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Abstract

A model for interactions between non-hydrostatic gravigwes and deep convective narrow
hot towers is presented. The starting point of the derimatice the conservation laws for
mass, momentum and energy for compressible flows combintdanbulk micro-physic
model. Using multiscale asymptotics, a set of leading oedgrations is extracted, valid for
the specific scales of the investigated regime. These araestiale ofl00 s, a horizontal
and vertical lengthscale @f) km for the wave dynamics plus a second horizontal lengtkescal
of 1 km for the narrow hot towers. Because of the comparativetyrtshorizontal scales,
Coriolis effects are negligible in this regime. The leadorger equations are then closed
by applying conditional averages over the hot tower lerggites leading to a closed model
for the wave-scale that retains the net effects of the smatigle dynamics. By assuming a
systematically small saturation deficit in the ansatz, thalkvertical displacements arising
in this regime suffice to induce leading order changes ofdhérated area fraction. The latter

is the essential parameter in the model arising from theoyptysics.
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Zusammenfassung

Der Artikel prasentiert ein Modell zur Beschreibung derdieelwirkung von nichthydro-
statischen Schwerewellen mit hochreichenden Konvekittolken. Der Ausgangspunkt der
Herleitung sind die Erhaltungsgleichungen fur Masse,Ul®pind Energie fur kompressible
Stromungen, kombiniert mit einepbulk‘-Modell fur die Mikrophysisk. Mittels Mehrska-
lenasymptotik wird ein System von Gleichungen fur die Dyiilafuhrender Ordnung ex-
trahiert, welches gerade fir die spezifizierten Skaletti@it besitzt. Diese Skalen sind
eine Zeitskala von00 s, eine horizontale und vertikale Langenskala vorkm fur die Dy-
namik der Wellen sowie eine zweite horizontale Langerskah1 km fur die Konvekti-
onswolken. Aufgrund der verhaltnismaRig kurzen hortaen Langenskalen sind Coriolis-
Effekte im betrachteten Regime vernachlassigbar. Dagti®nde System wird durch be-
dingte Mittelung Uiber die Langenskala der Konvektionkwo geschlossen und in ein Mo-
dell fur die Wellenskala uberfuhrt, welches jedoch diektiven Beitrage der kleinskaligen
Dynamik beinhaltet. Im Ansatz wird ein systematisch klsirg&ttigungsdefizit angenom-
men, so dass die im betrachteten Regime auftretenden klgegréikalen Auslenkungen zu
Anderungen des Flachenanteils gesattigter Bereichatirehder Ordnung filhren kdnnen.

Dieser Flachenanteil ist der wesentliche aus der Mikrgpghgbgeleitete Parameter.
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1 Introduction

Interactions between internal gravity waves and moistuthé atmosphere give rise to several
important effects. It is known that tropical deep moist aegtion generates gravity waves,
see for example GVELL et al. (1991); IaNE et al. (2001), and that these waves yield a
major contribution to overall wave-drag (K et al. (2003)). Parameterizations of this “gravity
wave-drag” (see INDZEN (1981)) are important for global circulation models to puod
realistic flows. In this context, BRGI (1989) finds that using a stability frequency that
includes a modification due to moisture yields improved ltesn the other hand, patterns of
convection are also strongly affected by gravity wavesiAbibl and LALAS (1975); GHIMONAS

et al. (1980) find that waves can trigger deep convection Wyirng to overcome convective
inhibition. MAPES (1993) investigates mechanisms through which gravity watribute to
the organization of convection.

Most studies investigating the interactions between gyyavaves and moisture rely on the
numerical solution of “full physics” models, usually therspressible or anelastic equations
coupled with a bulk micro-physics model, se&JRRAN and KLEMP (1983); Q.ARK et al.
(1986); LANE et al. (2001); MGLIETTA and ROTUNNO (2005) for example. However, because
of the complexity of the involved models, it is very difficutd extract and understand the
essential interaction mechanisms from the equations. Hemurpose it is usually beneficial
to study reduced models that describe only a certain subséfeats considered to be important
while neglecting others. Because of the reduced complexitiie equations, such models are
often much more accessible to mathematical analysis andoiaide valuable insight into
the essential dynamics of the studied subject. Approaahesudy the interaction between
gravity waves and moisture that feature simplified models ba found, for example, in
EINAUDI and LALAS (1973), who introduce a model for gravity wave propagatioa saturated

atmosphere, or in BRCILON et al. (1979, 1980);Usem and BARCILON (1985), who utilize
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a switching mechanism between a dry and a reduced moististdl@quency depending on
vertical displacement. The introduction of a reduced ‘@ffe stability” by moisture is also
indicated in DURRAN and KLEMP (1982).

