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A strongly tilted, nearly axisymmetric vortex in dry air with asymmetric diabatic heat-

ing is analyzed here by matched asymptotic expansions. The vortex is in gradient wind

balance, with vortex Rossby numbers of order unity, and embedded in a quasi-geostrophic

(QG) background wind with weak vertical shear. With wind speeds of 60 − 120 km/h,

such vortices correspond to tropical storms or nascent hurricanes according to the Saffir-

Simpson scale. For asymmetric heating, nonlinear coupling of the evolution equations

for the vortex’ tilt, its core structure, and its influence on the QG background is found.

The theory compares well with the established linear theory of precessing quasi-modes of

atmospheric vortices, and it corroborates the relationship between vortex tilt and asym-

metric potential temperature and vertical velocity patterns as found by Jones (Q.J. Roy.

Met. Soc., 121, 1995) and Frank and Ritchie (Mon. Wea. Rev., 127, 1999) in simula-

tions of adiabatic tropical cyclones. A relation between the present theory and the local

induction approximation for three dimensional slender vortex filaments is established.
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1. Introduction

1.1. Related earlier work

There is a large body of literature, starting with Stewart (1943); Morikawa (1960) (see

also Egger 1992; Reznik 1992; Reznik & Kizner 2007a,b, and references therein) that

investigates the dynamics of concentrated atmospheric vortices in the limit of pointwise

vorticity singularities in two-dimensional or multilayer shallow flow models. The related

theories focus on the vortex motion but do not investigate the vortex core structure.

At the opposite end, the core structure of such vortices is often modelled using the

Eliassen’s balanced vortex model and extensions thereof (see, e.g., Eliassen 1952; Charney

& Eliassen 1964; Schubert & Hack 1983; Emanuel 1991; Wirth & Dunkerton 2009, and

references therein), which describes the evolution of an axisymmetric, upright vortex in

gradient wind balance, i.e., in a regime where the radial pressure gradient is balanced

to leading order by the centripetal and Coriolis accelerations. The developed theories

provide no information regarding the vortex motion.

Asymptotic theories that resolve the vortex core structure and describe its coupling

to the environmental flow and/or the motion of its centre were developed by Ling &

Ting (1988) in the limit of geostrophic balance, by Smith & Ulrich (1990); Smith (1991)

for two-dimensional flow on a β-plane, and by Reznik & Grimshaw (2001); McWilliams

et al. (2003) in the context of shallow water theory. By restricting to two-dimensional

shallow fluid models, these theories cannot address the vertical structure of the flow and,

especially, a possible tilt of the vortex axis.

Shapiro & Montgomery (1993) develop a linearized asymptotic theory that is close,

in terms of its principal aim, to the present work. It describes the evolution of three-

dimensional balanced perturbations on an upright, axisymmetric vortex in gradient wind

balance. It includes circumferential Fourier mode one perturbations that can be inter-
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preted as a weak vortex tilt with horizontal displacements small compared with the

vortex core radius. The authors also suggest extensions of their linearized perturbation

analysis to include weakly nonlinear effects.

The dynamics of vortex tilt, and especially the resilience of a vortex to background ver-

tical shear has been analysed by Reasor & Montgomery (2001); Reasor et al. (2004) both

through theoretical analyses and numerical simulations based on the primitive flow equa-

tions. Their linear theory of vortex Rossby waves (VRWs) (see Montgomery & Kallen-

bach 1997) reveals a damping mechanism for the vortex tilt dynamics and allows them

to explain the stabilization of an atmospheric vortex against vertical shear of the en-

vironmental flow. At the same time, these developments reveal weakly damped linear

“quasi-modes” which, in a suitable regime of vortex Rossby numbers, can be interpreted

as small-amplitude precessions of the entire vortex about its unperturbed vertical axis.

Surprisingly, the theory – although based on linearizations – yields very good comparison

with fully nonlinear simulations when relative deviations from the unperturbed state are

of order unity, i.e., when the horizontal displacements of the vortex core are comparable

to its characteristic diameter. In a first application the present analysis corroborates the

existence of such large displacement precessions within the gradient wind regime and

yields agreement of the predicted precession frequencies for vortex Rossby numbers of

order unity. See also related numerical simulations by Jones (1995, 2004).

1.2. Summary of the present approach and main results

In this paper we consider concentrated nearly axisymmetric strongly tilted baroclinic

vortices in gradient wind balance that are embedded in a quasi-geostrophic (QG) farfield

flow with weak vertical shear. We restrict to the case of dry air with an ideal gas equation

of state but include the principal effects of asymmetric diabatic sources in the vortex core.

Let X0(t) denote the overall horizontal position of the vortex measured in terms of
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Figure 1. Tilted concentrated mesoscale vortex of characteristic height hsc and typical core

size Lmes embedded in a synoptic scale (Lsyn) environment, where hsc ≪ Lmes ≪ Lsyn.

a synoptic length scale, Lsyn, and let X(1)(t, z) = iX(1)(t, z) + j Y (1)(t, z) describe the

horizontal displacement of the vortex centre from that large-scale position at height z,

measured in units of a typical vortex core diameter, Lmes. Then δ = Lmes/Lsyn ≪ 1

for concentrated vortices, and the horizontal position of the vortex centre at height z

measured in units of Lsyn is (cf. Fig. 1)

X(t, z) ≡ X(t, z)i + Y (t, z)j = X0(t) + δX(1)(t, z) . (1.1)

Thus we allow for horizontal displacements comparable to a typical vortex core size of

Lmes ∼ 150 km. This amounts to very strong tilt since the characteristic height of the

vortex is comparable to hsc ∼ 10 km. With X0 independent of z we avoid unrealistically

large tilt with horizontal displacements much larger than the vortex core size.

Let uθ denote the primary, possibly baroclinic, circulation of the vortex with total

strength Γ(t, z). The gradient wind regime involves the dominant three term balance

of the pressure gradient, centrifugal acceleration, and Coriolis terms and implies vortex

Rossby numbers of order unity: With p, ρ, and f0 denoting pressure, density, and the
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Coriolis parameter, respectively, we have ∂p/∂r ∼ ρu2
θ/r ∼ ρf0uθ in the gradient wind

regime, with r the horizontal distance from the centreline. Then, with Lmes of the order of

a characteristic vortex radius, the comparison of the latter two terms yields an estimate

for the vortex Rossby number, Rov = uθ/f0Lmes = O(1). Accordingly we let Rov = O(1)

as δ → 0 in the subsequent asymptotic analysis.

Motivated by Ting and co-workers’ approach to the dynamics of slender fluid vortices

(see Ling & Ting 1988; Ting et al. 2007) we derive nonlinear coupled evolution equations

for the vortex core structure, the vortex tilt, and the QG outer flow through matched

asymptotic expansions of the compressible flow equations in three space dimensions.

Specifically, we consider in section 3 the QG farfield flow with an embedded tilted

singular baroclinic line vortex. Given the vortex centreline from (1.1), the vortex’ circu-

lation, Γ(t, z), and the atmospheric background state characterized by the density, ρ0(z),

and the mean perturbation potential temperature stratification, Θ1(z), we have the

Perturbed quasi-geostrophic farfield flow

u = −∇q

⊥ψ , (1.2a)

where ∇q is the horizontal gradient, and

ψ = ψ2d
0 + ψ2d

1 + ψ∗

2 , (1.2b)

is the QG streamfunction with the local vortex induced components

ψ2d
0 = − Γ

2π
ln r and ψ2d

1 = M0r
2(ln r − 1) + δM1 r ln r − δ2M2 . (1.2c)

Here r(t,x, z) = |x − X(t, z)| is the horizontal distance from the centreline and the

coefficients Mi depend on ρ0(z), Θ1(z), and Γ(t, z) through eqs. (3.22) given below. The

regularized stream function, ψ∗
2 , satisfies

(
∇q

2 + Lz

)
ψ∗

2 = −Lzψ
2d
1 − qr with Lz[ · ] =

f2
0

ρ0

∂

∂z

(
ρ0

dΘ1/dz

∂ ·
∂z

)
. (1.2d)
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The regular part of the potential vorticity, qr, which includes planetary rotation, is ad-

vected with the horizontal flow, i.e.,

(
∂

∂t
+ u ·∇q

)
qr = 0 . (1.2e)

In section 4 we show that changes in the leading order axisymmetric circumferential

flow velocity, uθ(t, r̂, z), in the vortex core are described by the

Core structure evolution equation

∂uθ

∂t
+ w0

∂uθ

∂z
+ ur,00

(
∂uθ

∂r̂
+
uθ

r̂
+ f0

)
= −ur,∗

(uθ

r̂
+ f0

)
, (1.3a)

where

w0 =
QΘ,0

dΘ1/dz
, (1.3b)

ur,00 = −1

r̂

ˆ br

0

r′

ρ0

∂

∂z

(
ρ0

QΘ,0

dΘ1/dz

)
dr′ , (1.3c)

ur,∗ =
1

2

[
∂X(1)

∂z

QΘ,12

dΘ1/dz
+
∂Y (1)

∂z

QΘ,11

dΘ1/dz

]
. (1.3d)

Here QΘ,0 and QΘ,1k for k = 1, 2 are the axisymmetric and first circumferential Fourier

mode amplitudes of the diabatic source term, ur,00 and w0 are the axisymmetric parts

of the radial and vertical velocities that are directly induced by axisymmetric diabatic

heating, and r̂ = r/δ is the stretched radial coordinate resolving the vortex core.

The terms on the left of (1.3a) are analogous to those found in the circumferential mo-

mentum balance of an axisymmetric system. The forcing on the right is due to nonlinear

interactions of the vortex tilt with asymmetric diabatic heating. The forcing strength,

represented by ur,∗, depends on the relative arrangement of the tilt direction and the

diabatic heating asymmetries. Suitable arrangement can spin up or spin down the vortex.

This is in agreement with results by Shapiro & Montgomery (1993) on balanced small
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perturbations of an axisymmetric, vertically aligned vortex and extends them to vortices

with leading order tilt.

In section 5 we derive the

Vortex centreline equations of motion

dX0

dt
= u0 , (1.4a)

∂X(1)

∂t
= u

(1/2)
0 + X(1) · (∇qu0) − ln

1

δ
(k × M 1) + (k × Ψ) , (1.4b)

where u0 and ∇qu0 are the barotropic leading order regular part of the quasi-geostrophic

background flow evaluated at X0(t) and its horizontal gradient, respectively, u(1/2) is

a possibly baroclinic contribution to the background flow of order O(δ) (the ( · )(1/2)
-

superscript will be explained shortly), M 1 is related to M1 from (1.2c), (3.22), and Ψ

is a complex expression involving the vortex core structure, uθ(t, r̂, z), the asymmetric

heating, and the vortex tilt (see eqs. (5.12), (5.10), and (4.33) below).

The main conclusions to be drawn from (1.4) are, first, that in the considered regime

with relatively weak heating and tilt-induced vertical motions a vortex cannot sustain

strong vertical shear of the background flow within which it is embedded. We must re-

quire the leading order background flow, u0, to be barotropic, i.e., independent of z.

Secondly, there is a self-induced motion of a tilted baroclinic vortex which induces hor-

izontal displacements comparable to the vortex core size (terms involving M 1 and Ψ).

See section 6 for a comparison of predictions using (1.4) with established linear theories

for small perturbations of an initially vertically aligned vortex by Reasor et al. (2004).

Two remarks of caution are in order: The present theory proceeds independently of

whether we assume cyclonic or anti-cyclonic mean vortex rotation. It does assume, how-

ever, that the vortex is stable over the characteristic time scale considered and this may
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exclude anticyclonic vortices with Rossby numbers larger than unity from consideration

because of possible centrifugal instabilities (see, e.g., Afanasyev & Peltier 1998).

