ∞
(law of large numbers).
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Similarly, we can approximate the mass matrix M . We find

Lemma 4.4. Let i, j be arbitrary and, as above, let Bj =
⋃

k 6=j

Ck and let τA

denote the first hitting time into set A. Then Mij can be written as

Mij = P[Xn ∈ C, τCj
< τBj

|X̂n = i],

that is, the probability to be outside of the core sets and enter the core set Cj

next rather than any other core set, under the condition, that the last core set
hit was Ci.

Thus, the entry Mij of the mass matrix includes only those parts of (i, j)-
reactive trajectories that are outside of core i and go to core j next, that is, in
general, a typical (i, j) reactive trajectory will be much longer than those parts
of it which enter into the mass matrix.

Proof. By definition

P[Xn ∈ C, τCj
< τBj

|X̂n = i] =
P[X̂n = i,Xn ∈ C, τCj

< τBj
]

P[X̂n = i]

=
∑

x∈C

P[X̂n = i,Xn = x]Px[τCj
< τBj

]
1

µ̂(i)

=
∑

x∈C

P[X̂n = i|Xn = x]P[Xn = x]Px[τCj
< τBj

]
1

µ̂(i)

=
∑

x∈C

qi(x)µ(x)qj(x)
1

µ̂(i)
=

〈qi, qj〉

µ̂(i)
= Mij .

Lemma 4.4 implies that we can estimate the mass matrix M by

M∗
N (i, j) =

rij(N)

Ri(N)
, i 6= j

where rij(N) is the total number of time steps during which the finite trajectory

X̂n, n = 0, . . . , N is reactive from i to j, i.e. the number of time steps the process
spend in C coming from Ci and going to Cj , while Ri(N) is the total number

of time steps during which the finite trajectory resides in i, i.e., X̂n = i.
So we can estimate P̂ and M from a realization, i.e. a trajectory of the

process (Xn), compute T̂ by

T̂
(48)
= Ld +M = P̂ − Id+M (52)

and solve the generalized eigenvalue problem in order to estimate the eigenval-
ues of the projected transfer operator QTQ.
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Special case: full partition. When the core sets are chosen such that they
form a full partition of state space (12), the definition of the committors directly
yield

qi(x) = 1Ci
(x). (53)

That is, the committors are given by the characteristic functions on the coresets.
This is exactly the standard MSM setting, such that the operator QTQ has a
special interpretation, because

p̂(i, j) = P[Xn ∈ Aj |X0 ∈ Ai] (54)

is a matrix representation of the operator. Because of orthogonality of the
stepfunctions we have

Mij =
〈qi, qj〉

µ̂(i)
=

{

1, i = j

0, i 6= j
. (55)

Now Theorem 4.2 states, that the eigenvalues of the matrix (54) are close to
the eigenvalues of the transfer operator T , if the corresponding eigenvectors are
well approximated by step-functions on the partitioning sets.

5. Illustrative Examples

5.1. Double well potential with diffusive transition region.
We consider the diffusion process

γdXt = −∇V (Xt)dt+
√

2β−1γdBt (56)

with Bt denoting Brownian motion in a potential V with two wells that are
connected by an extended transition region. The potential V and its unique
invariant measure µ are shown in Figure 1, we set the noise intensity σ =
√

2β−1γ = 0.8 with γ = 1. We observe that the transition region between
the two main wells contains four smaller wells that will have their own, less
pronounced metastability each. The minima in the two main wells are located
at x0 = −1 and x1 = 6.62, the respective saddle points that separate the
main wells from the rest of the landscape at x±

0 = x0 ± 1, and x±
1 = x1 ± 1,

respectively.
In order to find the transfer operator for this process we start with the

Fokker-Planck equation ∂tu = Lu, u(t = 0, x) = f(x) that governs the propa-
gation of a function f by the diffusion process. In the weighted Hilbert space L2

µ

the generator in the Fokker-Planck equation reads L = −∇V (x) ·∇x +β−1∆x,
where ∇x denotes the first derivative wrt. x and ∆x the associated Laplacian.
Thus, the transfer operator reads

Tt = exp(tL) (57)
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Figure 1. The potential V with extended transition region and the associated invariant
measure for σ = 0.8.

This operator is self-adjoint since the diffusion process is reversible. The domi-
nant eigenvalues of L take the following values:

Λ0 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7

+0.0000 −0.0115 −0.0784 −0.2347 −0.4640 −0.7017 −2.9652 −3.2861

The main metastability has a corresponding implied timescale (ITS) |1/Λ1| ≈
88 related to the transitions from one of the main wells to the other. Four other,
minor metastable timescales related to the interwell switches between the main
and the four additional small wells exist in addition. The eigenvalues have
been computed by solving the eigenvalue problem for the partial differential
operator L by an adaptive finite element (FE) discretization with an accuracy
requirement of tol = 1e− 8.