This paper presents a reduced model for nonlinear interschetween non-hydrostatic, non-
rotating gravity waves and saturated areas in an atmosjgbeataining deep moist convective
towers. Itis an extension of the linear model derived andyaed in RUPRECHT et al. (2010).
Interesting results from the analysis of the linear mode| &r example, the introduction of a
lower cut-off horizontal wavenumber by moisture in additio the well-known upper cut-off
as well as a reduction of the modulus of the group velocitythBmapers rely on the ansatz
introduced in KEIN and MaJDA (2006), where the conservation laws for mass, momentum,
and energy of compressible flows combined with a bulk midmgsics model constitute a set of
governing equations from which reduced models for spedfites are derived using multiscale
asymptotics. In contrast to URRECHT et al. (2010), where the saturated areas constitute a
passive background modulating the propagation charatiteriof gravity waves, the derivation
in the present paper uses a slightly modified ansatz, leadingnlinear coupling between the
saturated area fraction and the wave-scale dynamics.

The final model is introduced and explained in subsectiomhile details of the derivation
are presented later in section 2. The present paper prowidgsthe derivation, leaving a

thorough analysis of the model’s properties as well as nigaldntegrations for future work.

1.1 Summary of the Model

All equations below feature nondimensional quantities.rotighout this paper, superscripts
indicate terms of a specific order in the employed expan$iorexampleu(®) is the order unity
term in the expansion of horizontal velocity.

The prognostic variables in the final model are the horiZorgkcity u(®), the wave-scale

vertical velocityw(?), the wave-scale potential temperatérehe functionr = p /p(®) where
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p3) is the pressure and® the background density, the conditional averages of thett@oale
perturbations of vertical velocity and potential temperaty’ andf’ and finally the local vertical
displacement,; and the area fraction of saturated regiensSee section 2 for details on the

definition of the tower-scale quantitie@f) is the moist-adiabatic background stratification.
Linearized anelastic moist dynamics:

u(TO) +V,mr=0
(1.1)
u’)ﬁo) + 71, =00
0P + (1 - 0)0Pp® = 0Py
POV, - u® 4 (pw)w(m) —0
Averaged nonlinear tower-scale dynam-
ics:
’w;_ =+ Ir ’w/ = 91
l1-0
0, + 00w’ + 10_—709' =o(1-0)0Pq® (1.2)
Or = fus,T\I/
B w
£US,T = w(O) - 1—o

The function¥ characterizes the sensitivity of the saturated area fnaetiwith respect to the
displacement,s. From its definition (2.36) it follows that it is always pdsé&. Hence upward
motion, that iys - > 0, increases the saturated area fraction while downwardmdtminishes
it. The wave-scale equations (1.1) are the non-hydrostagtastic equations, linearized around
a background state with zero velocity and a stratificatimrgiby@g). However, the effective
stratification in (1.1) is 0 reduced by a factor dfl —o). Further, the net wave-scale dynamics
resultin a source term on the right hand side of (JLtélated to release and consumption of latent

heat. Note that because”) appears on the right hand side of (3.2nd (1.2) there exists a
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bi-directional coupling between wave- and tower-scale.
If ¥ =0, it follows from (1.2), thato = const and (1.1), (1.2) reduce to the model analyzed

in RUPRECHTet al. (2010).

2 Model Derivation

The derivation relies on the techniques outlined in detaiKLEIN (2004, 2008, 2010) and in-
volves five steps. First, characteristic length- and timsescof the analyzed regime have to be
identified. Then, corresponding coordinates resolvingahseales are introduced by rescaling a
set of “universal” coordinates, = andt by powers of the generic asymptotic expansion parame-
ter e, arising from the distinguished limit introduced inADA and KLEIN (2003). Expansions

in powers ofz are then inserted into the governing equations, whichpdotig KLEIN and Ma-

JDA (2006), are the conservations laws for mass, momentum ardyefor compressible flows
combined with the bulk model for warm micro-physics (2.1ppitd from GRABOWSKI (1998).
Collecting all leading order equations then results in acfetquations, which finally require

some form of closure in order to obtain a closed set of equsatio

Qv +u- v||qv +wqy,z =

Cev - Cd

Get tu-V)ge +wge . =
2.1)

Cd - Cac - Ccr

1
gri+u- Vg +wgr . + 5 (pa:Vr), =

Cac + Ccr - Cev~
Here, ¢,, g. andgq, denote the nondimensional mixing ratios of vapor, cloudewaand rain
water while Cy, C.y,, Cac, C., represent the conversion between these species by conden-

sation/evaporation of cloud water/vapor, evaporationaifi water, auto conversion of cloud
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droplets into rain, and collection of cloud water by fallirgin. Vr is the terminal velocity

of rain droplets.