Also, the reader will have noticed the occurance of the logarithm of the perturbation

parameter in (1.4). This does not come as a surprise considering established theories for

slender fluid vortices (see, e.g., Ting et al. 2007). Here we follow Ting and co-workers, who

consider such logarithmic terms as of order unity relative to powers of the perturbation

parameter. This seems appropriate here as δ > 1/10 for realistic applications of the

present theory (see section 7.3 for further discussion).

For conclusions, limitations of the theory, and an outlook see section 7.

2. Dimensionless governing equations and distinguished limits

The inviscid rotating compressible flow equations in the beta plane approximation,

∂u

∂t
+ u ·∇qu + w

∂u

∂z
+

1

ρ
∇qp + f k × u = 0 , (2.1a)

∂w

∂t
+ u ·∇qw + w

∂w

∂z
+

1

ρ

∂p

∂z
= −g, (2.1b)

∂ρ

∂t
+ u ·∇qρ + w

∂ρ

∂z
+ ρ∇q ·u + ρ

∂w

∂z
= 0 , (2.1c)

∂Θ

∂t
+ u ·∇qΘ + w

∂Θ

∂z
= QΘ , (2.1d)

Θ =
pref

ρR

(
p

pref

) 1

γ

, (2.1e)

are our point of departure. Here p, ρ,Θ,u, w are pressure, density, potential temperature,

and the horizontal and vertical velocities, and γ is the specific heat ratio. The Coriolis

parameter is f = f0 +βy where y denotes the local meridional coordinate and β = const.

The horizontal gradient is ∇q = i ∂/∂x + j ∂/∂y with x the zonal coordinate, and the

three-dimensional gradient is ∇ = ∇q + k ∂/∂z. QΘ is a generic diabatic source term.

Table 1 lists general characteristics of the near-tropical atmosphere (latitude φ =
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Gravitational acceleration g = 9.81 m s−2

Coriolis parameter (φ = 30◦ N) f0 = 7.3 · 10−5 s−1

(df/dy)0 (φ = 30◦ N) β = 2.0 · 10−11 m−1 s−1

Pressure pref = 105 Pa

Temperature Tref = 300 K

Brunt-Väisälä frequency N = 10−2 s−1

Dry gas constant R = 287 m s−2 K−1

Isentropic exponent γ = 1.4

Table 1. Characteristic atmospheric flow parameters

Density ρref =
pref

RTref

∼ 1.16 kg m−3

Horizontal velocity uref =
tanφ

π/2

N2

f2
0

βh2
sc ∼ 10 m s−1

Vertical velocity wref =
hsc

Lsyn

uref ∼ 0.1 m s−1

Horizontal distance Lsyn =
N

f0

hsc ∼ 1 200 km

Vertical distance hsc =
pref

gρref

∼ 8.8 km

Time tref =
Lsyn

uref

∼ 1.2 · 105 s

Table 2. Derived reference values for non-dimensionalization of (2.1)

30◦N) which we combine in Table 2 to obtain reference values for non-dimensionalization,

p∗ =
p

pref

, ρ∗ =
ρ

ρref

, u∗ =
u

uref

, w∗ =
w

uref

c1 Lsyn

hsc
,

t∗ =
turef

c1 Lsyn
, x∗ =

x

c1 Lsyn
, z∗ =

z

hsc
.

(2.2)

Here uref is an estimate of the thermal wind shear, x = ix + jy, and c1 is a constant

chosen later to eliminate unessential free parameters from the dimensionless equations.

The Brunt-Väisälä frequency, N =
√

(g/Θ)(dΘ/dz), with the overbar denoting a hori-

zontal average, characterizes the vertical variation, ∆Θ ∼ Tref(N
2hsc/g), of the potential
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temperature. An appropriate non-dimensionalization of Θ then reads

Θ∗ =
Θ

Tref

= 1+ c2
∆Θ

Tref

(
Θ1(z

∗) + Θ̃
)
, (c2 = O(1) to be determined below) . (2.3)

In deriving dimensionless equations, we introduce the Mach, Froude, Rossby, and

Damköhler numbers, the aspect ratio, ℓ, and the dimensionless Coriolis β-parameter,

M =
uref√
RTref

≈ 3.4 · 10−2 , Fr =
uref

Nhsc
≈ 1.1 ·10−1 , β∗ =

βLsyn

f0
, (2.4)

Ro =
uref

f0Lsyn
≈ 1.1 · 10−1 , ℓ =

hsc

Lsyn
≈ 7.3 ·10−3 , Da =

QΘref

Treftref
.

Note that β∗ ≡ (π/2) Fr/ tanφ. The first five of these parameters are then replaced

through a set of distinguished asymptotic limits that are in line with Pedlosky’s small

Rossby number derivation of the QG model (see Pedlosky 1987; Klein 2010),

c2
∆Θ

Tref

= ε ,
1

M2
=

1

ε3
,

1

Ro
=
f̂0
ε
, β∗ = β̂ ε ,

c1
ℓ

=
1

ε2
, (2.5)

where (f̂0, β̂) = O(1) as ε → 0. The constants c1, c2 are included in these distinguished

limits in hindsight in such a way that they cancel from the dimensionless equations (2.6)

below. For the scaling of the Damköhler number, Da, see (4.13) below.

Dropping the ∗ and ̂ indicators for brevity, we obtain the dimensionless equations

∂u

∂t
+ u ·∇qu + w

∂u

∂z
+

1

ε3
1

ρ
∇qp+

1

ε
(f0 + εβy)k × u = 0 , (2.6a)

∂w

∂t
+ u ·∇qw + w

∂w

∂z
+

1

ε5
1

ρ

∂p

∂z
= − 1

ε5
, (2.6b)

∂ρ

∂t
+ u ·∇qρ + w

∂ρ

∂z
+ ρ∇q ·u + ρ

∂w

∂z
= 0 , (2.6c)

∂Θ̃

∂t
+ u ·∇qΘ̃ + w

∂Θ̃

∂z
+ w

dΘ1

dz
=

Da

ε
QΘ , (2.6d)

ε
(
Θ̃ + Θ1

)
=
p

1

γ

ρ
− 1 . (2.6e)

For the reader familiar with Klein’s work, we remark that the atmospheric flow pa-

rameters in table 1 are essentially equivalent to those used in the general modelling

framework in (Klein 2010), while the reference quantities for nondimensionalization in
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table 2 have been constructed from these to fit the present application and streamline

the subsequent developments.

3. Quasi-geostrophic farfield flow

This section describes the asymptotic expansions and the key results for the farfield

including its separation into a smooth and a singular vortex induced part.

3.1. Expansion scheme for the quasi-geostrophic (QG) farfield flow

Here we rederive the QG theory following (Pedlosky 1987) except for one modification:

While the classical expansions proceed in integer powers of ε, we allow for intermediate

level perturbations of order O(εi+1/2) for integers i. The latter appear because the syn-

optic and vortex core scales differ by O(ε1/2) (see section 4.1.1) and they are needed for

consistently matched asymptotic solutions. For simplicity we neglect diabatic effects in

the outer flow. The analysis then proceeds with the expansion scheme

p = p0 + εp1 + ε2
(
p(2) + p2

)
+ ε5/2

(
p(5/2) + p5/2

)
+ O

(
ε5/2

)
(3.1a)

ρ = ρ0 + ερ1 + ε2
(
ρ(2) + ρ2

)
+ ε5/2

(
ρ(5/2) + ρ5/2

)
+ O

(
ε5/2

)
(3.1b)

Θ = 1 + εΘ1 + ε2
(
Θ(2) + Θ2

)
+ ε5/2

(
Θ(5/2) + Θ5/2

)
+ O

(
ε5/2

)
(3.1c)

u = u(0) + ε1/2u(1/2) + εu(1) + ε3/2u(3/2) + O

(
ε3/2

)
(3.1d)

w = εw(1) + ε3/2w(3/2) + O

(
ε3/2

)
(3.1e)

where (pi, ρi,Θi)(z) and
(
u(i), w(i), p(i), ρ(i),Θ(i)

)
(t,x, z) represent the mean background

state and the flow variability, respectively.

From the scalings of the pressure gradient and Coriolis terms in the horizontal mo-

mentum balance from (2.6a) it follows that, under leading-order geostrophic balance,

deviations of the pressure from the background state will arise first at order O(ε2). The
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vertical momentum equation in (2.6b) is dominated by hydrostatic balance up to at least

five orders in ε and, as a consequence, deviations of density from the background state

follow the pressure scaling and also start at O(ε2). This explains the expansion schemes

in (3.1a)–(3.1c). In (3.1e) we have used that the vertical velocity in a QG flow is by one

order in the Rossby number smaller than expected on the basis of the aspect ratio scaling

because the leading-order horizontal divergence vanishes under geostrophic balance (see,

e.g., Pedlosky 1987).

To streamline the notation, we let

δ ≡ ε1/2 (3.2)

from here on and use the following abbreviations in the rest of this section,



u

ũ

w

π

Θ̃




≡




u(0) + δu(1/2)

u(1) + δu(3/2)

w(1) + δw(3/2)

(
p(2) + δp(5/2)

)
/ρ0

Θ(2) + δΘ(5/2)




. (3.3)

3.2. Quasi-geostrophic (QG) theory

Using (3.3), the combined leading and first order results in δ from the momentum

equations, the mass balance, and the potential temperature transport equation read

Geostrophic Balance

f0 k × u + ∇qπ = 0 , (3.4a)

Hydrostatic Balance
∂π

∂z
= Θ̃ , (3.4b)

Anelastic Constraint

ρ0 ∇q · ũ +
∂

∂z

(
ρ0 w

)
= 0 , (3.4c)

Potential Temperature Transport

∂Θ̃

∂t
+ u ·∇qΘ̃ + w

dΘ1

dz
= 0 . (3.4d)
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For later reference, we conclude from (3.4a) that

∇q ·u = 0 and u = −k × ∇qψ , (3.5)

where the streamfunction, ψ, for the horizontal flow is defined as

ψ ≡ −π/f0 . (3.6)

An additional equation for the divergence of the perturbation velocity, ∇q · ũ, appearing

in (3.4c) is obtained from the curl of the next-order horizontal momentum equation,

Vorticity Transport

(
∂

∂t
+ u ·∇q

)(
ζ + βy

)
+ f0∇q · ũ = 0 , (3.7)

with the relative vertical vorticity

ζ = k · (∇q × u) . (3.8)

Eqs. (3.4)–(3.8) are the QG model for the unknowns
(
u, w, π, Θ̃, [∇q · ũ]

)
(t,x, z) de-

fined in (3.3) given the background state through ρ0(z) and (dΘ1/dz) (z). The essence of

the system is revealed through its classical formulation involving an advection equation

(
∂

∂t
+ u ·∇q

)
q = 0 (3.9)

for the QG potential vorticity

q = ζ + β y − f0
ρ0

∂

∂z

(
ρ0

Θ′
1

Θ̃

)
where Θ′

1 =
dΘ1

dz
. (3.10)

To verify these equations, one eliminates [∇q · ũ] from (3.7) using (3.4c), and then elimi-

nates w from the remaining equation using (3.4d).

Using that ζ = −∇q

2ψ due to (3.8), (3.6), (3.5), and the geostrophic balance from

(3.4a), eq. (3.10) becomes an elliptic equation for ψ given the potential vorticity, viz.

(
∇q

2 + Lz

)
ψ = −qrel , (3.11)
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where

Lz[ · ] =
f2
0

ρ0

∂

∂z

(
ρ0

Θ′
1

∂ ·
∂z

)
and qrel = q − β y . (3.12)

3.3. Singular vortex theory

3.3.1. Regular–singular farfield flow decomposition

Consider the relative potential vorticity, qrel, to be composed of a line singularity, qs,

located on the vortex centreline, and a regular contribution, qr, so that

qrel = qs + qr , (3.13)

where

qs(t,x, z) =

Ĥ

0

Γ(t, z′) δ3

(
[x + kz] − [X(t, z′) + kz′]

)
dz′

= Γ(t, z) δ2
(
x − X(t, z)

)
. (3.14)

Here δk( · ) denote the k-dimensional delta distributions, and

Γ(t, z) = Γ(0)(t, z) + δ Γ(1)(t, z) + O

(
δ
)
, (3.15a)

X(t, z) = X0(t) + δX(1)(t, z) + O

(
δ
)
, (3.15b)

are the total vortex circulation and the horizontal position of its centreline, respectively.

