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Abstract. We consider a continuous-time, ergodic Markov process on a large continuous or
discrete state space. The process is assumed to exhibit a number of metastable sets. Markov state
models (MSM) are designed to represent the effective dynamics of such a process by a Markov chain
that jumps between the metastable sets with the transition rates of the original process. MSM are
used for a number of applications, including molecular dynamics (cf. Noe et al, PNAS(106) 2009)[1],
since more than a decade. The rigorous and fully general (no zero temperature limit or comparable
restrictions) analysis of their approximation quality, however, has only been started recently. Our
first article on this topics (Sarich et al, MMS(8) 2010)[2] introduces an error bound for the difference
in propagation of probability densities between the MSM and the original process on long time scales.
Herein we provide upper bounds for the error in the eigenvalues between the MSM and the original
process which means that we analyse how well the longest timescales in the original process are
approximated by the MSM. Our findings are illustrated by numerical experiments.
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1. Introduction. Recent years have seen the advance of so-called Markov state
models (MSM) as low-dimensional models for ergodic Markov processes on very large,
mostly continuous state spaces exhibiting metastable dynamics [3, 4, 5, 6, 7]. Recently
the interest in MSMs has drastically increased since it could be demonstrated that
MSMs can be constructed even for very high dimensional systems [5] and have been
especially useful for modelling the interesting slow dynamics of biomolecules [1, 8, 9,
10, 11, 2] and materials [12] (there under the name ”kinetic Monte Carlo”). Metastable
dynamics means that one can subdivide state space into metastable sets in which the
system remains for long periods of time before it exits quickly to another metastable
set; here the words ”long” and ”quickly” mainly state that the typical residence
time has to be much longer than the typical transition time so that the jump process
between the metastable sets is approximately Markovian. An MSM then just describes
the Markov process that jumps between the sets with the aggregated statistics of the
original process.

In this contribution we will use the approach to MSMs via Galerkin discretization
of the transfer operator of the original Markov process as developed in [6, 5, 4, 3] and
recently addressed in detail in [13, 14]; here ”transfer operator” just refers to a gener-
alization of the transition matrix on finite discrete state spaces to general, e.g., contin-
uous state spaces. In this approach the low-dimensional approximation results from
orthogonal projection of the transfer operator onto some low-dimensional subspace.
For so-called full partition MSM this subspace is spanned by indicator functions of n
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sets that partition state space. Then, the Galerkin approach has a direct stochastic
interpretation since the resulting n-dimensional approximation simply exhibits jumps
between the sets with aggregated statistics as mentioned above. However in many
cases indicator ansatz spaces do not allow to achieve good approximation quality for
reasonably small numbers of sets [2]. Therefore other ansatz spaces, e.g., fuzzy ansatz
spaces, have also been discussed [15, 13, 14].

MSMs are aiming at capturing the essential dynamics of the underlying Markov
process on its longest timescales. These longest timescales are endoced in the domi-
nant eigenvalues of the transfer operator T of the underlying process. Therefore the
eigenvalues of the transfer operator associated with some MSM have to be good ap-
proximations of the dominant eigenvalues of T . Despite the growing interest in MSMs
there still are only a very few rather limited rigorous results on the eigenvalue error
associated with a MSM (one finds some asymptotic results in [7, 16, 17, 6] but these
are of very limited algorithmic use since they depend on a smallness parameter and
are valid in the limit of this parameter going to zero). Herein we will give rigorous
results on the eigenvalue error that do not require specific smallness assumptions and
even have an interesting consequence for the algorithmic construction of MSMs.

The remainder of the paper is organized as follows. In Section 2 we introduce
the setting, define transfer operators, introduce full-partition MSM and relate them
to Galerkin projections. Then, in Sec. 3 we introduce the milestoning process, relate
it to transition path theory, and analyse its transition statistics. Section 4 then
discusses Galerkin projection in general, and gives rigorous approximation results for
eigenvalues and related timescales. Finally, the results are illustrated by numerical
experiments in Section 5.

2. Setting the Scene. We consider a reversible Markov process (Xt)t∈T on a
discrete state space S and its associated family of transition matrices (Pt)t∈N with
entries

pt(x, y) = P[Xt = y|X0 = x]. (2.1)

We restrict our considerations to discrete state spaces just for simplicity of presen-
tation; all statements made in the following can be generalized to continuous state
spaces as well (see Remark 2). In the following we always assume that (Xt) has a
positive and unique invariant measure µ given by

∑

x

pt(x, y)µ(x) = µ(y). (2.2)

Now we introduce the family of transfer operators (Tt) that describes the propa-
gation of densities in L2