2.1 Scalesand Expansions

The derivation features a horizontal and vertical lengifesof 10 km respectively, corresponding
to the regime of non-rotating, non-hydrostatic internaves cf. chapter 8 in GL (1982), as
well as a second horizontal length scaleldfim, corresponding to the order of magnitude of
the diameter of deep convective hot towers indicateddMIONE and ZPSER(1980); STEVENS
(2005). The employed time scalelig0 s, compatible with the typical value of the Brunt-Vaisala
frequency ofN ~ 0.01 s™! quoted in GLL (1982). Equation (2.2) summarizes the employed

scales and introduces the corresponding coordinatewiegohem.

Horizontal: 10 km,1km — x,7=¢ 'x
Vertical: 10km - =z (2.2)
Time: 100s — 7=¢"1t

The order of magnitude of vertical displacements resufiog (2.2);, and a reference velocity

of 10 m s~! is 1 km. Thus the nondimensional vertical displacenteistof the order

1 km

Hence, asqys. = O(1), the amountig of released or consumed condensate by vertical
displacements is also of the order
oq ~ ECIvs,z = O(E). (2.4)

The saturation deficit is defined as the difference betweesdturation mixing ratig,s and the

mixing ratio of water vapor

5QVS = Qvs — Qvy- (25)
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In a regime with a saturation deficly of order unity, condensation or evaporation®fe)
amounts of vapor or cloud water cannot exert a leading orflecteon the size of saturated
regions, see the upper illustration in figure 1. This regim@westigated in BPRECHT et al.
(2010). There, the saturated area fractias constant over time and acts as a wave-modulating
background. In the present paper, a systematically sntaliatéon deficit is assumed, that is the

vapor mixing ratiog, is expanded as
gv (0, 2,2,7) = ¢\ (2) + eV (0,2, 2,7) + O(?), (2.6)

Whereasﬁg) is the leading order term of the saturation mixing ratio. rri@.6) it follows that
the saturation deficit is of the order

dqvs = O(e), (2.7)

so that now (2.4) suffices to induce a leading order changeeirsize of saturated regions, see
the lower illustration in figure 1 for a sketch of this reginfée expansions of the mixing ratios

of cloud waterg. and rain water, read

dc/r (n,x,2,7) = q((;(/)i (n,2,2,7)

@ , (2.8)
+2qh) (n,2,2,7) + O(2).

The dynamical quantities are expanded as described FRRCHTet al. (2010), see appendix A
for a summary. Note that the horizontal velocity is assunodaktindependent from at leading
order.

All resulting leading order equations are split into eqoiasi for the tower-scale averages,

defined by
B _ 2 (), X, 2, T)d
é(x,2,7) = lim Sz 901 _ Jdn (2.9)
e
and perturbations := ¢ — ¢. Here,
(=10, m0)° == {(m,m2) € R? : 1], |m2| < o} (2.10)
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denotes the square around the origin with side length2nef The resulting leading order

equations for the averages read

u + Vv, r=0
’LT}S.O) +m, =00

2.11
0%+ (1-Hy,) 0w = Hy, 0©6P -

v, - (p<o>u<o>) " (p(o>w(o>) = 0.
The derivation of (2.11) is essentially identical to the amé&kuPRECHT et al. (2010). As the
present paper focusses on the modified micro-physics, #ueras referred there for details but

some key-steps can be found in appendix A. The switchingtifomin the present derivation is

defined according to saturation not at leading order butdgr@? (<), that is

1:g) = ¢fY)
Hy, = (2.12)
0:q") < qld).

Note that the large-scale equations (2.11) are esseritlelhfical to the ones in BPRECHTet al.
(2010), the difference between the two models arises dueetdlifferent effective small-scale
equations derived from the micro-physical model, Whichadeinem on the right hand
side of (2.11).

As the following derivations deal solely with the dynamiestbe tower-scale resolved by
the wave-scale related argumertand z are omitted for the sake of a more compact notation.
Unless explicitly mentioned otherwise, the occurring dites can nevertheless depend on both

wave-scale coordinates, too.

2.2 Leading Order Micro-Physics Equation

The leading order equations emerging from the micro-plsysicdel (2.1) splitinto the case with

saturation not only at ord&?(1) but also at orde®(c) and the weak under-saturated case.