To construct a perturbation expansion of ψ that explicitly represents the local QG

flow response to the vortex singularity we first rewrite (3.11) as

(
∇q

2 + Lz

)
ψ = −qs − qr . (3.16)

Next, introducing local polar coordinates via

x − X(t, z) = r er = r (i cos θ + j sin θ) , (3.17)

with er a radial, and i, j cartesian horizontal unit vectors, and observing that the quasi

two-dimensional potential vortex streamfunction

ψ2d
0 (t, r, z) = −Γ(t, z)

2π
ln r solves ∇q

2ψ2d
0 = −qs (3.18)
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we let, in a first step,

ψ(t,x, z) = ψ2d
0 (t, r, z) + ψ∗

1(t,x, z) . (3.19)

Then, ψ∗
1 obviously satisfies

(
∇q

2 + Lz

)
ψ∗

1 = −Lzψ
2d
0 − qr . (3.20)

Taking into account the expansion of the centreline in (3.15b) and the coordinate trans-

formation in (3.17) we express the first term on the right of this equation as

−Lzψ
2d
0 = 4M0(t, z) ln r +

δ

r
2M1(t, θ, z) +

δ2

r2
4M2(t, θ, z) , (3.21)

where

M0 =
1

8π

f2
0

ρ0

∂

∂z

(
ρ0

Θ′
1

∂Γ

∂z

)
, (3.22a)

M1 = − f2
0

4πρ0Γ

∂

∂z

(
ρ0Γ

2

Θ′
1

∂X(1)

∂z

)
· er ≡ −M1 ·er , (3.22b)

M2 =
f2
0Γ

8πΘ′
1



[
eθ ·

∂X(1)

∂z

]2

−
[
er ·

∂X(1)

∂z

]2

 . (3.22c)

The source term in (3.20) is still singular, yet the singularity is much weaker than the

original Dirac distribution in (3.14). Also, the singular part of this source term as given

in (3.21) involves the first and second circumferential Fourier modes through the terms

M1(t, θ, z) and M2(t, θ, z), respectively. For later reference we extract again the dominant

singular behavior of the stream function by introducing

ψ2d
1 = M0r

2(ln r − 1) + δM1 r ln r − δ2M2 (3.23)

which solves

∇q

2ψ2d
1 = −Lzψ

2d
0 (t, r, z) . (3.24)

Collecting results we have

ψ = − Γ

2π
ln r +M0r

2(ln r − 1) + δM1r ln r − δ2M2 + ψ∗

2 (3.25)
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where the regularized stream function, ψ∗
2 , satisfies

(
∇q

2 + Lz

)
ψ∗

2 = −Lzψ
2d
1 − qr . (3.26)

With (3.25) we have an explicit representation of the singular behavior of the stream-

function near the vortex centreline (r → 0), including its expansion in terms of δ. In

App. B we discuss the behavior of ψ∗
2 at r = 0 and inter alia show that it is continuous.

4. Vortex Core Structure

4.1. Expansion scheme for the meso-scale vortex core flow in gradient wind balance

4.1.1. Pressure, velocity, and spacial scaling

If a given total vortex circulation, Γ, is realized on the synoptic scale with velocites of

order uref , i.e., Γ = O(2πLsynuref), then it is realized with wind speeds of order uref/δ on

the smaller meso scale Lmes = O(δLsyn). At the same time, if the synoptic scale Rossby

number is Ro = uref/f0Lsyn = O(δ2) (see (2.5)) then the vortex Rossby number becomes

Romes = umes/f0Lmes = O(1) and the vortex is in approximate gradient wind balance

(see section 1.2). This sets the length, velocity, and pressure scales for the vortex core,

Lmes = δ Lsyn , δpmes = O(δ4pref) ≡ O(ε2pref) , umes = O(δ−1uref) . (4.1)

Given that uref ∼ 10 ms−1 (see Table 2) and ε ∼ 0.1 or δ =
√
ε ∼ 1/3 (see (2.4), (2.5))

these scalings are compatible with tropical storms and nascent hurricanes, which feature

velocities of O(30 ms−1). Motivated by changes of storm intensities being observed over

a day or two (tref ∼ 30 h in Table 2), we assume the core structure to evolve on the

synoptic time scale, i.e., on the same time scale as the quasi-geostrophic outer flow.
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4.1.2. Co-moving coordinate system

For the meso scale analysis we introduce vortex centred horizontal coordinates so that

x = X(t, z) + δ x̂ = X0(t) + δ
(
X(1)(t, z) + x̂

)
, (4.2)

The relative horizontal offset, x̂, resolves the vortex core diameter scale as estimated

in (4.1). To efficiently deal with the near-axisymmetry of the vortex we use the polar

coordinates from (3.17) with an appropriate rescaling of the radius, i.e.,

x̂ = x̂ i + ŷ j where





x̂ = r̂ cos θ ;

ŷ = r̂ sin θ ;

i = er cos θ − eθ sin θ

j = er sin θ + eθ cos θ

(4.3)

with er and eθ the radial and circumferential unit vectors, respectively. For later refer-

ence, here is the polar coordinate representation of the vortex tilt,

X(1) =
(
X(1) cos θ + Y (1) sin θ

)
er +

(
−X(1) sin θ + Y (1) cos θ

)
eθ . (4.4)

The horizontal velocity is decomposed into the vortex’ motion plus the relative velocity,

u =
∂X

∂t
+ (ur er + uθ eθ) , (4.5)

and the transformation rules for derivatives now read

∇q = δ−1

(
er

∂

∂r̂
+ eθ

1

r̂

∂

∂θ

)
≡ δ−1 ∇̂ , (4.6)

∂

∂z

∣∣∣∣
t,x,y

=
∂

∂z

∣∣∣∣
t,br,θ

− δ−1 ∂X

∂z
· ∇̂ , (4.7)

∂

∂t

∣∣∣∣
x,y,z

=
∂

∂t

∣∣∣∣
br,θ,z

− δ−1 V · ∇̂ . (4.8)

For later reference here is our notation for the Fourier expansion of functions of θ,

F (θ) = F0 +
∑

n

(Fn1 sin(nθ) + Fn2 cos(nθ)) (4.9)
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4.1.3. Vortex core expansion scheme

Up to order O(1) the circumferential velocity is assumed to be axisymmetric, so that

uθ(t,x, z; ε) = δ−1u
(0)
θ (t, r̂, z) + u

(1)
θ (t, r̂, z) + δu

(2)
θ (t, r̂, θ, z) + O

(
δ
)
, (4.10a)

ur(t,x, z; ε) = δ u(2)
r (t, r̂, θ, z) + O

(
δ
)
. (4.10b)

That the first-order velocity must be axisymmetric can be derived instead of having to be

assumed (Mikusky 2007) (E. Päschke’s maiden name). Asymmetries of order O(δuref) in

the horizontal velocity distributed over the core size length scale, Lmes, induce horizontal

divergences of order δuref/Lmes = uref/Lsyn, see (4.1). The flow field is essentially anelastic

as we will see below, and from the anelastic divergence constraint follow dimensionless

vertical velocities of order w/uref = O(hsc/Lsyn), and this implies, given the vertical

velocity scaling in (2.2),

w(t,x, z; ε) = ŵ(1)(t, r̂, θ, z) + O

(
1
)
. (4.11)

Expansions for the thermodynamic variables are anticipated as follows: The estimates

in (4.1) settle the lowest order at which horizontal pressure variations can occur. All

lower order pressure terms will be horizontally homogeneous. Moreover, they will have

to match the corresponding terms in the outer QG solution since any differences would be

equilibrated rapidly by fast internal waves. The outer pressure expansion does not include

half-order scalings below ε2 ≡ δ4, and this is why such terms must also be absent in the

core. The pressure perturbations turn out to be hydrostatic in the regime considered so

that half order scalings cannot appear in the Θ and ρ expansion at the respectives orders
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either. These considerations lead to

p = p0 + δ2p1 + δ4
(
p̂(4) + p̂4

)
+ δ5

(
p̂(5) + p̂5

)
+ O

(
δ5
)
, (4.12a)

ρ = ρ0 + δ2ρ1 + δ4
(
ρ̂(4) + ρ̂4

)
+ δ5

(
ρ̂(5) + ρ̂5

)
+ O

(
δ5
)
, (4.12b)

Θ = 1 + δ2Θ1 + δ4
(
Θ̂(4) + Θ̂4

)
+ δ5

(
Θ̂(5) + Θ̂5

)
+ O

(
δ5
)
. (4.12c)

Here (p0, p1, ρ0, ρ1,Θ1) represent the background state as in (3.1), (p̂i, ρ̂i, Θ̂i)(t, z), are

higher-order horizontal mean values, and
(
p̂(i), ρ̂(i), Θ̂(i)

)
(t, r̂, θ, z) are the perturbation

variables of interest in this section. With the diabatic source terms scaling as

Da

ε
QΘ = δ2Q

(2)
Θ + O

(
δ5
)
, (4.13)

they will modify the adiabatic dynamics but will not change the balances fundamentally

(see discussion below (4.19)). This also settles the asymptotic scaling of the Damköhler

number as announced in section 2 (below (2.5)).

4.2. Asymptotic equation hierarchy for the vortex core

The governing equations transformed to the co-moving coordinates are provided in

App. A. Inserting the vortex core expansion scheme from section 4.1.3 we obtain

horizontal momentum balance

O(δ−3):

− (u
(0)
θ )2

r̂
+

1

ρ0

∂p̂(4)

∂r̂
− f0u

(0)
θ = 0 (4.14a)

∂p̂(4)

∂θ
= 0 (4.14b)

O(δ−2):

−2u
(0)
θ u

(1)
θ

r̂
+

1

ρ0

∂p̂(5)

∂r̂
− f0

(
u

(1)
θ + eθ ·

dX0

dt

)
= 0 (4.15a)

1

ρ0r̂

∂p̂(5)

∂θ
+ f0 er ·

dX0

dt
= 0 (4.15b)
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O(δ−1):

u
(0)
θ

r̂

∂u
(2)
r

∂θ
− 2u

(0)
θ u

(2)
θ

r̂
− (u

(1)
θ )2

r̂
+ eθ ·

∂X(1)

∂z

ŵ(1)u
(0)
θ

r̂
(4.16a)

+
1

ρ0

∂p̂(6)

∂r̂
− ρ1

ρ2
0

∂p̂(4)

∂r̂
− f0

(
u

(2)
θ + eθ ·

∂X(1)

∂t

)
− β Y

(0)
C u

(0)
θ = 0

∂u
(0)
θ

∂t
+ ŵ(1) ∂u

(0)
θ

∂z
+ u(2)

r

(
∂u

(0)
θ

∂r̂
+
u

(0)
θ

r̂

)
+
u

(0)
θ

r̂

∂u
(2)
θ

∂θ
(4.16b)

− ŵ(1)er ·
∂X(1)

∂z

∂u
(0)
θ

∂r̂
+

1

ρ0r̂

∂p̂(6)

∂θ
+ f0

(
u(2)

r + er ·
∂X(1)

∂t

)
= 0

The flow is hydrostatic to very high order with the first non-trivial vertical balance

vertical momentum balance

O(δ−6):
∂p̂(4)

∂z
− ∂X(1)

∂z
· ∇̂qp̂

(4) = −ρ̂(4) . (4.17)

The leading two contributions to the flow velocity are horizontal and axisymmetric

according to (4.10), (4.11), and therefore divergence free. For the second order velocity

field we find an anelastic divergence constraint that is modified by the vortex’ tilt,

mass continuity

O(1):

ρ0

r̂

(
∂

∂r̂

(
r̂u(2)

r

)
+
∂u

(2)
θ

∂θ

)
+

∂

∂z

(
ρ0ŵ

(1)
)
− ∂X(1)

∂z
· ∇̂q(ρ0ŵ

(1)) = 0 . (4.18)

The first non-trivial potential temperature transport equation reads

potential temperature

O(δ2):
u

(0)
θ

r̂

∂Θ̂(4)

∂θ
+ ŵ(1) dΘ1

dz
= Q

(2)
Θ . (4.19)

For any ŵ(i) with i < 1 we would have obtained w(i)dΘ1/dz = Q
(i+1)
Θ , so that these

orders of w would be induced solely by diabatic sources. As a consequence, the lowest-

order vertical velocity that remains in the diabatic case is ŵ(1) as anticipated in the

expansion scheme (4.11). Stronger diabatic effects will be considered in future work.