5.2. Two core sets.

In the following paragraphs we will compare the eigenvalues and ITS of the
original process to the ones resulting from different MSM. More precisely, we
first choose a lagtime τ and consider the transfer operator Tτ . Because of (25)
we can compute the implied timescale

|1/Λ1| = −
τ

ln(λ1,τ )
, (58)

where λ1,τ < 1 is the largest non-trivial eigenvalue of Tτ .
Next we choose two core sets of the form Cs

0 = (−∞, x0+s] and Cs
1 = [x1−s,∞)

for some parameter s. Then we compare the ITS from (58) to the one, which

corresponds to the largest non-trivial eigenvalue λ̂i,τ of the projected operator
QTτQ

|1/Λ̂1| = −
τ

ln(λ̂1,τ )
. (59)

Since the process under investigation is just one-dimensional, we can compute
the committor functions from the already mentioned FE discretization of L
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and just compute very accurate FE approximations of T̂τ and M , which allows
to compute the eigenvalues of QTτQ as in Theorem 4.3. Figure 2 shows the
dependence of the non-trivial eigenvalue on the core set size s for different
values of the lagtime τ .
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Figure 2. Non-trivial eigenvalues λs
1,τ < 1 of the generalized eigenvalue problem T̂τr =

λ̂Mr versus cores set size parameter s for lagtimes τ = 1 (left) and τ = 5 (right) in
comparison to the exact first non-trivial eigenvalue exp(τΛ1).

We observe that the for small enough core sets the approximation of the
exact first non-trivial eigenvalue of Tτ , exp(τΛ1), is good, while for too large
core sets the approximation quality decreases. This can be understood since
for s > 1 the core sets contain parts of the transition regions of the process
where recrossing events lead to an overestimation of the transition probability
between the cores. Moreover, Theorem 4.2 connected this error to the projec-
tion error ‖Q⊥u1‖ and Figure 3 shows that this error behaves exactly like the
approximation quality of the eigenvalues.
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Figure 3. Projection error ‖Q⊥u1‖ versus size of core sets, i.e., the parameter s.

Let us finally compare the effect of our choice of (two) core sets on the ap-
proximation error of dominant eigenvalues with the statements of Theorem 4.2
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(with m = 2). To this end we will study the relative error

Erel(τ, δ) =
|λ1,τ − λ̂1,τ |

λ1,τ
(60)

for different core set sizes s, see Figure 4. We observe that for small lagtimes
the real relative error is significantly smaller than the upper bound (here given
by the τ -independent square of the projection error δ = ‖Q⊥u1‖) but for larger
lagtimes the upper bound and the real error are very close. As to be expected
from Figure 3 the error for good core sets (s = 0.5) is two orders of magnitude
smaller than the “not so good” core sets for s = 2.
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Figure 4. Relative error Erel(τ, s) versus lagtime τ (dashed red line) compared to the
upper bound δ2 given by Theorem 4.2 (green solid line), for s = 0.5 (left hand panel)
and s = 2 (right).

5.3. Estimation from data.
The computation of the committor functions will only be possible via FE dis-
cretization of the generator, which is infeasible in higher dimensions. This mo-
tivates to follow the instructions of Sec. 4.2 to estimate the eigenvalues from a
trajectory.
We study the milestoning process (X̂nτ ) on state space {0, 1} induced by the
time-discrete process given by Tτ and the cores sets Cs

i , i = 0, 1.
Therefore we compute a very long trajectory x(t), t ∈ [0, tmax] of the diffu-

sion process (for example based on Euler-Maruyama discretization of the SDE
(56)). From this, we get discrete trajectories of the process Xnτ and of the
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milestoning process X̂nτ , n = 0, . . . , Nτ with Nτ = btmax/τc. This was done
based on a trajectory x(t) in the time interval [0, tmax] with tmax = 50000.
Then we can estimate T̂ and M by T̂ ∗

Nτ
and M∗

Nτ
respectively as described in

Sec. 4.2. The resulting non-trivial eigenvalues λ̂∗
1 of the generlized eigenvalues

problem T̂ ∗
Nτ

r = λ̂∗M∗
Nτ

r are compared to the ones of T̂ r = λ̂Mr and to the
exact first non-trivial eigenvalue λ1 = exp(τΛ1) in Figure 5.
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Figure 5. Comparison of the non-trivial eigenvalues λ∗

1 of the trajectory-based generl-
ized eigenvalues problem T̂ ∗

Nτ
r = λ̂M∗

Nτ
r (blue, dashed, stars), the ones of T̂ r = λ̂Mr

(red, solid line) and the exact first non-trivial eigenvalue λ1 = exp(τΛ1) (green, flat
line) in dependence on the core size parameter s for different lagtime τ = 1 (left) and
τ = 5 (right).