µ

(Ttf)(y)µ(y) =
∑

x

f(x)pt(x, y)µ(x) (2.3)

and set T := T1 for discrete time.
In analogy, we define on L2

µ

(Lf)(y)µ(y) =
∑

x

l(x, y)f(x)µ(x), (2.4)

where

l(x, y) = lim
t→∞

pt(x, y) − δx,y

t
, (2.5)
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and for the discrete case

Ld = T − Id. (2.6)

Since (Xt) is a reversible process, it means that the detailed balance holds and that
T and L are self-adjoint operators.
In the following we will only consider the scalar product in L2

µ, the induced 2-norm
and the 1-norm

〈f, g〉 =
∑

x

f(x)g(x)µ(x), ‖f‖2 = 〈f, f〉, ‖f‖1 =
∑

x

|f(x)|µ(x). (2.7)

In the theory of building standard Markov state models (MSM) one chooses a parti-
tioning of state space, i.e. sets A1, ..., An, such that

Ai ∩ Aj = ∅, i 6= j,

n
⋃

i=1

Ai = S (2.8)

and a certain lag time τ > 0. Then one can compute the transition probabilities

p̂(i, j) = P[Xτ ∈ Aj |X0 ∈ Ai], (2.9)

and use the corresponding Markov chain on the index space {1, ..., n} to approximate
the switching behavior of the original dynamics. The approximation quality of such
MSMs is discussed in [2]. A key feature is that the transition matrix with entries p̂(i, j)
comes out to be the matrix representation of the projection QTτQ of the transfer
operator where Q is the orthogonal projection onto

D = span {1A1
, ...,1An

} .

As outlined above, we will not restrict our attention to full partitioning of state
space. Instead, we will analyse general Galerkin projections QTτQ of the transfer
operator where projections Q onto step-function spaces are a special case.

Remark 2.1. On continuous state space the transfer operator Tt : L2
µ → L2

µ is
defined via

∫

C

Ttf(y)µ(dy) =

∫

S

P[Xt ∈ C|X0 = x]f(x)µ(dx), for all measurable C ⊂ S,

for the general case where the transition function p(t, x, C) = P[Xt ∈ C|X0 = x] as
well as the invariant measure may contain singular as well as absolutely continuous
parts. Then, all of the above and subsequent sums have to be replaced by respective
integrals. Further details, in particular regarding the respective generators for, e.g.,
diffusion processes, can be found in [6].

3. Milestoning and Transition Path Theory. We will now follow the ap-
proach first introduced in [14] and define sets C1, ..., Cn ⊂ S, that we will call core
sets, such that

Ci ∩ Cj = ∅, i 6= j. (3.1)

This means that, unlike in the standard Markov state model, we now relax the full
partition constraint (2.8). We denote the region that is not assigned to any core set
by

C = S \
n
⋃

k=1

Ck.
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For analyzing the switching dynamics of the original process between the core sets we
introduce the milestoning process (X̂t)

X̂t = i ⇔ Xσ(t) ∈ Ci, with σ(t) = sup
s≤t

{

Xs ∈
n
⋃

k=1

Ck

}

, (3.2)

i.e. the milestoning process is in state i, if the original process came last from core
set Ci, cf. [18].

Now let qi(x) denote the probability that the process (Xt) will visit the core
set Ci next, conditional on being in state x. qi is usually referred to as the forward
committor ; for reversible processes the forward committor is identical to the backward
committor. As for example in [19], one can derive that qi is the solution of

(Lqi)(x) = 0, ∀x ∈ C,

qi(x) = 1, ∀x ∈ Ci,

qi(x) = 0, ∀x ∈ Cj , j 6= i.

(3.3)

In the time-discrete case one has to replace L by the discrete generator Ld. Moreover
one can show, that (3.3) has a unique solution under the assumption that the invariant
measure is unique and not vanishing on all core sets.

When observing a time-discrete process (Xn), we can define the transition matrix
P̂ of the milestoning process (X̂n), with entries p̂(i, j) = Pµ(X̂n+1 = j|X̂n = i). Since
in general the milestoning process will not be a Markov process, we cannot assume
that it is essentially characterized by its transition matrix P̂ ; this also holds true for
the generator L̂d whose definition therefore should be understood as a formal one at
this point. We will see that it is not the crucial point whether the dynamics of the
milestoning process is governed by P̂ or not.

Note, that the special case where we choose core sets Ci = Ai that form a full
partition of state space due to (2.8) is just a special case. Then, the definition of the
milestoning process as in (3.2) will reduce to the usual jump process between the sets
Ai, that is

X̂t = i ⇔ Xt ∈ Ai (3.4)

and the committors from (3.3) will be given by the characteristic functions qi = 1Ai
.

The following theorems from [13] give us the entries of the discrete generator.