Atmospheric mesoscale vortices: dry air, weak shear 21

The equation of state relates the perturbations of the thermodynamic variables through

equation of state

O(δ4):

ρ̂(4) = ρ0

(
p̂(4)

γp0
− Θ̂(4)

)
. (4.20)

4.3. Temporal evolution of the vortex structure

The goal here is to derive from (4.14)–(4.20) an evolution equation for the leading order

circumferential velocity, u
(0)
θ , given the vortex tilt, ∂X(1)/∂z, and the diabatic source

term, Q
(2)
Θ . Consider to this end the second order circumferential momentum balance

from (4.16b). Averaging in θ taking into account that u
(0)
θ is axisymmetric we obtain

∂u
(0)
θ

∂t
+ ŵ

(1)
0

∂u
(0)
θ

∂z
+ u

(2)
r,0

(
∂u

(0)
θ

∂r̂
+
u

(0)
θ

r̂
+ f0

)
− u

(2)
r,∗

∂u
(0)
θ

∂r̂
= 0 (4.21)

where, using Fourier decomposition, (4.9),

u
(2)
r,∗ =

(
ŵ(1)er ·

∂X(1)

∂z

)

0

=
1

2

[
ŵ12

∂X(1)

∂z
+ ŵ11

∂Y (1)

∂z

]
. (4.22)

Expressions for ŵ
(1)
0 and ŵ11, ŵ12 follow from the Fourier decomposition of the potential

temperature transport equation in (4.19), viz.

ŵ
(1)
0

dΘ1

dz
= Q

(2)
Θ,0 , (4.23a)

ŵ
(1)
1k

dΘ1

dz
= Q

(2)
Θ,1k + (−1)k u

(0)
θ

r̂
Θ̂

(4)
1k∗

(
k ∈ {1, 2} , k∗ = 3 − k

)
. (4.23b)

Now we have Θ̂
(4)
1k = −ρ̂(4)

1k /ρ0 from the equation of state, (4.20), because p̂(4) is axisym-

metric according to (4.14b), and hence p̂
(4)
1k ≡ 0. By extracting the first Fourier modes of

the vertical momentum balance in (4.17) we find

Θ̂
(4)
11 = − ρ̂

(4)
11

ρ0
= − 1

ρ0

∂Y (1)

∂z

∂p̂(4)

∂r̂
, Θ̂

(4)
12 = − ρ̂

(4)
12

ρ0
= − 1

ρ0

∂X(1)

∂z

∂p̂(4)

∂r̂
. (4.24)
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Using the gradient wind balance, (4.14a), to eliminate ∂p̂(4)/∂r̂, and going back to (4.23b)

we obtain the desired expressions for the ŵ
(1)
1k in terms of u

(0)
θ , ∂X(1)/∂z, and Q

(2)
Θ ,

ŵ
(1)
1k =

1

Θ′
1

[
Q

(4)
Θ,1k + (−1)k ∂X

(1)
k

∂z

u
(0)
θ

r̂

(
(u

(0)
θ )2

r̂
+ f0u

(0)
θ

)] (
k = 1, 2)

)
, (4.25)

where X
(1)
1 ≡ X(1) and X

(1)
2 ≡ Y (1). Inserted into (4.22) we find the expression for u

(2)
r,∗

(called ur,∗ there for simplicity of notation) announced in (1.3d).

To find a corresponding expression for u
(2)
r,0 (see the third term in (4.21)), consider the

circumferential average of mass continuity, (4.18). A brief calculation yields first

∂(r̂ u
(2)
r,0)

∂r̂
= − r̂

ρ0

∂
(
ρ0ŵ

(1)
0

)

∂z
+

1

2

[
∂X(1)

∂z

∂(r̂ŵ
(1)
12 )

∂r̂
+
∂Y (1)

∂z

∂(r̂ŵ
(1)
11 )

∂r̂

]
. (4.26)

Then, exploiting (4.25), we integrate in r̂ requiring that u
(2)
r,0 be finite at r = 0 to find

u
(2)
r,0 = −1

r̂

ˆ br

0

r′

ρ0

∂

∂z

(
ρ0
Q

(3)
0

Θ′
1

)
dr′ + u

(2)
r,∗ ≡ u

(2)
r,00 + u

(2)
r,∗ . (4.27)

With (4.21)–(4.27) now yield the core structure evolution equation announced in (1.3a).

4.4. First Fourier modes of the second-order horizontal flow

Here we study the second order horizontal momentum and mass balances in (4.16) and

(4.18) to derive expressions for the first θ-Fourier modes of u
(2)
r , u

(2)
θ . These will be of

particular interest in matching the inner and outer solutions in section 5 as their large-r̂

behaviour determines the evolution of the vortex centerline perturbation, X(1).

The non-symmetric components of u
(2)
r and u

(2)
θ are represented by a velocity potential,

φ(2), (divergent part) and a streamfunction, ψ(2), (non divergent part) so that

u(2)
r =

1

r̂

∂ψ(2)

∂θ
+
∂φ(2)

∂r̂
, u

(2)
θ = −∂ψ

(2)

∂r̂
+

1

r̂

∂φ(2)

∂θ
. (4.28)

After projection onto the first Fourier modes, mass continuity (4.18) yields,

(
∂2

∂r̂2
+

1

r̂

∂

∂r̂
− 1

r̂2

)
φ

(2)
1k = − 1

ρ0

∂(ρ0ŵ
(1)
1k )

∂z
+

1

2

(
er ·

∂X(1)

∂z

)

k

∂ŵ
(1)
0

∂r̂
≡ R1k . (4.29)
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Knowing that the quasi-geostrophic outer flow is horizontally non divergent we let

φ
(2)
1k = −r̂

ˆ ∞

br

1

r̄3

[
ˆ r̄

0

¯̄r2R1k d¯̄r

]
dr̄ . (4.30)

The integral in (4.30) converges and yields a vanishing divergent part of the second order

flow as r̂ → ∞ provided ŵ
(1)
0 and ŵ

(1)
1k decay sufficiently rapidly for large r̂. Considering

(4.23a) and (4.25), this is the case if (i) Q
(4)
Θ,0 and Q

(4)
Θ,1k decay sufficiently rapidly, and

(ii) u
(0)
θ = Γ/(2πr̂)

(
1 + O

(
1
))

as r̂ → ∞. For the diabatic source terms we take the

liberty to assume such rapid decay, while the required large-r̂ behaviour of u
(0)
θ follows

from our assumption that the vortex has a well-defined total circulation, Γ(t, z).

With the divergent part of the flow vanishing for large r̂, the solutions for the stream-

function ψ(2) will be central in determining the evolution of the vortex tilt. Elimination

of p̂(4) and p̂(6) from (4.16a) and (4.16b) by cross-differentiation, extraction of the first

Fourier modes from the resulting equations, and inserting (4.28) yields

(
∂2

∂r̂2
+

1

r̂

∂

∂r̂
−
[
ζ
(0)
br

u
(0)
θ

+
1

r̂2

])
ψ

(2)
1k =

(−1)k∗

u
(0)
θ

(
H + I + J + Q

)

1k∗

, (4.31)

where k∗ = 3 − k,

ζ(0) =
∂u

(0)
θ

∂r̂
+
u

(0)
θ

r̂
, (4.32)

is the vorticity of the leading-order axisymmetric circumferential flow, and

H1k =
∂

∂r̂

(
r̂ŵ

(1)
1k

∂u
(0)
θ

∂z

)
, (4.33a)

I1k = −r̂[ζ(0) + f0]
1

ρ0

∂(ρ0ŵ
(1)
1k )

∂z
, (4.33b)

J1k =
∂φ

(2)
1k

∂r̂

(
r̂
∂ζ(0)

∂r̂

)
, (4.33c)

Q1k =

(
er ·

∂X(1)

∂z

)

k

(
ŵ

(1)
0

u
(0)
θ

r̂
− ∂

∂r

(
r̂ŵ

(1)
0

∂u
(0)
θ

∂r

))
. (4.33d)
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Particular solutions with homogeneous boundary conditions

ψ
(2)
1k =

∂ψ
(2)
1k

∂r̂
= 0 at r̂ = 0 (4.34)

read

ψ
(2)
1k = (−1)k∗

r̂


u
r̂

br
ˆ

0

1

r̄u2

r̄
ˆ

0

r′ [H + I + J + Q]1k∗ (r′) dr′ dr̄


 . (4.35)

This is also the final solution because one of the two linearly independent homogeneous

solutions produces singular velocities near r̂, the other represents a singular dipole flow

for large r̂ which is incompatible with the outer QG flow (see App. C.1 for details).

We have restricted this section to those results from the core structure analysis that are

needed to derive our main results, i.e., the core structure evolution equation (see section

4.3), and the evolution equation for the vortex tilt (see section 5 below). For more details

of the core structure solution, such as the higher harmonics of p̂(4), ρ̂(4), Θ̂(4), ŵ(1), an

evaluation of the first order horizontal momentum balances in (4.15), and the higher

harmonics of φ(2) and ψ(2) see Appendix C.

5. Matching and the Vortex Centreline Velocity

5.1. Eckhaus’ notation for the matching procedure

Here we employ van Dyke’s procedure for the asymptotic matching of the farfield and

vortex core solutions (van Dyke 1964) using Eckhaus’ notation (Eckhaus 1979): Let

Φδ(x) be defined for x ∈ D ⊂ R
n and 0 < δ ≪ 1. When Φδ solves a boundary layer type

problem, there is one subdomain D0 ⊂ D within which Φδ has a regular expansion

Φδ(x) =

m∑

n=0

δn Φ(n)(x) + O

(
δm
)

≡
(
E(m) Φδ

)
(x) + O

(
δm
)





for x ∈ D0 , (5.1)

and another subset Sδ ⊂ D such that Φδ when expressed in boundary layer coordinates,

Φδ(x) ≡ Φ̂δ(x̂) where x̂ = x/δ , (5.2)
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has an expansion

Φ̂δ(x̂) =

m∑

n=m0

δn Φ̂(n) (x̂) + O

(
δm
)

≡
(

Ê
(m)

Φ̂δ

)
(x̂) + O

(
δm
)





for x̂ = Ŝ . (5.3)

Here x̂ ∈ Ŝ for some δ-independent Ŝ ⊂ R
n implies x ∈ Sδ. In boundary layer type

problems the size of Sδ shrinks to zero as δ → 0. In (5.1), (5.3), E(m) is the (m+1)-term

expansion of functions of x in D0, while Ê
(m)

is the expansion of functions of x̂ in Ŝ;

note that Ê
(m)

allows for a different scaling of the leading order term than E(m).

Loosely speaking, van Dyke’s matching principle requires “the near-field behaviour of

the outer solution to match the farfield behavior of the inner solution” when both are

expressed in the inner coordinates. Let T denote the transformation from (5.2), i.e.,

(TΦδ) (x̂) ≡ Φ̂δ(x̂) = Φδ(T
−1(x̂)) with Tx = x̂ = x/δ . (5.4)

Then, given the expansion depth mo of the outer expansion, the matching principle reads

Ê
(mi)

T E(mo) Φδ = Ê
(mi)

T E(mo) T−1 Ê
(mi)

T Φδ (5.5)

for the smallest possible inner expansion depth mi. Part of the matching procedure is

to determine values for mo and mi such that the resulting system of equations for the

asymptotic inner and outer representations of Φδ is closed and sufficiently accurate.