We observe that the trajectory-based eigenvalues are overestimating the
“exact” eigenvalues of the generalized eigenvalue problem, and that the ap-
proximation is getting worse for small values of s, especially for larger lagtimes.
This is not surprising since for s < 0 and sparse undersampling of the trajectory
for large lagtimes, we will miss events in which the process stays close to the
minima xi without entering the cores for some time which is not long compared
to the lagtime.

Despite the good approximation quality of the trajectory-based generalized
eigenvalues we should not forget that they are subject to an unknown statistical
sampling error resulting from the finiteness of the trajectory. Assuming that the
process (X̂n) is Markov and under additional assumptions on the prior [35, 36]
one can show that the probability (density) that the given observation X̂nτ ,
n = 0, . . . , Nτ results from the 2 × 2 stochastic transition matrix P = pij is
given by

P(P |X̂nτ ) = pn12

12 (1− p12)
n11pn21

21 (1− p21)
n22 ,
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with nij = nij(Nτ ) as defined in Sec.4.2. We have

P̂ ∗
Nτ

= argmaxP stochastic matrix P(P |X̂nτ ),

and for Nτ → ∞ this distribution is singularly supported in the “exact” tran-
sition matrix P̂τ of the milestoning process.

Now, let ν = ν(P ) denote an arbitrary observable that is defined in terms
of the transition matrix P , e.g., the first non-trivial eigenvalue ν(P ) = λ1(P )
or the corresponding implied timescale ITS(P ) = −τ/ ln(λ1(P )). Then the pdf
P(P |X̂nτ ) on the transition matrix space and the corresponding pdf on the
mass matrix space induce a pdf P(ν|X̂nτ ) on the state space of the observable.
From this pdf we can compute a posteriori error indicators for the observable,
e.g., the confidence intervals Iα(Nτ ) defined via

P

(

ν ∈ Iα(Nτ )|X̂nτ

)

≥ α.

In Figure 6, these confidence intervals are shown for the ITS for different values
of s and τ = 1.
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Figure 6. Implied timescale ITS and associated confidence interval Iα for α = 0.9 of
the trajectory-based generalized eigenvalue problem (blue, solid) in comparison to the
ITS of “exact” transition matrices P̂τ and to the ITS of the original process versus
the cores size parameter s. Lagtime τ = 1.

5.4. Full partition of state space. Let us fix m = 2 and observe how
the relative eigenvalue error Erel as defined in (60) above behaves in this case,
especially how does it change for different full subdivisions of the state space
and different lag times. From Theorem 4.2 we know that, as above, the bound
on the relative eigenvalue error is given by the square of the projection error
δ. First we choose n = 2 and the subdivision A1 = (−∞, x] and A2 = (x,∞).
Figures 7 and 8 show the bound δ2 compared to the relative error Erel(τ, δ),
for two different subdivisions, i.e., different values of x. We can see that the
error converges to δ2 when increasing τ . Also, a better choice of the subdivision
results not only in a smaller relative error, but in its faster convergence to the
bound.
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Figure 7. Relative error for eigenvalues and bound for τ = 0.5, n = 2 and x = 2.75
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Figure 8. Relative error for eigenvalues and bound for τ = 0.5, n = 2 and x = −0.35

Now we consider the full partition of a state space into n = 6 sets. The sets
are chosen in such a way that every well belongs to one set. This choice of sets
results in a smaller bound and faster convergence of the relative error to this
bound, which can be seen in Figure 9.
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Figure 9. Relative error for eigenvalues and bound for τ = 0.5 and n = 6

Let us finally compare the results for full subdivisions to the approxima-
tion via two core sets. We observe the following: Even the optimal full sub-
division into n = 2 sets cannot compete with the approximation quality of
the approximation based on two “reasonable/good” core sets. Good core sets
result in an approximation error that is even better than the one for the opti-
mal full subdivision into n = 6 sets which already resolves the well structure
of the energy landscape. Thus, MSMs based on fuzzy ansatz spaces resulting
from appropriate core sets and associated committor ansatz functions seem
to lead to superior approximation quality than comparable full subdivision
MSMs.