10
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Regime | (saturation):

¢V =l
(2.13)
g8 +u® - v, = —wq).
Regime |l (weak under-saturation):
)+ - Vgl = —uw®gfg).
(2.14)

g +u® . ¥, =0

T

The derivation exploits thajég), q\(,i) both depend on only, cf. KLEIN and MAaJDA (2006), and
assumeaéo) = q,(.o) = 0 at7 = 0. Because of this assumption aiﬂ,g) =0, the terms(]ég) and
Céf) arising in RUIPRECHT et al. (2010) and describing evaporation of rain water adiécton

of cloud water by falling rain vanish and do not occur heré¢rdduce the material derivative
D, =08, +u®.v, (2.15)
the leading order vertical displaceméft) defined as the solution of
D £© = ©® = 5@ 4 O (2.16)

and the first order total water mixing ratio

ar =0 += (¢ + ). (2.17)
Letting
gro(n) = qr(n,0) (2.18)

denote some prescribed initial distributiongaf, combining (2.13) and (2.14) and integrating in
time yields

gr(n,7) = qr0(n — /0 u®dr) - eqi.€” (n,7), (2.19)
exploiting thatu(® does not depend on and using (2.16). Thus, for the employed scaling,

the leading order vapor mixing ratiﬁ? in a rising parcel acts as an “infinite” reservoir from

11
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which, in regime 1,0(¢) amounts of vapor condensate into cloud Wqﬁé)r or, in regime 11, are
deposited intaqﬁ”. Onceqﬁl) reaches the saturation threshqiél), the regime switches from Il

to | and further ascend starts generam}éa. Vice versa, in a descending parcéil,) andqgl)
respectively are deposited back irqfo). In this case, at first the cloud water evaporates and once

qél) is depleted, the regime switches from I to Il aqffj) starts to decrease.

The equations for the perturbation4”, ) obtained by subtracting (2.11) from (A10) read

2O 1+ v, - (u<0>w<0>) —§®

0% 1+ v, - (u<o>g<3>) +aVe® =

2.20
H,, (0 +30) 6 20
—Hg, (0 + u”)<0>)@f>,
utilizing thatu(® by assumption independentf
2.3 Displacement in Regimel |
In regime | wherefd,, = 1, (2.20), becomes
0® + v, - (u<0>é<0>) = (2.21)
@"0® — Hy, (0® +w©)6?),
while in regime Il, that is fotH,, = 0, it reads
0B + v, - (u<0>§<0>) + 0 0e® = (2.22)

— Hy, (0©® +%())0.

Thus, ©(© and §®) evolve purely due to large-scale forcing in regime | but kesg with
frequencyy/ ©%) in regime 1. Assuming that(®) andd(® are initially constant on the-scale

in regime I, then at > 0 they are constantin all areas that never belonged to regimpéd this

12



144

145

146

147

148

149

150

151

152

153

154

time as identical oscillations with frequen 22) are performed at every point. Hence

Vo' (n,7) = V,0% (n,7) =0

(2.23)
if Hy,(n,7")=0vr" <.

Note that\/@ is the maximum frequency of waves in the large scale systebi)2so (2.20)
describes small-scale and high frequency oscillationgat Home point; the regime switches
from I to I, ©(®) andd® start oscillating with initial values equal to the final vain the regime

| dynamics. As the interface between regime | and Il movestiapvariations ino(®), 6 are
generated in formerly saturated regions that become watarated, even for constant initial
values. Now the ad-hoc assumption is made that these sozddl;high frequency oscillations

can be neglected, that is
() (0, 7) = Wus(7), 5(3)(77, T) = éus(r) (2.24)

in regime Il, whereasi,s, 0, are the constant values in all the time under-saturated aBse
figure 2 for a sketch. This approximation is motivated not steorological considerations but
rather by the resulting mathematical simplifications, s285), that allow to close the model
by analytical means. An improved representation presuyrgthl allowing for an analytically
computed closure could, for example, attempt to capturesioited oscillation by adding a
term A, ), exp(i\/@ﬁ) t0 Wys andfys in (2.24), whereA, ;, are determined by the time of
the regime switch. Further, the comparatively simple stmecof (2.21) and (2.22) might even
allow to employ analytical solutions in the closure. Thesar& derivation, however, utilizes
the simple approximation (2.24) and improvements of theesgntation of thev(®) andd®) in
under-saturated regions are left for future work. Note,thaide from the adopted asymptotic

limit, (2.24) is the only ad-hoc assumption used in the ddion.