This simplified description of the matching principle suffices the present purposes (for

a more comprehensive exposition of the technique, see (Eckhaus 1979)).

5.2. The centreline equation of motion

Matching the horizontal velocities in this section will yield the equation of motion for

the vortex centreline in analogy with the analysis of three-dimensional slender vortex

filaments (see Ting et al. 2007, and references therein). For the horizontal velocities, we

keep terms up to and including O(δ), so that mo = 1 in (5.5).
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5.2.1. The nearfield behavior of the outer solution

Based on (3.25) and recalling that ψ∗
2 represents the non-singular part of the outer

flow, we find the nearfield behaviour of the horizontal velocity in the outer solution

Ê
(1)

T E(1) u = u
(0)
0 + δ

(
u

(1/2)
0 + X(1) · (∇qu)

(0)
0

)

+

(
1

δ

Γ

2πr̂
− δM0 r̂ (2 ln r̂ − 1 + ln δ)

)
eθ

+ δ
(
r̂ er · (∇qu)

(0)
0

)
,

+ δ
([

ln r̂ − ln
1

δ

]
k × M 1 + (M 1 · er)eθ

)
,

(5.6)

where u0 and (∇qu)0 denote the regular part of the outer flow velocity and its horizontal

gradient evaluated at (t,X0, z), and M0 and M 1 were defined in (3.22). At this result

we arrive by (i) calculating −k × ∇qψs from the outer solution in (3.25), and (ii) taking

into account that ψ∗
2 is sufficiently smooth up to order O(δ) (see App. B) so that the

associated velocity has a two-term Taylor expansion near the centreline and becomes a

contribution to the regular part of the outer velocity, u0.

For later reference, we note that r̂er · (∇qu)
(0)
0 in (5.6) can be expressed in terms of a

local quadratic stream function, and the local vorticity, ζ∗0 , (see App. D)

r̂er · (∇qu)
(0)
0 = r̂ ζ∗0 eθ − k × ∇̂q

(
r̂2
(
ψ∗

21 sin(2θ) + ψ∗

22 cos(2θ)
))

, (5.7)

with constants ψ∗

2k for k ∈ {1, 2}.

5.2.2. The farfield behavior of the inner solution

We recall from (4.5), (3.15b), (4.10), and (4.28) that the absolute horizontal velocity

within the vortex core up to and including terms of order O(δ) reads

Ê
(1)

u =
dX0

dt
+ δ

∂X(1)

∂t

+
1

δ

(
u

(0)
θ + δu

(1)
θ + δ2 u

(2)
θ,0

)
eθ

+ δ
(
∇qφ

(2) − k × ∇qψ
(2)
)
.

(5.8)
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For the divergent part of the flow we have, by construction of φ(2) in (4.30) that

E(1) T−1
[
∇qφ

(1)
]

= 0 . (5.9)

For the farfield behaviour of −k × ∇qψ
(2) in (5.8), consider the expression for ψ

(2)
1k in

(4.35). With de L’Hôspital’s rule for limits of type “∞/∞”, the term in brackets obeys

lim
r→∞


u
r̂

br
ˆ

0

1

r̄u2

r̄
ˆ

0

r′F(r′) dr′ dr̄


 =

π

Γ

∞̂

0

rF(r) dr ≡ L [F ] , (5.10)

provided [u, r̂2du/dr̂] =
[
Γ/2πr̂,−Γ/2πr̂2

] (
1 + O

(
1
))

as r̂ → ∞, and the integral exists.

The integral converges for F ∈ {H1k,J1k} (see (4.33), (4.35)), and it does for F = Q1k

if the diabatic source term vanishes sufficiently rapidly for large r̂ (see App. E). For

F = I1k, extraction of its dominant part and application of L’Hôspital’s rules reveals a

logarithmic divergence for large r̂ (see App. E). Combining all results we find

Ê
(1)

T E(1) T−1
[
ψ̃

(1)
1

]
=
(
−r̂ ln r̂M1(τ, z) + r̂Ψ(τ, z)

)
· er(θ) , (5.11)

where ψ̃
(1)
1 = ψ

(1)
11 sin θ + ψ

(1)
12 cos θ,

Ψ = L
[
H + Ĩ + J + Q

]
(5.12)

with K = −iK11 + j K12 for K ∈ {H, Ĩ,J ,Q} and L [ · ] defined in (5.10). Here

Ĩ1k = I1k +H(r̂ − 1)I1k/r̂
2 (5.13)

is the integrable part of I1k in that
´∞

0
rĨ1kdr exists,H( · ) is the Heaviside step function,

and I1k is defined by M1 = (π/Γ) (−i I11 + j I12) with M 1 from (3.22b).

Collecting (5.9), (5.11), we find the farfield behavior of the inner horizontal velocity,

Ê
(1)

T E(1) T−1 Ê
(1)

T u =
dX0

dt
+ δ

∂X(1)

∂t

+ Ê
(1)

T E(1) T−1

[
1

δ

(
u

(0)
θ + δu

(1)
θ + δ2 u

(2)
θ,0

)]
eθ

− Ê
(1)

T E(1) T−1
[
δ k × ∇̂ψ̃

(2)
2

]

+ δ
(
ln r̂ k × M 1 + (M 1 · er)eθ − k × Ψ

)
,

(5.14)
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where ψ̃
(2)
2 = ψ

(2)
21 sin(2θ) + ψ

(2)
22 cos(2θ).

5.2.3. Matching

Here we match the large-r̂ inner solution in (5.14) with the nearfield outer solution in

(5.6). Comparing the second line in (5.14) with the second line plus the first term of the

third according to (5.7) in (5.6) we find

u
(0)
θ =

Γ(0)

2πr̂

(
1 + O

(
1
))

u
(1)
θ =

Γ(1/2)

2πr̂

(
1 + O

(
1
))

u
(2)
θ = r̂ (ζ∗0 +M0 (2 ln r̂ + 1 + ln δ))

(
1 + O

(
1
))






as r̂ → ∞ . (5.15)

The results for u
(0)
θ , u

(1)
θ were expected from the theory of point vortices, while u

(2)
θ

involves an additional influence of baroclinicity, ∂Γ/∂z, through M0 (see (3.22)).

The remainder of the third line of (5.6) according to (5.7) and the third line of (5.14)

provide the large-r̂ behaviour of the Fourier modes, ψ
(1)
2k , of the perturbation stream

function in the vortex core,

Ê
(1)

T E(1) T−1 ψ
(1)
2k = r2ψ∗

2k

(
1 + O

(
1
))

as r → ∞ . (5.16)

On one hand, the ψ∗

2k are related to the irrotational strain of the regular part of the

outer solution in X0 (see App. D). On the other hand, they represent the homogeneous

solutions to the equations for the second Fourier modes of the stream function of the core

flow which are thus determined (see the discussion before (C 12) and (C 13) in App. C).

Comparing the remaining terms in (5.6) and (5.14) we find the centreline velocity,

dX0

dt
= u

(0)
0 , (5.17a)

∂X(1)

∂t
= u

(1/2)
0 + X(1) · (∇qu)

(0)
0 − ln

1

δ
(k × M 1) + (k × Ψ) . (5.17b)
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6. Vortex Rossby waves (VRWs) and quasi-modes

6.1. VRWs and quasi-modes in the literature

In a series of papers, Montgomery and colleagues discuss the roles of vortex Rossby wave

(VRW) damping and the long-lived precession of so-called quasi-modes in stabilizing

an atmospheric vortex against vertical shear of the background flow (see Shapiro &

Montgomery 1993; Montgomery & Kallenbach 1997; McWilliams et al. 2003; Reasor &

Montgomery 2001; Reasor et al. 2004, and references therein). VRWs are analogous to

the classical mid-latitude Rossby waves, except that in VRWs meridional advection of

planetary rotation is replaced with radial advection of the axisymmetric mean vorticity of

the vortex. Quasi-modes arise in these linear theories as the characteristic flow patterns

associated with the low-frequency continuous spectrum of the linearized perturbation

operators. Here we discuss why vortex Rossby wave dynamics on the vortex core cannot

be captured by the present asymptotic theory whereas it does provide a nonlinear theory

for the quasi-modes. Note, however, that VRWs in the outer flow are captured as part

of the QG outer solution!

If a vortex features a long-range decay of vorticity away from its core, then a critical

radial layer may exist within which circumferential advection by the mean vortex and

the phase propagation of VRWs coincide and this resonance induces wave damping. Of

particular interest in the present context are VRWs of circumferential Fourier mode one

as these may be interpreted as oscillatory lateral displacements of the entire vortex and

thus correspond roughly with vortex centreline motions. Why do VRWs (Montgomery &

Kallenbach 1997) on the vortex core and the associated damping mechanism not emerge

from the present asymptotic analysis? This is understood by comparing the characteristic

time scales. The circumferential phase speed of VRWs is comparable with the circum-

ferential advection time scale of the mean vortex, TVRW ∼ Lmes/umax, where Lmes is
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the radial location of the maximum circumferential mean velocity, umax. In contrast, the

vortex centreline motions analyzed in this paper develop on longer time scales of order

Lsyn/uref = δ−2 TVRW. In the language of matched asymptotics for concentrated vortices,

the VRWs thus correspond to the fast time solutions discussed by Ling & Ting (1988)

(see also Ting et al. 2007), whereas the present centreline equations of motion correspond

to slow time solutions.

Reasor et al. (2004), studying dry flow dynamics, find that vortex Rossby wave damp-

ing is weak in the typical flow regime for Hurricane development. This is demonstrated

through numerical simulations based on the non-hydrostatic primitive equations for ini-

tially upright barotropic vortices with Gaussian vorticity distribution and maximum

circumferential mean velocities of umax = 10...40 ms−1 at a radius of Lmes = 100 km

corresponding with vortex Rossby numbers Romes = umax/f0Lmes = 3.2...12.7. The in-

ternal Rossby radii of the background state are Lsyn = NH/πf0 = 630...1 250 km, so

the vortices are concentrated with Lmes/Lsyn ∼ 0.08...0.16. The stability of the back-

ground stratification is characterized by N/f0 = πLsyn/H = 200...400, where N is the

(constant) Brunt-Väisälä frequency, and H = 10 km is the height of the flow domain.

The stabilizing vortex Rossby wave damping is weak in these cases for two reasons: (i)

the critical radius lies far outside the vortex core in a region with very small remain-

ing radial vorticity gradient, and (ii) the vortex turnover time at the critical radius is

very long because of the slow remaining circumferential velocity and because of the large

length of the circumference. With weak VRW damping, these vortices support long-time

precessions of quasi-modes with circumferential Fourier mode one, and these correspond

roughly with horizontal displacements of the entire vortex structure as considered here.

Reasor et al. propose a heuristic model to describe these nearly undamped quasi-

modes motivated by previous linearized analyses of Schecter et al. (2002); Schecter &
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Montgomery (2003) in the context of the quasi-geostrophic and the asymmetric bal-

anced model of Shapiro & Montgomery (1993). The heuristic model states that potential

vorticity perturbations, q′, due to the precessing quasi-mode should obey

q′ = −Fq,s(r, z)

ωp
[sin(λ− ωpt) − sin(λ)] , (6.1)

where λ denotes the circumferential angle relative to the background vertical shear di-

rection, Fq,s(r, z) is a forcing function that depends on the structure of the unperturbed

axisymmetric vortex, and ωp is the angular frequency of precession.

There are indications in the literature that VRW damping may not be weak at all in

moist vortex flows (Schecter & Montgomery 2007). However, an in-depth discussion of

moist flows is beyond the scope of the present paper.