Conclusion

We presented a quite general approach to Markov State Models (MSM) via
Galerkin projections to low-dimensional subspaces. We particularly considered
the subspace spanned by the committor functions q1, . . . , qn defined by some
core sets via the milestoning process. Our interpretation suggests that the
method will work well if the space spanned by the eigenvectors corresponding to
the dominant eigenvalues of the transfer operator Tt (or low-lying eigenvalues
the respective generator L) is well approximated by the subspace spanned by
the committor functions. In this case, the Galerkin projection QTQ of the trans-
fer operator T = Tτ associated with the lagtime chosen will approximate well
the dominant eigenvalues of T , so that the long-time behavior will be captured,
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see Theorem 4.2 as well as the propagation of functions by the dynamics, see
Theorem 4.1.

Technically, these theorems do not require that the transfer operator of
the original dynamics T possesses a spectral gap, i.e., a group of dominant
eigenvalues which are separated from all the other ones by significant interval
without eigenvalues. This is in partial contrast to the usual belief: The existence
of a cluster of eigenvalues close to the largest eigenvalue λ = 1 and a spectral
gap is often thought of as the fundamental condition under which MSMs can
have good approximation quality.

Theorems 4.2 and 4.1 need a cluster of eigenvalues close to λ = 1 since
this indicates that slow processes are taking place in the original state-space.
These slow processes are what the generalized eigenvalue problem is meant to
capture, in the sense that the generalized eigenvalues should be close to the
small eigenvalues of the original process.

However, we do not need the existence of a spectral gap, at least not explic-
itly. What we need instead is that our committor functions are good approxi-
mations of the dominant eigenvectors, i.e., that the projection error δ is small.
Since the committors depend on the choice of the core sets, smallness of the
projection error can only be achieved for appropriately chosen core sets.

What our approximation theorems do not tell, however, is how to choose
the core sets, because in in general we will not be able to compute the dominant
eigenvectors and committor functions that would be needed to identify the sets
based on the above insight. If we assume that the original process has a cluster
of eigenvalues eigenvalues close to 1 and a spectral gap, then general results
guarantee the existence of a good collection of good core sets. What these sets
are, however, is not given explicitly, except for the rather vague property that
the process should oscillate inside and around each for a long time before visiting
another and transitions to other core sets are significantly faster. How to use
this criterion in a constructive way and whether a spectral gap is a necessary
requirement here is the subject of current research, so we shall not dwell on
these issues further here.
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[19] M. Sarich, F. Noé, and Ch. Schuette. On the approximation quality of markov
state models. to appear in Multiscale Modeling and Simulation, 2010.

[20] A. Voter. Introduction to the kinetic Monte Carlo method. In Radiation Effects
in Solids. Springer, NATO Publishing Unit, Dordrecht, The Netherlands, 2005.

[21] M. Freidlin and A. D. Wentzell. Random perturbations of dynamical systems.
Springer, New York, 1998.



On Markov State Models for Metastable Processes 27

[22] Weinan E and E. Vanden Eijnden. Metastability, conformation dynamics, and
transition pathways in complex systems. In Multiscale Modelling and Simulation,
pages 38–65. Springer, 2004.

[23] A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein. Metastability in reversible
diffusion processes. I. sharp asymptotics for capacities and exit times. J. Eur.
Math. Soc. (JEMS), 6:399–424, 2004.

[24] A. Bovier, V. Gayrard, and M. Klein. Metastability in reversible diffusion pro-
cesses. II. precise asymptotics for small eigenvalues. J. Eur. Math. Soc. (JEMS),
7:69–99, 2005.

[25] W. Huisinga, S. Meyn, and Ch. Schuette. Phase transitions and metastability
for Markovian and molecular systems. Ann. Appl. Probab., 14:419–58, 2004.

[26] E. B. Davies. Spectral properties of metastable markov semigroups. J. Funct.
Anal., 52:315–329, 1983.

[27] M. Weber, S. Kube, L. Walter, and P. Deuflhard. Stable computation of probabil-
ity densities for metastable dynamical systems. Mult. Mod. Sim., 6(2):396–416,
2007.

[28] Anton K. Faradjian and Ron Elber. Computing time scales from reaction coor-
dinates by milestoning. J. Chem. Phys., 120:10880–10889, 2004.

[29] Weinan E and E. Vanden-Eijnden. Towards a theory of transition paths. Journal
of statistical physics, 123:503–523, 2006.

[30] P. Metzner, Ch. Schuette, and E. Vanden-Eijnden. Transition path theory for
markov jump processes. Multiscale Modeling and Simulation, 7(3):1192–1219,
2009.

[31] P. Metzner, Ch. Schuette, and E. Vanden-Eijnden. Illustration of transition path
theory on a collection of simple examples. J. Chem. Phys., 125, 2006.
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