Theorem 3.1. For a time-discrete process (Xn), the entries of the discrete
generator L̂d of the milestoning process (X̂n) are given with

l̂d(i, j) =
1

‖qi‖1
〈qj ,Ldqi〉. (3.5)

Theorem 3.2. For a time-continuous process (Xt), the entries of a generator L̂
defined by the transition rates of the milestoning process (X̂t) are given with

l̂(i, j) =
1

‖qi‖1
〈Lqi, qj〉. (3.6)

First we note some properties of the milestoning generator L̂.
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Lemma 3.3. Let (Xt) be a reversible Markov process with unique invariant mea-
sure µ. Then the milestoning generator L̂ has the invariant measure

µ̂(i) =
∑

x

qi(x)µ(x)

and the according operator in L2(µ̂)

(L̂v)(j)µ̂(j) =

n
∑

i=1

l̂(i, j)v(i)µ̂(i)

is self-adjoint. Therefore it also defines a reversible jump process.

4. Galerkin Approximation. We will now discuss Galerkin projections of
transfer operators. If (Xt) is a reversible, time-continuous Markov process with gen-
erator L, we will fix a lag time τ > 0 and consider the transfer operator

Tτ = eLτ . (4.1)

The eigenvalues of the transfer operator Tτ will be given by

λi,τ = eΛiτ , (4.2)

where Λi < 0 is an eigenvalue of the generator L. In the following we will just write
T := Tτ . Now we want to approximate the dynamics of (Xt) by its projection to
some low-dimensional subspace D in terms of density propagation. Therefore we will
denote the orthogonal projection onto D by Q and compare the operators T and
QTQ. Subsequently we will only consider subspaces D ⊂ L2

µ such that 1 ∈ D, i.e.,
the invariant measure with density 1 in L2

µ is still contained in D.

4.1. Generalized eigenvalue problem. In this section we consider subspaces
D = span{q1, ..., qn} with 1 ∈ D. The basis functions qi are assumed to be linearly
independent, non-negative functions, need not be orthogonal wrt. 〈·, ·〉, and are not
necessarily identical with the committor functions discussed above. The orthogonal
projection Q onto D can be written as

(Qv)(y) =

n
∑

i,j=1

S−1
ij 〈v, qj〉qi, (4.3)

with Sij = 〈qi, qj〉.
The following theorem tells us more about the structure of the operator QTQ:
Theorem 4.1. Let λ̂ be an eigenvalue of the operator QTQ. Then λ̂ solves the

generalized eigenvalue problem

T̂ r = λ̂Mr, (4.4)

with

T̂ij =
〈qi, T qj〉

µ̂(i)
, (4.5)

µ̂(i) = ‖qi‖, and the mass matrix

Mij =
〈qi, qj〉
µ̂(i)

. (4.6)
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Thus we can compute the eigenvalues of the projected transfer operator QTQ
by solving the generalized eigenvalue problem (4.4). Whenever we choose the basis

functions qi to be the committor functions, then the entries l̂d(i, j) and Mij have a
stochastic interpretation, cf. [13] for details. When the basis functions are chosen
such that

qi(x) = 1Ci
(x), (4.7)

and the sets Ci have to form a full subdivision of state space and (2.9) gives the matrix
representation of QTQ. Moreover, because of orthogonality of the stepfunctions we
then have

Mij =
〈qi, qj〉
µ̂(i)

=

{

1, i = j

0, i 6= j
. (4.8)

4.2. Approximation of Dominant Eigenvalues. Our question is, how well
the eigenvalues of the projected transfer operator approximate the original eigenvalues
of T . Because of self-adjointness of the transfer operator we can use the results from
[20] to show

Theorem 4.2. Let 1 = λ0 > λ1 > ... > λm−1 be the m dominant eigenvalues
of T , i.e. for every other eigenvalue λ it holds λ < λm−1. Let u0, u1, ..., um−1 be the
corresponding normalized eigenvectors, D ⊂ S a subspace with

1 ∈ D dim(D) =: n ≥ m (4.9)

and Q the orthogonal projection onto D.
Moreover, let 1 = λ̂0 > λ̂1 > ... > λ̂m−1 be the dominating eigenvalues of the projected
operator QTQ. Then

E(δ) = max
i=1,...,m−1

|λi − λ̂i| ≤ λ1(m − 1) δ2, (4.10)

where

δ = max
i=1,...,m−1

‖Q⊥ui‖

is the maximal projection error of the eigenvectors to the space D.