6.2. Quasi-modes on the vortex core in the present theory

Here we demonstrate that, for vortices in gradient wind balance, i.e., for vortex Rossby

numbers Romes = umax/f0Lmes = O(1), the present theory provides an explanation of

such quasi-modes as the net result of the vortex centreline dynamics. The first-order

centreline evolution equation in (5.17b) may be rewritten as (see App. F)

∂X(1)

∂t
= u

(1/2)
0 + X(1) · (∇qu)

(0)
0 − k ×

(
A
∂2X(1/2)

∂z2
+B

∂X(1/2)

∂z

)
(6.2)

where

A = ln
1

δ

Γ

4π

f2
0

Θ′
1

− Ã , B = ln
1

δ

Γ

4π

f2
0

Θ′
1

∂

∂z

(
ln
[ρ0Γ

2

Θ′
1

])
− B̃ (6.3)

and where Ã(t, z), B̃(t, z) are integral expressions involving the leading order vortex core

structure as detailed in App. F, eqs. (F 6)–(F 8). In the absence of diabatic forcing, the

core structure becomes time independent as discussed in section 4.3, so that all coeffi-

cients in (6.2) depend on z only. Following Reasor et al. (2004) in assuming, in addi-

tion, a barotropic leading-order vortex and constant (logarithmic) background stratifica-
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tion, corresponding to Θ′
1 = const, the equations further simplify. Finally, since Reasor

et al. (2004) use models based on the Boussinesq approximation for the development of

their vortex alignment theory, we may consider here the simplified cases of exponential,

ρ0(z) = ρ∞ exp(−z/Hρ) or constant, ρ0(z) ≡ ρ∞, background density. In both cases, all

coefficients in (6.2) become constant, i.e., independent of z.

Reasor et al. (2004) assume forcing of an initially vertically aligned barotropic vortex

by horizontally homogeneous easterly vertically sheared winds, so that

u
(1/2)
0 =

(
U cos(πz/H), 0

)T

, (6.4)

and (∇qu)
(0)
0 ≡ 0 in (6.2), where H is the height of the top boundary of flow domain.

At the bottom and top of the domain, they assume constant potential temperature

boundary conditions which, considering the potential temperature transport equation

and the fact that the potential temperature is horizontally homogeneous in the farfield,

corresponds to rigid lid conditions, i.e., to w = 0 at z = 0 and z = H . Recalling eqs. (4.25)

for the first Fourier modes of the vertical velocity in the vortex core and considering the

adiabatic case like Reasor et al. (2004), we find that rigid lid conditions require

∂X(1)

∂z
= 0 at z = 0 and z = H. (6.5)

This provides the top and bottom boundary conditions for solutions of (6.2).

With these simplifications, the equations in (6.2) are linear in X(1), so that solutions

may be constructed as superpositions of a particular solution X(1)
p (z) satisfying

A
d2X(1)

p

dz2
+B

dX(1)
p

dz
= −k × u

(1/2)
0 (6.6)

and suitable homogeneous solutions which satisfy

∂X
(1)
h

∂t
= −k ×

(
A
∂2X

(1)
h

∂z2
+B

∂X
(1)
h

∂z

)
(6.7)

and will guarantee compliance with the initial conditions.
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Particular solutions satisfying (6.6) for u
(1/2)
0 (z) from (6.4) are of the form

X(1)
p (z) =

(
X0, a cos(πz/H) + b sin(πz/H) + Y1 exp(−Bz/A) + Y0

)T

(6.8)

where

a = U

(
Aπ2

H2
+
B2

A

)−1

, b = −BH
Aπ

a . (6.9)

X(1)
p satisfies the boundary conditions from (6.5) provided b = Y1 = 0, so that

X(1)
p (z) =

(
X0, a cos(πz/H) + Y0

)T

. (6.10)

This finding corroborates and extends earlier results in the literature: for a concentrated

atmospheric vortex embedded in a background vertical shear there is an equilibrium

configuration involving a down-shear left tilt of the vortex centre (see Reasor et al. 2004,

and references therein). We extend this in that we allow for horizontal displacements of

the vortex center comparable to the vortex core size whereas earlier studies relied on

linearization and small displacement assumptions.

Real-valued homogeneous eigenmode solutions from (6.7) satisfying the boundary con-

ditions in (6.5) read

X
(1)
h,k(t, z) = eiωkte−µz

(
eiνkz − µ− iνk

µ+ iνk
e−iνkz

)[
X

(1)
0 + ik × X

(1)
0

]
+ c.c. , (6.11)

where c.c. indicates the complex conjugate, and

ωk =
B2

4A
+
Aπ2

H2
k2 , µ =

B

2A
, νk =

π

H
k (k = 1, 2, ...) . (6.12)

For the Boussinesq case, ρ0 ≡ ρ∞ = const, we have µ = B = 0 and the eigenmode

solutions further simplify. In particular, the gravest mode with k = 1 becomes

X
(1)
h,1(t, z) = cos(πz/H)

(
cos(ωt)X

(1)
0 + sin(ωt)k × X

(1)
0

)
. (6.13)
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For an initially upright vortex perturbed by the shear from (6.4) we find,

X(1)(t, z) =
U

ω
cos(πz/H)




sin(ωt)

1 − cos(ωt)


 where ω =

Aπ2

H2
. (6.14)

A quantitative comparison with Reasor et al. (2004) reveals that the precession frequency

extracted from simulations of vortices with Gaussian distribution of potential vorticity

agrees well with the present theory for their first case in their section 5. This case involves

umax = 10 m/s, Lmes = 100 km, H = 10 km, Lsyn = NH/πf0 = 1250 km, and a vortex

Rossby number Romes = umax/Lmesf0 = 3.2. While Reasor et al. report a ratio of the

vortex turn-over time at the radius of maximum wind speed and the vortex precession

time of ω∗ ≡ ωLmes/umax = 0.053, we have agreement with ω∗ = 0.059 on the basis of

(6.14), the ∼ 10% difference is compatible with a higher order error in δ =
√
Lmes/Lsyn ∼

0.09 for this case.

For the more intense vortex with Romes = 12.7, however, the discrepancy is substantial

with ω∗ ≈ 0.2 in (Reasor et al. 2004) and ω∗ ≈ 0.5 from the present theory. Such

a deviation is not surprising because the regime of validity of the present theory is the

gradient wind regime which, by definition, has Romes = O(1) as ε→ 0. With actual values

of ε ∼ 1/8, the stronger vortex lies outside this regime since Romes = 12.7 ∼ 1.5 ε−1.

Another indication that our theory does not apply to this case comes from the asymptotic

scaling. We should have ω∗ = O(ε) as ε→ 0, whereas the precession and vortex turn-over

times become comparable for the stronger vortex.

7. Discussion

Here we provide an additional discussion of the core structure evolution equation in

(4.21) and the centreline equations of motion in (5.17), and we summarize several limi-

tations of the theory together with possible remedies.
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7.1. The centreline equations of motion

7.1.1. General properties

The left side of the leading order centreline equation of motion, (5.17a), does not

depend on z. This implies the regular part of the quasi-geostrophic background flow on

the right to be barotropic to leading order, and is consistent with results in the literature

stating that (nearly) adiabatic vortices cannot sustain a strong horizontal shear (see,

e.g., Jones 1995, 2000; Reasor & Montgomery 2001; Reasor et al. 2004, and references

therein). It is also consistent with the observation that strong, concentrated atmospheric

vortices develop predominantly in the sub-tropics, where the Coriolis effect and thermal

wind shear are reduced in comparison with the middle latitudes. We recall, however, from

the previous discussions that the vortex even with the assumed weak shear will undergo

horizontal displacements comparable to the vortex core size and will thus be strongly

tilted. Given the implied weak shear of the background flow, one may surmise that the

outer flow could then have been described by a simpler than the quasi-geostrophic theory

in the first place. We leave an exploration of this possibility for future work.

The first two terms on the right in (5.17b) describe the first order advection of the vor-

tex centre by the background flow. The remaining terms capture the self-induced vortex

motion. The definitions of M 1 and Ψ from (3.22b), (5.12), together with (4.33), (4.23a),

(4.25), and (4.30), reveal that vertical tilt and baroclinicity, asymmetries of the diabatic

sources, and the background density stratification interact nonlinearly to produce this

deviation of the vortex centre motion from simple advection by the background wind.

7.1.2. Local induction

In the special case of a barotropic vortex, ∂Γ/∂z ≡ 0, in an atmosphere with constant

density, dρ0/dz ≡ 0, and constant stratification, d2Θ1/dz
2 ≡ 0, the leading logarithmic
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term in (5.17b) is proportional to −(Γ/4π)κb with κ the centreline curvature and b its

binormal unit vector. To see this, consider the definition of M 1 in (3.22b) and use that

∂2X(1/2)/∂z2 = κn + O(δ) and k = τ + O

(
1
)
. At a first glance, this result appears to

be in line with the theory of slender vortex filaments (Callegari & Ting 1978), where

it emerges as the leading-order term in the centreline equation of motion. Keeping only

this leading term one has the classical “local induction approximation (LIA)” (see also

Ricca 1991; Ting et al. 2007, and references therein). There is a discrepancy, however,

in the sign of the term. Whereas a three-dimensional filament moves in the direction of

the binormal unit vector for positive circulation, a hurricane-like vortex precesses in the

opposite direction according to this term.

To obtain a physical interpretation in the present context, consider eqs. (3.20)–(3.22b),

which provide the expressions for M1 and emerge from the analysis of the QG solutions

in the immediate vicinity of the singular vortex. The term in question involving M1 is

part of the first term in (3.20), i.e., −Lzψ
2d
0 . Recalling the derivations leading to this

point, we find that this term embodies the net effect on the stream function of bending

a potential vortex, represented by ψ2d
0 , to follow a curved centreline.

Close inspection of the detailed derivation for three-dimensional vortex filaments in

(Callegari & Ting 1978) reveals that the corresponding term is the sum of two terms in

the asymptotic evaluation of the Biot-Savart kernel which, in analogy with the present

situation, provides the farfield behavior in the immediate vicinity of the singular vortex

line. To verify this, see the first equation on p. 172 in (Callegari & Ting 1978) and trace

back the derivation of the second term on the right. Now, the first term in the slender

filament theory is in agreement with the present result for atmospheric vortices and

has an interpretation analogous to that given in the previous paragraph: it represents

the local net effect of bending a potential vortex along a curved centreline. This effect is
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present independently of whether or not the vortex is long-stretched in the axial direction,

like the classical slender vortex, or whether it is a flow in a shallow fluid layer, like the

atmospheric vortices considered here. In contrast, the second term in the slender vortex

theory, which is twice as large with opposite sign, does not appear here. This term is

the result of nonlocal induction from vorticity located far way along the vortex filament

axis when measured in units of the core diameter. This is also why this term is absent

here: due to the extreme “pan cake–like” aspect ratio of the atmospheric vortex it’s axial

extent is small compared to the vortex core diameter and the far-field induction effect

does not materialize.

7.2. Vortex core structure

7.2.1. The adiabatic lifting mechanism

Jones (1995, 2000) numerically simulates an adiabatic atmospheric vortex in a back-

ground shear. After 6 hours she observes and discusses a constant “relationship between

the direction of the vortex tilt and the orientations of the potential temperature perturba-

tion and vertical-velocity pattern”. This relationship corresponds with the tilt–potential

temperature asymmetry described in (4.23b) and (4.25) above. In the adiabatic setting,

a wavenumber-one pattern of ascent and descent with a phase shift of 90◦ relative to the

potential temperature pattern is found which is reflected in (4.23b) (note the index shift

on the Θ modes). These vertical velocity asymmetries induce the lowering and raising of

Θ surfaces called “adiabatic lifting mechanism” by Frank & Ritchie (1999).