Define the displacement in under-saturated aggaby replacingi(®) by . in (2.16), that

13
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D‘rgus (T) = 8‘ré-us (T) = ,(D(O) (T) + Wy (T) (225)

Introduce the function

@(n,7) i=¢"" [qT(n, T) — (qé? + wﬁ?)} : (2.26)

The initial distributiongr ¢ prescribes the initial distribution af, via

G0 = (0, 0) =& [qT,o(n) - (QS‘? - 6(15?)} : (2.27)

It follows from (2.17) that
qgl) tHy, =1
qx = (2.28)
g — g Hy, =0,
henceg. is positive in regime | and negative in regime II. ﬁg), q\(,i) depend oz only, it

follows from (2.19) that when employing approximation @).2;. is given by

0 (1,7) = g0l — / u@dr') — @, 6uu(r). (2.29)
0

Further, we have

V0 (1,7) = Vipeoln — / u©@dr'), (2.30)
0

hence the shape gf is not altered. It is horizontally advected h{® and increased or reduced
by n-independent value@.‘,g)zfus, see figure 3. In order to close the model, we emplogns a
level set function approximately tracking saturated angtsaturated regions. This is outlined in

subsection 2.4.

2.4 Closing the M odel

Denote byA; an individual saturated spot, that is a connected set oftpainthen-plane for
which g, is positive in the interior and zero at the boundary. Furtdenote the boundary by

0A;, the velocity at whichb 4; is moving byv; and finally the outward pointing normal vector

14



on dA; by n, see figure 4. Then the evolution equation for the level settfan tracking the

boundary, cf. WLLIAMS (1985); GsHERand FEDKIw (2002), reads
Orqu + Vi - Ve = 0. (2.31)
Using (2.29) it follows that
(0 =) Vg = 2 (@ + s (2.32)

Note that becaus@A; is a contour line of, andg, is positive insided; and negative outside,

points in the opposite direction &s,q.., hence

V1«
n=—— . (2.33)
|vn‘I*|

By employing (2.30) and (2.33), (2.32) becomes

,(0) ~
on=u® (0) W Was 23
i . n o u . n —_ > T . . 4
v Ays, |an»<,0 (n— fo u(O)dT/)| ( )
The boundary A; is characterized by the condition
40, 7) =0 guo(n — / udr’) = ¢, €us (1), (2.35)
0

cf. (2.29), and is thus fully determined by the displacenaemt the initial distributiony. . This
is the important simplification obtained by introducing eppmation (2.24). For given. o,

define

W, (fusv 7-) = % v; - ndS (236)
O0A;

(0) ]4 1
= —4vsz s -
oA, |Vngeo(n — [; u®dr)]

ds,

using (2.34) and thai(“) is independent of, hence the surface integral oug!’) - n vanishes.
Note that for a fixed value dfs, it is ¥;(&us, 7) = ¥;i(&us, 0), because the saturated spitas
well asq, are simply advected horizontally witf®). The function¥; determines how sensitive

the size of the saturated spot depends on the displaceerfteep gradients af, lead to a

15



weak sensitivity while small gradients result in a strongeledence ofA;| on s, cf. figure
3. In the limit|V,¢.| — oo, the coupling vanishes and the linear model frooPRECHTet al.

(2010) is retrieved. Note that the saturation mixing raggeréases with height, henqqg,)z <0,

so that
\I’i(€11577-) >0 (237)

10 holds for any value of,;s or 7 as well as any initial distribution, .

By integrating (2.20) over a saturated spltmoving at velocityv;, the following balances

are obtained

2/ u?dn—f—j{ w(u@) —vi) -ndS:/ Odn
or A; 0A; A;

2/ 5dn+7{ é(u(o) - vi) -ndS + 922)/ wdn

or A; OA; A;

=0 ¢ / (Hq, — Hq,) dn

+o® / (qumm _ —quzz,m)) . (2.38)
A.

i

see for example HoOMAS and LOMBARD (1979). Now, using (2.24) and (2.34) yields

aT/ DO dny — s (w<0>+wu5) \pl:/ g®

Oy / 63 dn — O, (w<0> +w) v, + 0P / O dp
A; Aq

=60 [ (Hy, T, )dn

1

e / (quwm)_invw(o))dn, (2.39)

i

exploiting again thau(®) is independent from). Let D(ny) = [—770,770]2 denote a square

containing a finite number of saturated spéts.. . . , 4,,(,,,), cf. figure 5. Introduce the weighted

averages

16



0 = H, 003
— 2.40
=T, (2.40)
n(no) U,
Uom G 2=l Vi

10— 00 fD(no) 1dn’
Note that because the spotsare advected with(?), the choice of spots located in a finite square
D(no) changes with time. Hence the series in (2,48)rearranged depending en Assuming
that it converges absolutely, however, for a givgp, the limit ¥ of every rearrangement is
the same and thus independent of time. Because accordi2g3i) @ll terms of the series are
positive, absolute convergence immediately follows fraomvergence. Sum up the balances