Proof. The eigenvector of T w.r.t. the trivial eigenvalue λ0 = 1 is known: u0 = 1.
Therefore

u0 ∈ D ⇒ Qu0 = u0. (4.11)

This implies that u0 is also eigenvector of QTQ w.r.t. its largest eigenvalue λ̂0 = 1.
Now define

Π0v = 〈v, u0〉u0, (4.12)

set again Π⊥
0 = Id − Π0, and consider the operator TΠ⊥

0 = T − Π0. Since T is
self-adjoint, its eigenvectors u0, u1, ... are orthogonal, which implies that

TΠ⊥
0 uj = Tuj − Π0uj = Tuj = λjuj ∀j > 0
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and TΠ⊥
0 u0 = 0, that is, the operator TΠ⊥

0 has the same eigenvalues with the same
corresponding eigenvectors as T , just the eigenvalue λ0 = 1 changed to a zero eigen-
value.
Moreover,

Π0TΠ⊥
0 = 0, and therefore TΠ⊥

0 = Π⊥
0 TΠ⊥

0 ,

which implies self-adjointness of the operator TΠ⊥
0 . Now set U = span{u0, ..., um−1},

and let Π be the orthogonal projection onto U . Then, the operator ΠTΠ⊥
0 Π has ex-

actly the eigenvalues λ1, ..., λm−1 and an additional eigenvalue zero, that corresponds
to the eigenvector u0.
From (4.11) it follows that QΠ0Q = Π0 and hence

QTΠ⊥
0 Q = QTQ − Π0.

The same argument as above shows that the operator QTΠ⊥
0 Q has the same spectrum

as QTQ, just the corresponding eigenvalue of u0 changed from λ̂0 = 1 to zero.
Using the results from [20], we find for the error (4.10)

E(δ) = max
i=1,...,m−1

|λi − λ̂i| ≤ (λ1 − λmin(U+D))max
i

sin2(θi(U, D)), (4.13)

with Θ = Θ(U, D) = {θ0, ..., θm−1}, a vector of principal angles between the subspaces
U and D. λmin(U+D) is the smallest eigenvalue of the operator ZTZ, where Z is an
orthogonal projection on the space U + D. In our case this means λmin(U+D) = 0.
Let σi(A) and Λi(B) denote the i-th singular value of operator A and i-th eigenvalue
of operator B, respectively. The principal angles are defined as cos(θi) = σi(QΠ).
Moreover, the definition of singular values yields

σ2
i (QΠ) = Λi((QΠ)∗QΠ) = Λi(ΠQΠ), (4.14)

where (QΠ)∗ denotes the Hermitian transpose of (QΠ). We get

sin2(θi) = 1 − cos2(θi) = 1 − Λi(ΠQΠ) = Λi(Π − ΠQΠ) = Λi(ΠQ⊥Π). (4.15)

As in (4.14),

Λi(ΠQ⊥Π) = σ2
i (Q⊥Π) ≤ ‖Q⊥Π‖2. (4.16)

Now let v, ‖v‖ = 1 be arbitrary. If we define v̂ ∈ R
m−1 as

v̂j = 〈v, uj〉, j = 1, ..., m− 1,

it is well known for the usual p-norms on R
m−1

m−1
∑

j=1

|〈v, uj〉| = ‖v̂‖1 ≤
√

m − 1‖v̂‖2 =
√

m − 1





m−1
∑

j=1

〈v, uj〉2




1/2

≤
√

m − 1. (4.17)

Since Q⊥u0 = 0,

‖Q⊥Πv‖ =

∥

∥

∥

∥

∥

∥

m−1
∑

j=1

〈v, uj〉Q⊥uj

∥

∥

∥

∥

∥

∥

≤
m−1
∑

j=1

|〈v, uj〉|‖Q⊥uj‖

≤
m−1
∑

j=1

|〈v, uj〉|δ ≤
√

m − 1 · δ.

(4.18)
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Combining (4.15), (4.16) and (4.18)

sin2(θi) ≤ ‖Q⊥Π‖2 ≤ (m − 1) δ2. (4.19)

Putting everything together gives (4.10).
Remark 4.1. Inserting (4.2) into (4.10), we get the lag time depended eigenvalue

estimate

E(τ, δ) = max
i=1,...,m−1

|λi − λ̂i| ≤ eΛ1τ (m − 1) δ2, (4.20)

where (λi) are the dominant eigenvalues of the transfer operator Tτ and (λ̂i) the
dominant eigenvalues of the projection QTτQ.
Since Λ1 < 0,

E(τ, δ) → 0, for τ → ∞. (4.21)

Furthermore, for the relative eigenvalue error we have, at least for the first non-trivial
eigenvalue

|λ1 − λ̂1|
|λ1|

≤ (m − 1) δ2, (4.22)

from which we see that by decreasing the maximal projection error we will have control
even over the relative eigenvalue error.