7.2.2. The vortex core evolution equation

Whereas the left side of the vortex core structure evolution equation (1.3a) describes

advection of circumferential momentum in the meridional plane of the vortex, the right

side represents nonlinear interactions of vertical velocity asymmetries with the vortex tilt
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(see definition of ur,∗ in (1.3d) as derived in (4.22)). Such an effect has also been discussed

by Shapiro & Montgomery (1993) in the context of linear and weakly nonlinear theories

for balanced perturbations of a strong vertically aligned axisymmetric vortex. Collecting

all contributing terms we find that ∂uθ/∂t ≡ 0 in the absence of diabatic heating even

when the vortex has a tilt and associated asymmetric vertical velocity fluctuations. In this

case, these asymmetries and the tilt have a particular phase relationship (see section 7.2.1)

that annihilates ur,∗. This annihilation will not occur in general when diabatic effects

are active, and in that case a nonlinear coupling of the vortex core structure evolution

with the vortex tilt dynamics arises and is mediated by the first circumferential Fourier

modes of the asymmetric heating (see eqs. (5.12), (4.33), and the relation between the

asymmetric vertical velocities, ŵ1k, and the asymmetric heating in (4.23)). Note that

these results on the local self-induced motion due to processes in the vortex core will

complement any strengthening, weakening, or alignment processes due to vortex Rossby

waves in the QG farfield (see Montgomery & Kallenbach 1997; Reasor & Montgomery

2001; Schecter et al. 2002, and item (b) in Sec. 7.3.), and these processes can be captured

here through solutions of the regularized outer flow problem in (1.2).

7.3. Limitations of the present theory and outlook

The theory presented here is based on a number of simplifying assumptions that limit

its range of applications and deserve scrutiny in future research work:

(a) Large Rossby numbers and the inner core of a hurricane: In this paper we have

extended asymptotic theories for concentrated quasi-geostrophic vortices to the gradient

wind regime, thereby moving from small to moderate vortex Rossby numbers, and cov-

ering “tropical storms” and “incipient hurricanes”. Mature hurricanes, however, feature

large vortex Rossby numbers with their inner cores in approximate cyclostrophic bal-

ance, where pressure gradients and centripetal accelerations dominate the Coriolis effect.
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Describing such a vortex asymptotically may require a three layer analysis involving a

cyclostrophic inner core, a first outer layer in gradient wind balance, and matching to

the geostrophic far field. In such a setting, new dynamical effects will arise due to the

fact that the vortex turn-over time is no longer separated asymptotically from the vortex

Rossby and buoyancy wave eigenfrequencies, so that a Rossby-Inertia-Buoyancy (RIB)

wave instability may occur (see Plougonven & Zeitlin 2002; Schecter & Montgomery

2004, 2006, and references therein).

(b) Long-range tails of vorticity: We assume here that the leading order farfield be-

havior at every vertical level is consistent with that of a point vortex. Since turbulent

friction and vertical momentum transport due to moist convection will couple the ver-

tical layers, this assumption will have to be modified in a theory for cyclones in moist

air. With such an extension one can then address the effect of larger scale farfield tails

of potential vorticity. Combining the VRW theory for a QG vortex to describe the outer

flow from (Schecter et al. 2002) with the present quasi-stationary theory for the vortex

core in gradient wind balance appears to be promising in this context.

(c) Fast processes – vortex stabilization: One central assumption adopted here is

that the characteristic time scale of all processes considered is commensurate with the

synoptic time scale, i.e., with the characteristic time scale of the large-scale motion of

the vortex. This precludes the description of internal waves, vortex Rossby waves, and

advection on the vortex core, all of which act on much shorter time scales. Following

Ting & Ling (see, e.g., 1983); Ting et al. (see, e.g., 2007) one can incorporate such faster

processes systematically through multiple scales asymptotics in time.

One important effect in this context is the resilience against vertical background shear

induced by vortex Rossby wave damping (see, e.g., Reasor et al. 2004, and references

therein). Note that VRWs on the vortex core have a systematically shorter time scale
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than those on the QG outer flow, so the present statement does not contradict the related

remark on VRWs under item (b) above.

(d) The β-drift: The reader might be missing an explicit representation of the beta

drift (see, e.g., Smith & Ulrich 1990; Smith 1991; Reznik 1992; Reznik & Kizner 2007b)

in (5.17), which is the technical term for the self-induced motion of a vortex due to the

large scale transport of the horizontally inhomogeneous planetary rotation. According to

Reznik & Kizner (2007b) the order of magnitude of the β-drift velocity is Uβ ∼ βL2
syn,

where Lsyn is the Rossby deformation radius. In nondimensional terms using our notation

from (2.4), (2.5), this means Uβ/uref = (βLsyn/f0)(f0Lsyn/uref) = β∗/Ro = β̂/f̂0 = O(1).

Thus, the β-drift will contribute at leading-order to the vortex motion. As the effect

is due, however, to the advection of planetary rotation over distances comparable to

the Rossby deformation radius, Lsyn, it is an effect that materializes implicitly in the

outer quasi-geostrophic flow as part of u
(0)
0 in (5.17a). Within the vortex core of size

Lmes ∼ δLsyn the effect can merely generate a dimensionless higher order contribution of

order βL2
mes/uref ∼ O(δ2), which is why it does not appear in the vortex core dependent

terms M1, Ψ in (5.17b).

An explicit representation of the development of the β-drift is given by Reznik and

co-workers in (Reznik 1992; Reznik & Kizner 2007a,b; Reznik & Grimshaw 2001) who

consider the initial value problem of a concentrated vortex being placed in an unperturbed

QG background flow on the β-plane. They find that the rearrangement of planetary

rotation by the farfield potential vortex generates two large-scale counter-rotating gyres

which in turn induce an effective mean flow component in the vicinity of the vortex. This

self-induced flow shifts the entire vortex in the westward direction, and this is called the

β-drift. We note that the outer flow description in the present theory in (1.2) includes

explicitly the perturbation of the farfield by the presence of the vortex through the stream
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function contributions ψ2d
1 and ψ2d

1 , and we expect future solutions of these equations to

reproduce the β-drift as a contribution to the leading order centreline velocity.

Reznik & Grimshaw (2001) analyse the evolution of a singular vortex based on the

shallow water equations. In addition to the quasi-geostrophic part of the β-effects they

reveal ageostrophic dynamics on the faster intertia-gravity wave time scale. Capturing

these faster-scale processes in the present theory would require introduction of multiple

time scale asymptotics.

(e) Stronger diabatic source terms and moist processes: Preliminary work by Mikusky

(2007) (E. Päschke’s maiden name) indicates that the strength of diabatic source terms

in the presence of moisture can be an order of magnitude larger in δ than assumed here.

The core structure evolution equation in (1.3a) with the strength of the source term from

(1.3d) reveals that with such stronger diabatically induced vertical velocities weaker tilts

will suffice to drive changes of the vortex core structure on the same time scale. Also,

as mentioned already in section 6, the presence of moisture can enhance the damping

effect of vortex Rossby waves (Schecter & Montgomery 2007), thus increasing the vortex’

resilience against vertical shear.

(f) Boundary layer effects: Clearly, we have thus far neglected boundary layer effects,

while the established literature (see, e.g., Emanuel 2003; Smith & Montgomery 2010)

reports that boundary layer processes will have to be included as soon as moist processes

are considered, as these feed and partially determine the vortex’ secondary circulation.

(g) Logarithmic terms: It is beyond the scope of the present paper to either attempt

an “analysis beyond all orders” following Keller & Ward (1996) for the logarithmic terms

appearing in the asymptotic matching in section 5, or to exploit the intermediate asymp-

totic ordering induced by the logarithms as done for slender fluid vortices by Klein &

Majda (1991) (see also Ting et al. 2007).
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Appendix A. Governing equations in the co-moving coordinates

Transforming (2.6) to the vortex-centred coordinates from section 4.1.2 using (4.6) −

(4.8) we using, U ≡ ∂X/∂t, and

∇q ≡
1

δ
∇̂ ≡ 1

δ

(
er

∂

∂r̂
+ eθ

1

r̂

∂

∂θ

)
and

∂

∂z

∣∣∣∣
t,x

≡ ∂

∂z

∣∣∣∣
t,bx

− 1

δ

∂X

∂z
· ∇̂ (A 1)

we find

∂(U + urel)

∂t
+

1

δ
urel · ∇̂urel + w

[
∂

∂z
− 1

δ

∂X

∂z
· ∇̂
]

(U + urel)

+
1

δ7
1

ρ
∇̂p+

1

δ2
f k × (U + urel) = 0 ,

(A 2a)

∂w

∂t
+

1

δ
urel · ∇̂w+ w

[
∂

∂z
− 1

δ

∂X

∂z
· ∇̂
]
w

+
1

δ10

(
1

ρ

[
∂

∂z
− 1

δ

∂X

∂z
· ∇̂
]
p+ 1

)
= 0 ,

(A 2b)

∂ρ

∂t
+

1

δ
∇̂ · (ρurel) +

[
∂

∂z
− 1

δ

∂X

∂z
· ∇̂
]

(ρw) = 0 , (A 2c)

∂Θ

∂t
+

1

δ
urel · ∇̂Θ + w

[
∂

∂z
− 1

δ
w
∂X

∂z
· ∇̂
]

Θ = QΘ , (A 2d)

where Θ = p
1

γ /ρ.

Appendix B. The regular part of the outer flow streamfunction

To show that under (3.26) ψ∗
2 will be continuous at r = 0, consider a repetition of the

prodedure from section 3.3.1. Let ψ2d
2 solve

∇q

2ψ2d
2 = −Lzψ

2d
1 . (B 1)



Atmospheric mesoscale vortices: dry air, weak shear 43

Applying Lz to (3.23) the most singular behavior in r is generated by the second term

on the right. When the two derivatives in Lz meet the factor r ln r, the following term

arises,

δ3

r

f2
0

Θ′
1

M1

(
er ·

∂X(1)

∂z

)2

(B 2)

The corresponding contribution to ψ2d
2 will be linear in r. All other contributions will

be at least as smooth near r = 0 as r2 ln r. As a consequence, the source term in the

equation for the remainder, i.e.,

(
∇q

2 + Lz

)
ψ∗

3 = −Lzψ
2d
2 − qr . (B 3)

is no longer singular at r = 0 and ψ∗
3 will be smooth and thus lending itself for accurate

numerical solution.

Appendix C. Further details of the core solution

C.1. Homogeneous solutions to the second order core streamfunction equation

There are two linearly independent homogeneous solutions to (4.31). Because ζ
(0)
br → 0 as

r̂ → 0 and r̂ → ∞, the operator on the left of (4.31) reduces to ∂brbr +(1/r̂)∂br −1/r̂2, with

homogeneous solutions r̂ and r̂−1, in these limits. One of the homogeneous solutions to

(4.31) is of the form C1k u
(0)
θ with C1k = const. It is proportional to r̂ near r̂ = 0 and to

r̂−1 as r̂ → ∞. The other homogeneous solution is singular at r̂ = 0 and must therefore

be discarded.

C.2. Higher harmonics of the leading order core solutions

Here we provide some considerations that were not listed in the main text to not distract

from the principal line of thought.

Since p̂(4) is axisymmetric (see (4.14b)), the vertical momentum balance in (4.17)
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implies that the cirumferential average is trivially hydrostatic, i.e.,

ρ̂
(4)
0 = −∂p̂

(4)

∂z
, (C 1)

and that all higher than the first circumferential harmonics of ρ̂(4) and – via the equation

of state (4.20) – of Θ̂(4) vanish identically, i.e.,

Θ̂
(4)
lk = − ρ̂

(4)
lk

ρ0
= 0 for l > 2; k = 1, 2 . (C 2)

Thus, Θ̂(4) has no higher than the first circumferential harmonics. This allows us sub-

sequently to obtain closed expressions for the harmonics of the second order horizontal

flow despite the presence of the nonlinear advection terms, which would otherwise couple

all Fourier modes through triad interactions and render the equation system unclosed.