(2.39), use that{,, is the characteristic function of the union of dl], hence

n(mo)

; /A fan = /D(,,O) Hq, fdn (2.41)

for any functionf, and then apply the limify — oo to obtain

W — s (w<0> + wu) U=0
0 = B (00 + s ) W + O (2.42)
=0o(1—0)0Pp®.

An expression for the evolution af can be derived from (2.34) in a similar way, employing

(2.41) with f = 1to get

0,0 = (w@) n w) . (2.43)

11 Finally, the constant velocity,,s can be computed from’ via

17
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fD(no) (1—Hy,) @) dn

Wys = lim
foTeo fD(,,O) (1— Hg,)dn
- 1
= (@ ') 7— (2.44)
= — / 1
-0’

The final model, consisting of (1.1) and (1.2), is obtaine@bmbining (2.25), (2.42) and (2.43)

with (2.44).

3 Summary

This paper presents a reduced model for interactions ofhyadmestatic, non-rotating gravity
waves with saturated areas in tropical deep convectivedslouThe derivation features two
horizontal lengthscales, one related to the wave-dynaamid®ne related to the typical diameter
of the hot towers. The conservation laws for mass, momentuheaergy for compressible
flows together with a bulk micro-physics model for vapor,utdovater and rain water mixing
ratios are employed as governing equations. From theseg nsultiscale asymptotics, a set
of leading order equations for the specific length- and toaks of the investigated regime is
devised. This set of leading order equations is then turntxdd closed model for the wave-
scale dynamics by applying conditional averages over theragcale, eliminating the explicit
dependence on the small scale coordinate while retainiagét effects of the micro-physics
on the larger scale. A level-set approach is employed in libguce to track the growing and
shrinking saturated regions. The essential moisturg¢e@lparameter in the final model is the
saturated area fraction in horizontal slices on the lergtlesof the convective clouds. It evolves
according to the vertical displacement generated by thevgaale and net micro-scale vertical
velocity. However, one ad-hoc approximation is introduicettie closure procedure at this stage:

Tower-scale gradients of vertical velocity and potentihperature are neglected that arise in
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areas becoming saturated and under-saturated again. dpe aicthis paper is the derivation of

the model and a detailed analysis is left for future work.
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A Key-Stepsin Derivation

This appendix briefly repeats the essential intermediaessarising in the derivation of the
equations for the dynamical quantities. First, the govegmon-dimensional equations are
guoted, then the employed asymptotic expansions of therdigahquantities are presented and
finally the leading order dynamical equations are given. if\dldal details on the governing

equations, the expansions and the key-steps can be found.#EmnKand MaJpa (2006);

RuUPRECHTet al. (2010); RPRECHT(2010).

A.1 Nondimensional Governing Equations

The non-dimensional conservation laws for mass, momenamargy (expressed as potential

temperature), quoting from kcIN and MAJDA (2006), read

pe+ V- (pu) + (pw), =0
u; +u-Vyju+wu, +ef (Q x V)H +674p71V||p =0
—4

wt+U-V||w+wwz+ef(Q xv)l_—i—e*‘lp*lpz = —¢

O +u- Vo +wh. = & (S5+55°) (A1)
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where

§€ — e g (efn(;d B c) (A2)

is the source term related to evaporation and condensatiole, S5 is a given external source of
energy like, for example, radiation. The latter is set tazarthe present derivation. Note that

as the derivation features two horizontal coordinatesgtadient transforms like

VH '—>VX+671V77. (A3)

A.2 Asymptotic Expansions
The vertical velocity is expanded as
w(x, z,t;e) = w® (n,x,2,7) + O(e), (A4)

while the horizontal velocity is assumed to be independerhfthe micro-scale coordinate at

leading order and therefore expanded as
u(x, z,t;6) = u(x, 2, 7) + O(e). (A5)

The potential temperature is expanded around a backgraaiifisationd(z) = 1 4 €20(2)(z)

as

0(x,2,t;e) = 1+ 20 (z)

+ 30 (), x, 2, 7) + O(). (AB)
Finally, pressure and density are expanded as

(. p)(x, 2, t:6) = (p@, p)(2) + (p™), pM)(2)
+e2(p®, p@)(2) (A7)

+3®, pN(n,x,2,7) + O(e?).
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A.3 Leading Order Equations

After a few transformations employing the key equationstieé appendix in RPRECHTet al.