Our next question is, how well the eigenvalues of the projected generator QLQ
approximate the original eigenvalues of L. Because the generator L is self-adjoint and
its spectrum σ(L) is non-positive, setting A = αId−L with an arbitrary scalar α > 0
such that α 6∈ σ(L) defines a positive definite, self-adjoint operator that has the same
eigenvector as L. We will see that we need the scalar product induced by A in L2

µ,
being defined via

〈u, v〉A = 〈u, Av〉.
We can use different results from [20] to show that
Theorem 4.3. Let 0 = Λ0 > Λ1 > ... > Λm−1 be the m largest eigenvalues of

L, i.e. for every other eigenvalue Λ it holds Λ < Λm−1. Let u0, u1, ..., um−1 be the
corresponding normalized eigenvectors, D ⊂ S a subspace with

1 ∈ D dim(D) =: n ≥ m, (4.23)

QA the orthogonal projection onto A1/2D with respect to 〈·, ·〉 (see below for details),
and Q the orthogonal projection onto D with respect to 〈·, ·〉. Moreover, let 0 = Λ̂0 >
Λ̂1 > ... > Λ̂m−1 be the m dominant eigenvalues of the projected operator QLQ.
Then, we have that |Λ̂i| ≥ |Λi| for i = 0, . . . , m− 1 and for every positive scalar ǫ the
following estimate holds:

EL = max
i=1,...,m−1

|Λi − Λ̂i|
Λ̂i

≤ (1 + ǫ) (m − 1) δ2
A, (4.24)

where

δA = max
i=1,...,m−1

‖Q⊥
Aui‖
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with A = ǫ|Λ1|Id − L is the maximal projection error of the eigenvectors to the space
D.

Proof. Set A = αId−L for some α 6∈ σ(L). The non-positive eigenvalues Λ ∈ σ(L)
of L induce positive eigenvalues ΛA = α−Λ of A with identical eigenvectors. Therefore
the eigenvalues 0 < α = ΛA

0 < ΛA
1 < ... < ΛA

m−1 of A are associated with the
largest eigenvalues of L, and U = span{u0, ..., um−1} is an A-invariant m-dimensional
subspace associated with the smallest eigenvalues of A.

Let ΠA be the orthogonal projection onto U wrt. 〈·, ·〉A, and let Q be the or-
thonormal projection onto D, again wrt. 〈·, ·〉. Then, the m smallest eigenvalues of
QAQ are α = Λ̂A

0 < Λ̂A
1 < ... < Λ̂A

m−1 with Λ̂A
m−1 = α − Λ̂m−1.

Using the results from [20] (Theorem 2.5), we find

max
i=1,...,m−1

|ΛA
i − Λ̂A

i |
Λ̂A

i

≤ max
i

sin2(θi,A(U, D)), (4.25)

with ΘA = ΘA(U, D) = {θ0,A, ..., θm−1,A}, a vector of principal angles between the

subspaces U and D wrt. 〈·, ·〉A. Furthermore one finds there that 0 ≤ ΛA
i ≤ Λ̂A

i from

which it immediately follows that |Λ̂i| ≥ |Λi|.
Let us again assume that the subspace D is given by D = span{q1, . . . , qn}, where

the qi are linearly independent and not necessarily orthogonal functions.
According to [21] (Theorem 2.7) the values sin2 θi,A(U, D) can be computed as

follows: Let A1/2 denote the square root of A, and consider the subspaces A1/2U =
span{u1, . . . , um−1} = U and A1/2D = span{A1/2q1, . . . , A

1/2qn}. Then

sin2 θi,A(U, D) = sin2 θi(A
1/2U, A1/2D),

where the angles θi(A
1/2U, A1/2D) are defined via the original scalar product 〈·, ·〉

and can be computed as in the previous proof.
Using the same tricks as in the previous proof and analogous arguments, we thus

get

sin2(θi,A) ≤ (m − 1) · δ2
A, (4.26)

where δA = maxj ‖Q⊥
Auj‖ with QA denoting the orthogonal projection wrt. the

original scalar product onto A1/2D, i.e.,

QAv =
∑

ij

(S−1
A )ij〈A1/2qj , v〉A1/2qi, SA,ij = 〈A1/2qi, A

1/2qj〉 = 〈qi, qj〉A.

Putting everything together gives

max
i=1,...,m−1

|ΛA
i − Λ̂A

i |
Λ̂A

i

≤ (m − 1) · δ2
A. (4.27)

Furthermore we have

1

Λ̂A
i

=
1

|Λ̂i|
1

|1 − α/Λ̂i|
.

However, all the while our positive scalar α has been arbitrary, so that

ǫ = α/|Λ1| ≤ −α/Λ̂1 < −α/Λ̂i
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is some arbitrarily small positive scalar with

1

Λ̂A
i

=
1

|Λ̂i|
1

1 + ǫ
.