All higher harmonics ŵ
(1)
lk for l > 2 obey equations such as (4.23b) without the terms

involving Θ̂
(4)
lk∗ because these vanish identically (see (C 2)). Thus, in an adiabatic vortex

ŵ
(1)
lk = 0 for l > 2 and k ∈ {1, 2}. Since we wish to allow only for source terms QΘ that

do not principally alter the solution structure relative to the adiabatic case, we assume

Q
(2)
Θ,lk = 0 and hence ŵ

(1)
lk = 0 for

(
l > 2; k = 1, 2

)
. (C 3)

C.3. First order horizontal momentum balance

The radial momentum balance at O(δ−2), (4.15a), yields higher order gradient wind

balance for p̂
(5)
0 after circumferential averaging,

1

ρ0

∂p̂
(5)
0

∂r̂
− 2u

(0)
θ u

(1)
θ

r̂
− f0 u

(1)
θ = 0 . (C 4)

The first Fourier modes of (4.15) reveal the mode one components of p̂(5) to be in

geostrophic balance with the Coriolis force due to the leading-order vortex motion, i.e.,

p̂
(5)
11 = −r̂ ρ0f0

dX0

dt
, p̂

(5)
12 = r̂ ρ0f0

dY0

dt
. (C 5)

All higher harmonics of p̂(5) are found to vanish identically.
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C.4. Higher harmonics of the second order horizontal flow

Here we first define

Dj =

(
∂2

∂r̂2
+

1

r̂

∂

∂r̂
− j2

r̂2

)
, (C 6)

and then, in analogy with the derivations in section 4.4, arrive at

4D2

[
φ

(2)
21

]
=
∂X(1)

∂z

[
∂

∂r̂
+

1

r̂

]
ŵ

(1)
11 +

∂Y (1)

∂z

[
∂

∂r̂
+

1

r̂

]
ŵ

(1)
12 (C 7a)

4D2

[
φ

(2)
22

]
=
∂X(1)

∂z

[
∂

∂r̂
+

1

r̂

]
ŵ

(1)
12 +

∂Y (1)

∂z

[
− ∂

∂r̂
+

1

r̂

]
ŵ

(1)
11 (C 7b)

and

Dj

[
φ

(2)
jk

]
= 0 , for j > 3; k = 1, 2 . (C 8)

The second harmonics, φ
(2)
2k , can be solved for analytically given the asymmetries of ŵ(1)

and the components of the tilt (Bronstein & Semendjajew 1979). Just as for the first

harmonics, these solutions should be determined under the constraint that the divergent

part of the horizontal flow has to vanish at large r̂ consistent with the non-divergent outer

flow. For higher harmonics mass conservation is guaranteed if φ
(2)
jk ≡ 0 for j > 3; k = 1, 2.

In analyzing the second and higher harmonics of the streamfunction we find

(
∂2

∂r̂2
+

1

r̂

∂

∂r̂
−
[
ζ
(0)
br

u
(0)
θ

+
4

r̂2

])
ψ

(2)
22 =

(−1)k∗

u
(0)
θ

(
H + I + J + Q

)

2k∗

, (C 9)

where k∗ = 3 − k, and

H2k =
1

2

∂

∂r̂

(
r̂ŵ

(1)
2k

∂u
(0)
θ

∂z

)
(C 10a)

I2k =
1

2
[r̂(ζ(0) + f0)]D2φ

(2)
2k (C 10b)

J2k =
1

2

∂φ
(2)
2k

∂r̂

(
r
∂ζ(0)

∂r̂

)
(C 10c)

Q2k =

[
−1

4

∂

∂r̂

(
r̂
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(0)
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∂r̂

[
·
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+
u

(0)
θ

2r̂

]
X2k (C 10d)

with

X21 =

(
∂X(1)

∂z
ŵ

(1)
11 +

∂Y (1)

∂z
ŵ

(1)
12

)
, X22 =

(
∂X(1)

∂z
ŵ

(1)
12 − ∂Y (1)

∂z
ŵ

(1)
11

)
. (C 11)
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The second harmonics of the horizontal velocity depend on the first Fourier modes and the

vortex tilt which do not depend on the second harmonics in return. Thus we will not need

the second and higher harmonics to arrive at our main results, the evolution equations

for the leading order core structure and the vortex tilt. Yet, we will need the large-

r̂ behaviour of the second harmonics in constructing consistently matched asymptotic

solutions for the vortex core and outer flow up to and including terms of order O(δ).

In preparation for this step we consider the large-r̂ behaviour of homogeneous solutions

to (C 9). Since the derivative of the leading order vorticity, ζ
(0)
br , in (C 9) vanishes for large

r̂ by assumption, these homogeneous solutions satisfy

(
∂2

∂r̂2
+

1

r̂

∂

∂r̂
− 4

r̂2

)
ψ

(2)
2k,h = O

(
1
)

as r̂ → ∞ , (C 12)

and one finds that

ψ
(2)
2k,h = ψ∗

2k r̂
2
(
1 + O

(
1
))

as r̂ → ∞ (C 13)

with ψ∗

2k = const is consistent with this behaviour. The amplitudes ψ∗

2k of the corre-

sponding homogeneous contributions to ψ
(2)
2k are determined in the course of matching

the inner and outer solutions in section 5.

The higher harmonics of the streamfunction satisfy

(
∂2

∂r̂2
+

1

r̂

∂

∂r̂
−
[
ζ
(0)
br

u
(0)
θ

+
j2

r̂2

])
ψ

(2)
jk = 0 , for j > 3; k = 1, 2 (C 14)

and these equations are trivially solved by ψ
(2)
jk ≡ 0.

Appendix D. Linearization of the outer flow near the centreline

As the outer flow regular velocity is divergence free its local linearization can be ex-

pressed in terms of a local quadratic stream function,

rer · (∇qu
∗)0 = −k × ∇q

(
−r

2ζ∗0
2

+ ψ∗

2

)
. (D 1)
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where

ψ∗

2(r, θ) = r2
(
ψ∗

21 sin(2θ) + ψ∗

22 cos(2θ)
)
. (D 2)

Here ζ∗0 is the vorticity of the regular part of the flow at X0, and ψ∗
21, ψ

∗
22 define the

components of the symmetric part of the velocity gradient, i.e., of the local irrotational

strain tensor. A straighforward calculation shows that

(
(∇qu

∗)0

)
= −




−ψ∗
21 ψ∗

22 + ζ∗0

ψ∗
22 − ζ∗0 ψ∗

21


 . (D 3)

The representation in (D1), (D 2) implies (5.7).

Appendix E. Large-r̂ behavior of the operator in (5.10), (5.11)

Consider the solution operator for the first Fourier mode stream function of the inner

solution in (4.35), i.e.,

Lu [F ] =
u

r̂

br
ˆ

0

1

r̄u2

r̄
ˆ

0

r′F(r′) dr′ dr̄ . (E 1)

Assume that u = (Γ/2πr̂)
(
1 + O

(
1
))

and r̂2du/dr̂ = −(Γ/2πr̂2)
(
1 + O

(
1
))

as r̂ → ∞.

Following de L’Hôspital’s rule we have

lim
br→∞

Lu [f ] (r̂) = lim
br→∞

bŕ

0

r′f(r′) dr′

r̂u2
(

1
u − bru′

u2

) =
π

Γ

∞̂

0

rf(r) dr (E 2)

if the limits on the right exists. For the four source terms of the equations for the ψ
(1)
1k

in (4.35) we now need to investigate the convergence of this last integral.

For H1k, defined in (4.33), we recall the solution for w
(1)
1k in (4.25). Since we consider the

diabatic source term Q
(2)
Θ as given externally here, we may assume it to decay sufficiently

rapidly so that any time it occurs in the integrand in Lu [f ], the inner integral will

converge. Then, the term in w
(1)
1k with the slowest decay is proportional to u

(0)
θ

2
/r ∼ r−3,
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since u
(0)
θ ∼ r−1 for large r. This implies r̂H1k ∼ r̂−3, and last integral in (E 2) will

converge for f = H1k. Analogously, r̂Q1k ∼ r̂−4 and the integral converges.

For the convergence of the integral with f = J1k we have to assume in addition that

∂2u
(0)
θ /∂r̂2 = Γ/(πr̂3)

(
1 + O

(
1
))

. In that case, since φ
(1)
1k → 0 under the conditions

formulated below (4.30) (checked via two-fold application of de L’Hospital’s rule) we also

have ∂φ
(1)
1k /∂r → 0 and rJ1k = O

(
r−2
)

as r → ∞, and the integral converges.

Finally with w
(1)
1k ∼ r̂−3, the term with slowest decay in I1k from (4.33) is the one

involving the factor r̂f0, and we have rI1k ∼ r̂−1 for large r̂ and the last integral in (E 2)

diverges. More precisely,

r̂ I1k = −I1k

r̂

(
1 + O

(
1
))

as r̂ → ∞ , (E 3)

where

I1k =
f2
0

4π2ρ0

∂

∂z

(
ρ0Γ

2

Θ′
1

(−1)k ∂X
(1)
k

∂z

)
. (E 4)

By adding and subtracting this dominant behavior we find a decomposition of Lu [I1k] (r̂)

into a logarithmically diverging term plus a finite contribution, viz.

Lu [I1k] (r̂) = −πI1k

Γ
ln r̂ + L

[
Ĩ1k

]
+ O

(
1
)

(r̂ → ∞) (E 5)

where

Ĩ1k = I1k +H(r̂ − 1)I1k/r̂
2 (E 6)

is the regularized version of I1k with H( · ) the Heaviside step function.

Appendix F. Centreline motion for the barotropic, adiabatic case

We start from the first-order centreline equation of motion in (5.17b), viz.

∂X(1)

∂t
(t, z) = u

(1/2)
0 + X(1) · (∇qu)

(0)
0 − ln

1

δ
(k × M1) + (k × Ψ) (F 1)
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where

M 1 =
f2
0

8πρ0Γ

∂

∂z

(
ρ0Γ

2

Θ′
1

∂X(1)

∂z

)
, (F 2a)

Ψ =
(
− i L

[
H11 + Ĩ11 + J11

]
+ j L

[
H12 + Ĩ12 + J12

])
, (F 2b)

furthermore,

L
[
H1k + Ĩ1k + J1k

]
= R1 [W Tk] +R2

[
1

ρ0

∂

∂z
(ρ0W Tk) ,

1

ρ0

∂

∂z

(
ρ0 Ŵ Tk

)]
. (F 3)

Here we have used (4.25) for the diabatic case, so that

w
(1)
1k = W Tk with W =

1

Θ′
1

u
(0)
θ

2

r

(
u

(0)
θ

r
+ f0

)
(F 4)

and where we have defined the abbreviations

Ŵ =
Γ2

4π2

f2
0

Θ′
1

, T1 = −∂X
(1)
C

∂z
, T2 = +

∂Y
(1)
C

∂z
, (F 5)

and

R1[W ] =
π

Γ

∞̂

0

r
∂

∂r

(
rW

∂u
(0)
θ

∂z

)
dr , (F 6a)

R2[W, Ŵ ] =
π

Γ

∞̂

0

(
−r2 [ζ(0) + f0]W +

H(r − 1)

r
Ŵ

)
dr (F 6b)

− π

Γ

∞̂

0

(
r2
∂ζ(0)

∂r

)
∂

∂r

(
r

ˆ r

0

1

r̄3

[
ˆ r̄

0

¯̄r2W d¯̄r

]
dr̄

)
dr

+
π

Γ

∞̂

0

(
r2
∂ζ(0)

∂r

)
dr

∞̂

0

1

r̄3

[
ˆ r̄

0

¯̄r2W d¯̄r

]
dr̄ (F 6c)

Finally, we find

Ψ = Ã
∂2X(1)

∂z2
+ B̃

∂X(1)

∂z
(F 7)

where

Ã = R2

[
W, Ŵ

]
. and B̃ = R1 [W ] +

1

ρ0

∂

∂z

(
ρ0R2

[
W, Ŵ

])
(F 8)

Collecting all results from this section we obtain the equation of motion for X(1) as

announced in (6.2), (6.3).
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