(2010),

V@ =0 (A8)
and
£H, 00 = H, (2 +0©) 62, (19)

whereadl. incorporates a number @ (1) constants arising during the non-dimensionalization,

the leading order equations for the dynamic quantities, 6, p andp read

ul” + V.7 +V, (p(4)/p(0)) =0
w® +u® . v, w® 4 g, =4 (A10)
POV, u® 1 0y, u® 4 (p(o>w(o>) =0

03 +u® . vn9(3) +w®e?
— H, (w@) + w<0>) X,
Note that the ternﬂgg) occurring in RIPRECHTet al. (2010), describing cooling by evaporation
rain water, vanishes here because saturation at leadieg isrdssumed. The-gradient ofp(*)

and they-divergence of1(") vanish by applying a sublinear growth condition. Averagingr

then yields (1.1).

References

BARCILON, A., J. C. USEM, P. G. DrAZIN, 1979: On the two-dimensional, hydrostatic flow
of a stream of moist air over a mountain ridge. — Geophys.obstys. Fluid Dynamic43,

125-140.

21



207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

BARCILON, A., J. C. UseEM, S. BLUMSACK, 1980: Pseudo-adiabatic flow over a two-

dimensional ridge. — Geophys. Astrophys. Fluid Dynamigsl9—-33.

CHIMONAS, G., F. ENAUDI, D. P. LALAS, 1980: A wave theory for the onset and initial growth

of condensation in the atmosphere. — J. Atmos. $i827-845.

CLARK, T. L., T. HAuF, J. P. KUETTNER, 1986: Convectively forced internal gravity waves:

Results from two-dimensional numerical experiments. —rQuaR. Met. Soc112, 899-925.

DURRAN, D. R., J. B. KKEMP, 1982: On the effects of moisture on the Brunt-Vaisat@trency.

—J. Atmos. Sci39, 2152-2158.

DURRAN, D. R., J. B. KLEMP, 1983: A compressible model for the simulation of moist

mountain waves. — Mon. Wea. Ré\l1, 2341-2361.

EinauDI, F., D. P. laLAS, 1973: The propagation of acoustic-gravity waves in a moist

atmosphere. — J. Atmos. S8D, 365-376.

EiNAUDI, F., D. P. lALAS, 1975: Wave-induced instabilites in an atmosphere nearatain.

—J. Atmos. Sci32, 536-547.

FoVvELL, R., D. DURRAN, J. R. HoLTON, 1991: Numerical simulation of convectively

generated stratospheric gravity waves. — J. Atmos.4S¢il427-1442.

GILL, A. E., 1982: Atmosphere-Ocean Dynamics — Academic Préss, 6

GRrABOWSKI, W. W., 1998: Toward cloud resolving modeling of large-scabpical circula-

tions: A simple cloud microphysics parameterization. —tinds. Sci55, 3283-3298.

Jusewm, J. C., A. BARCILON, 1985: Simulation of moist mountain waves with an anelastic

model. — Geophys. Astrophys. Fluid Dynam83 259-276.

22



228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

Kim, Y.-J., S. D. EKERMANN, H.-Y. CHUN, 2003: An overview of the past, present and
future of gravity-wave drag parameterization for numdridamate and weather prediction

models. — Atmosphere-Ocedh(1), 65-98.

KLEIN, R., 2004: An applied mathematical view of meteorologicadelling. — In: Applied
Mathematics Entering the 21st century; Invited talks frove KCIAM 2003 Congress, volume

116. SIAM Proceedings in Applied Mathematics.

KLEIN, R., 2008: An unified approach to meteorological modelliagdd on multiple-scales

asymptotics. — Adv. Geosd5, 23-33.

KLEIN, R., 2010: Scale-dependent models for atmospheric flowsinuARev. Fluid Mech42,

249-274.

KLEIN, R., A. MAJDA, 2006: Systematic multiscale models for deep convectiamesoscales.

— Theor. & Comput. Fluid Dyn20, 525-551.

LANE, T. P.,, M. J. REDER T. L. CLARK, 2001: Numerical modeling of gravity wave

generation by deep tropical convection. — J. Atmos. 58;i1249-1274.