Putting this and |ΛA
i − Λ̂A

i | = |Λi − Λ̂i| into (4.27) finally yields (4.24).
Remark 4.2. Starting with

QAv = A1/2
∑

ij

(S−1
A )ij〈qj , A

1/2v〉qi, SA,ij = 〈qi, qj〉A,

we can use the orthonormal projection onto D wrt. 〈·, ·〉A,

QAv =
∑

ij

(S−1
A )ij〈qj , v〉Aqi,

to get QAuj = |ΛA
j |−1/2A1/2QAuj and thus

‖QAuj‖ = (ΛA
j )−1/2‖QAuj‖A.

Therefore, with the A-orthonormal basis φj = uj/
√

ΛA
j of U we find ‖QAuj‖ =

‖QAφj‖A and therefore

δA = ‖Q⊥
Auj‖ = ‖Q⊥

Aφj‖A,

since ‖Q⊥
Auj‖2 = ‖uj‖2 − ‖QAuj‖2 = ‖φj‖2

A − ‖QAφj‖2
A = ‖Q⊥

Aφj‖2
A.

5. Illustrative Examples.

5.1. Double well potential with diffusive transition region.

We consider the diffusion process

γdXt = −∇V (Xt)dt +
√

2β−1γdBt (5.1)

with Bt denoting Brownian motion in a potential V with two wells that are connected
by an extended transition region. The potential V and its unique invariant measure
µ are shown in Fig.5.1, we set the noise intensity σ =

√

2β−1γ = 0.8 with γ = 1.

−2 0 2 4 6 8
0

1

2

3

4

−2 0 2 4 6 8
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 5.1. The potential V with extended transition region and the associated invariant
measure for σ = 0.8.
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We observe that the transition region between the two main wells contains four
smaller wells that will have their own, less pronounced metastability each. The minima
in the two main wells are located at x0 = −1 and x1 = 6.62, the respective saddle
points that separate the main wells from the rest of the landscape at x±

0 = x0 ± 1,
and x±

1 = x1 ± 1, respectively.
In order to find the transfer operator for this process we start with the Fokker-

Planck equation ∂tu = Lu, u(t = 0, x) = f(x) that governs the propagation of a
function f by the diffusion process. In the weighted Hilbert space L2

µ the generator in
the Fokker-Planck equation reads L = −∇V (x) · ∇x + β−1∆x, where ∇x denotes the
first derivative wrt. x and ∆x the associated Laplacian. Thus, the transfer operator
reads

Tt = exp(tL) (5.2)

This operator is self-adjoint since the diffusion process is reversible. The dominant
eigenvalues of L take the following values:

Λ0 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7

+0.0000 −0.0115 −0.0784 −0.2347 −0.4640 −0.7017 −2.9652 −3.2861

The main metastability has a corresponding implied timescale (ITS) |1/Λ1| ≈ 88
related to the transitions from one of the main wells to the other. Four other, minor
metastable timescales related to the interwell switches between the main and the
four additional small wells exist in addition. The eigenvalues have been computed by
solving the eigenvalue problem for the partial differential operator L by an adaptive
finite element (FE) discretization with an accuracy requirement of tol = 1e − 8.

5.2. Two core sets.

In the following paragraphs we will compare the eigenvalues and ITS of the original
process to the ones resulting from different MSM. More precisely, we first choose a
lagtime τ and consider the transfer operator Tτ . Because of (4.2) we can compute the
implied timescale

|1/Λ1| = − τ

ln(λ1,τ )
, (5.3)

where λ1,τ < 1 is the largest non-trivial eigenvalue of Tτ .
Next we choose two core sets of the form Cs

0 = (−∞, x0 + s] and Cs
1 = [x1 − s,∞)

for some parameter s; it should be obvious that the sets C̃s
i = [xi − s, xi + s] would

define exactly the same milestoning process such that we can talk of small core sets
for small values of s. In all of the subsequent, we consider the subspace D that is
spanned by the committor functions defined by the core sets Cs

i , and denote by Q the
associated orthogonal projection.

Next we compare the ITS from (5.3) to the one that corresponds to the largest

non-trivial eigenvalue λ̂i,τ of the projected operator QTτQ

|1/Λ̂1| = − τ

ln(λ̂1,τ )
. (5.4)

Since the process under investigation is just one-dimensional, we can compute the
committor functions from the already mentioned FE discretization of L and just
compute very accurate FE approximations of T̂τ and M , which allows to compute
the eigenvalues of QTτQ as in Theorem 4.1. Figure 5.2 shows the dependence of the
non-trivial eigenvalue on the core set size s for different values of the lagtime τ .
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Figure 5.2. Non-trivial eigenvalues λs
1,τ < 1 of the generalized eigenvalue problem T̂τ r = λ̂Mr

versus cores set size parameter s for lagtimes τ = 1 (left) and τ = 5 (right) in comparison to the
exact first non-trivial eigenvalue exp(τΛ1).