LEMONE, M. A., E. J. ZPseR 1980: Cumulonimbus vertical velocity events in GATE. Rart

Diameter, intensity and mass flux. — J. Atmos. Si.2444-2457.

LINDZEN, R. S., 1981: Turbulence and stress owing to gravity wavetidatibreakdown. — J.

Geophys. Res36, 9707-9714.

MAJDA, A., R. KLEIN, 2003: Systematic multi-scale models for the tropics. —thds. Sci.

60, 393—-408.

MAPES, B. E., 1993: Gregarious tropical convection. — J. Atmos. 5%, 2026—-2037.

MIGLIETTA, M. M., R. ROTUNNO, 2005: Simulations of moist nearly neutral flow over a ridge.

—J. Atmos. Sci62, 1410-1427.

23



251

252

253

254

255

256

257

258

259

260

261

262

263

264

OsHER, S., R. FEDKIW, 2002: Level Set Methods and Dynamic Implicit Surfaces -ifar,

296.

RUPRECHT, D., 2010: Analysis of a multi-scale asymptotic model fdemmal gravity waves in

a moist atmosphere Ph.D. thesis, Freie Universitat Berlin

RUPRECHT, D., R. KLEIN, A. J. MAJDA, 2010: Modulation of internal gravity waves in a

multi-scale model for deep convection on mesoscales. —doatSci. , In press.

STEVENS, B., 2005: Atmospheric moist convection. — Annu. Rev. EaPflanet. Sci33, 605—

643.

SURGI, N., 1989: Systematic errors of the FSU global spectral mod&lon. Wea. Revl17,

1751-1766.

THoMAS, P. D., C. K. LOMBARD, 1979: Geometric conservation law and its application to

flow computations on moving grids. — AIAA Journi/(10), 1030-1037.

WILLIAMS , F., 1985: Turbulent combustion. — In: JUBKMASTER (Ed.), The Mathematics of

Combustion, 97-131, Philadelphia. SIAM.

24



g = O(e)
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0Gvs — O(l) =1
qT = ¢v + qc
A
ge = O(e)
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Oqvs = O(e)
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Figure 1: Example distribution of total wateyr = gv + gc, that is the sum of vapor and cloud water mixing ratio (thick
solid line). The grey areas indicate tii@(c) amount of condensate released by the small vertical disptents allowed
for by the employed short time scale, ¢2.4). The dashed horizontal line denotes the saturation mixatgpr For a
saturation deficitgys at leading order{upper) there is only a small change in the size of the saturated éreficated

by grey double arrows), while the change is of order unityhim tase of a systematically small saturation defioiver).

In both cases, the mixing ratio of cloud water in saturatedaa, that is the differencgr — gvs, is small and of order
O(e).
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Figure 2: General structure of the perturbation vertical veloci®) and potential temperaturd®) on the n-
coordinate. Initially, variations are present only in thatsrated area, i.e. in regime (upper) As the saturated area
enlarges, variations can arise in the now saturated argagldle) As the saturated region shrinks again, variations in
the again under-saturated areas (dashed line) are negleatel the constant valu.s or G, is employedlower).
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Figure 3: The level set function. tracking the interface between regime | (saturation) anfWéak under-saturation).
Its gradient remains constant in time, whije is moved upward (i€,s > 0) or downward (iféys < 0) as well as

horizontally advected bu(®). Regime | is identified with regions where > 0 while regime Il is identified with areas
whereg,. < 0. However, because ¢®.24) this involves some degree of approximation. Note thapstegradients of

g+ lead to a less sensitive dependence of the size of saturedéhs on displacement.
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Figure 4: Example of a saturated patch; in then-plane. Itisg. > 0 inside A;, g« = 0 on its boundary denoted by
0A; andg« < 0 outside of4;. The outward directed normal vector on the boundary is deshblyn and the velocity at
which the boundary is moving by;. Note that at every fixed point @A4;, n andv; are collinear, but whilen always
points out ofA4;, v; can also point into the patch, for example if the patch isrgkirig.

Figure 5: Visualization ofD(no) for two different values ofjg. For the smaller square it i®(no) = 3, for the larger
squaren(no) = 5. To every saturated spat; corresponds a functio® ;, which, for a fixed value dfys, is constant in
time. With enlarging squarg-no, 0], more and more spots are included. As the spots are advegtetb (indicated
by arrows), the choice of spots located inside any finite egjahange depends an corresponding to a rearrangement
of the seriesy 72, ;. In the limit, however, all spots are included and assumibgalute convergence of the series,
every rearrangement converges to the same it
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