We observe that the for small enough core sets the approximation of the exact
first non-trivial eigenvalue of Tτ , exp(τΛ1), is good, while for too large core sets the
approximation quality decreases. This can be understood since for s > 1 the core sets
contain parts of the transition regions of the process where recrossing events lead to
an overestimation of the transition probability between the cores.

Let us finally compare the effect of our choice of (two) core sets on the approxima-
tion error of dominant eigenvalues with the statements of Theorem 4.2 (with m = 2).
To this end we will study the relative error

Erel(τ, δ) =
|λ1,τ − λ̂1,τ |

λ1,τ
(5.5)

for different core set sizes s, see Figure 5.3. We observe that for small lagtimes the
real relative error is significantly smaller than the upper bound (here given by the
τ -independent square of the projection error δ = ‖Q⊥u1‖) but for larger lagtimes the
upper bound and the real error are very close.
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Figure 5.3. Relative error Erel(τ, s) versus lagtime τ (dashed red line) compared to the upper
bound δ2 given by Theorem 4.2 (green solid line), for s = 0.5 (left hand panel) and s = 2 (right).

Last but not least Figure 5.4 presents the comparison between relative eigenvalue
error and upper bound as of Theorem 4.3. Again we observe impressively small
deviations which shows that the upper bound incorporates the main aspects of the
underlying error. In addition we again see that the relative error increases significantly
with increasing core set size s, and that we have very small error for small enough
core sets.

5.3. Full partition of state space. Let us fix m = 2 and observe how the
relative eigenvalue error Erel as defined in (5.5) above behaves in this case, especially
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Figure 5.4. Projection error ‖Q⊥
Au1‖2 (solid line) and relative eigenvalue error EL for the

generator eigenvalues (dashed line) versus size of core sets, i.e., the parameter s. (Results are
insensitive to changes in the parameter ǫ in Theorem 4.3 for small enough values of ǫ.)

for different full subdivisions of the state space and different lag times. From Theorem
4.2 we know that, as above, the bound on the relative eigenvalue error is given by
the square of the projection error δ. First we choose n = 2 and the subdivision
A1 = (−∞, x] and A2 = (x,∞). Figures 5.5 and 5.6 show the bound δ2 compared
to the relative error Erel(τ, δ), for two different subdivisions, i.e., different values of
x. We can see that the error converges to the respective value of δ2 for increasing τ .
Also, a better choice of the subdivision results not only in a smaller relative error,
but in its faster convergence to the bound.
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Figure 5.5. Relative error for eigenvalues and bound for τ = 0.5, n = 2 and x = 2.75
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Figure 5.6. Relative error for eigenvalues and bound for τ = 0.5, n = 2 and x = −0.35
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Now we consider the full partition of a state space into n = 6 sets. The sets are
chosen in such a way that every well belongs to one set. This choice of sets results in
a smaller bound and faster convergence of the relative error to this bound, which can
be seen in Figure 5.7.
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Figure 5.7. Relative error for eigenvalues and bound for τ = 0.5 and n = 6

Let us finally compare the results for full subdivisions to the approximation via
two core sets. We observe the following: Even the optimal full subdivision into n = 2
sets cannot compete with the approximation quality of the approximation based on
two ”reasonable/good” core sets. Good core sets result in an approximation error
that is even better than the one for the optimal full subdivision into n = 6 sets which
already resolves the well structure of the energy landscape. Thus, MSMs based on
fuzzy ansatz spaces resulting from appropriate core sets and associated committor
ansatz functions seem to lead to superior approximation quality than comparable full
subdivision MSMs, especially in the presence of extended transition regions.

5.4. Three well potential. In this example we will study the influence of noise
in equation (5.1) to the choice of core sets and the approximation quality of slow
timescales. Moreover, we will now consider a two-dimensional diffusion process as in
(5.1) with γ = 1 and β = 6.67. The potential and its invariant measure are illustrated
in Fig. 5.8.
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Figure 5.8. Left: Levelsets of potential V and indication of chosen core sets (small grids in
the wells of the energy landscape). Right: Invariant measure (the peak in the third well of the energy
landscape is below the threshold of visibility in this colormap).

The eigenvalues of the corresponding generator are given by

Λ0 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6

+0.0000 −0.0000003 −0.0463 −2.793 −4.939 −5.3301 −6.5049
.
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Motivated by the results above and the visualization of the second and third eigen-
vectors in Fig. 5.9, three core sets have been chosen around the local minima of the
potential as illustrated in Fig. 5.8.

 

 

−1.5 −1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

−1.5 −1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.9. Left: Second eigenvalue u1. Right: Third eigenvalue u2. The colormap of the
third eigenvector seems to show that it is non-negative in the region colored white; that is not true
since the eigenvalue has small negative values there.

One should note that the second and third eigenvalues differ by a factor of
105. Together with the image of the invariant measure in Fig. 5.8 being concen-
trated around the two main wells for small noise, one would typically choose only
two core sets. Nevertheless we introduce a small third core set around the third
minimum, such that the eigenvectors are almost constant on the chosen core sets
and the projection errors to the space spanned by the committors are small, i.e.
‖Q⊥u1‖ ≤ 0.00002, ‖Q⊥u2‖ ≤ 0.005. Therefore, we can even approximate the third
slowest timescale corresponding to Λ2. If we were interested in the slowest timescale
only, it would be possible to choose rather two than three core sets and we would
get an insignificantly better approximation. Now Fig. 5.10 shows the two slowest
timescales of the original process, the approximation by the timescales from (5.4) and
the bound from Theorem 4.2.
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Figure 5.10. ITS of original generator L (solid straight blue), ITS estimate (dashed red) as in
(5.4) and bound from Theorem (solid green). Left: ITS 1/Λ1. Right: ITS 1/Λ2.

Increasing the noise. Finally we perform the same experiment for the three
well potential as above, but we increase the noise intensity (and thus the temperature)
by setting σ = 1.1 (β = 1.67). The eigenvalues of the corresponding generator now
take the form

Λ0 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6

+0.0000 −0.0818 −0.7809 −3.9230 −5.4286 −6.7504 −7.001
.
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That is, the gap between the slowest timescales has closed, such that Λ1 and Λ2 only
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Figure 5.11. Left: Levelsets of potential V . Right: Invariant measure.

differ by a factor of 101 now. In this situation one could be interested in an approxi-
mation of the third timescale as well. Moreover, the invariant measure (Fig. 5.11) is
not completely concentrated in the two main wells anymore, but the regions around
the wells have grown and the third well also carries significant invariant measure.
On the other hand Figure 5.12 shows that one has to be more careful with the in-
troduction of a third core set, because the variation of the second eigenvector u1

increases in the region around the third local minimum. That is, we have to keep
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Figure 5.12. Left: Second eigenvalue u1. Right: Third eigenvalue u2. σ = 1.1.

this third core set small in order to avoid to introduce a large projection error of the
second eigenvector to the committors, which would yield a worse approximation of
the slowest timescale 1/Λ1. Nevertheless the projection errors to the space spanned
by the committors increase, i.e. ‖Q⊥u1‖ ≤ 0.0086, ‖Q⊥u2‖ ≤ 0.0911.

This results in a good, but slightly worse approximation quality of the timescales
compared to the small noise situation as one can see by comparison of Fig. 5.13 with
Fig. 5.10.

Conclusion. We presented a quite general estimate for the approximation qual-
ity of the dominant eigenvalues of an ergodic, metastable Markov process by Markov
State Models (MSM). We employed the approach via Galerkin projections to low-
dimensional subspaces, and particularly considered subspaces D spanned by the com-
mittor functions defined by some core sets via the milestoning process. Our interpre-
tation suggests that the associated MSM will approximate the dominant eigenvalues
well if the space spanned by the corresponding eigenvectors of the transfer operator
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Figure 5.13. ITS of original generator L (solid straight blue), ITS estimate (dashed red) as in
(5.4) and bound from Theorem (solid green). Left: ITS 1/Λ1. Right: ITS 1/Λ2.

Tt (or low-lying eigenvalues the respective generator L) is well approximated by the
ansatz space D. In this case, the Galerkin projection QTQ of the transfer operator (or
of the generator, respectively) onto D captures the long-time behavior of the original
process well.

Technically, our theorems do not require that the transfer operator/generator of
the original dynamics T possesses a spectral gap, i.e., a group of dominant eigenvalues
which are separated from all the other ones by significant interval without eigenvalues.
This is in partial contrast to the usual belief: The existence of a cluster of eigenval-
ues close to the largest eigenvalue λ = 1 and a spectral gap is often thought of as
the fundamental condition under which MSMs can have good approximation quality.
What we need instead is that our committor functions are good approximations of
the dominant eigenvectors. Since the committors depend on the choice of the core
sets, smallness of the projection error can only be achieved for appropriately chosen
core sets.

What our approximation theorems do not tell, however, is how to choose the core
sets, because in in general we will not be able to compute the dominant eigenvectors
and committor functions (such that we cannot compute the respective projection er-
rors δ or δA) that would be needed to identify the sets based on the above insight. The
results presented herein can thus only guide the investigation of how to choose core
sets optimally. Algorithmic research will therefore have to concentrate on estimating
the projection error based on trajectories of the underlying dynamics.

Acknoledgement. We are indebted to P. Metzner for providing us with the
three well potential discretization tool.
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