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The single switch trajectory surface hopping algorithm is tested for numerical simulations of a
two-state three-mode model for the internal conversion of pyrazine through a conical intersection of
potential energy surfaces. The algorithm is compared to two other surface hopping approaches,
namely, Tully’s method of the fewest switches [J. Chem. Phys. 93, 1061 (1990)] and the method by
Voronin et al. [J. Phys. Chem. A 102, 6057 (1998)]. The single switch algorithm achieves the most
accurate results. Replacing its deterministic nonadiabatic branching condition by a probabilistic
accept-reject criterion, one obtains the method of Voronin et al. without momentum adjustment.
This probabilistic version of the single switch approach outperforms the considered algorithms in
terms of accuracy, memory requirement, and runtime. © 2008 American Institute of Physics.
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I. INTRODUCTION

The quantum dynamics of polyatomic molecules is often
beyond the range of the Born—Oppenheimer approximation,
since electronic potential energy surfaces, which are spanned
by several nuclear coordinates, might approach each other or
intersect. The induced nonadiabatic effects considerably ex-
tend the traditional picture, that nuclear motion mainly fol-
lows one relevant electronic surface.

There are numerous discretization methods for the nu-
merical simulation of nonadiabatic phenomena. One class of
approximation schemes directly solves the underlying
Schrodinger equation, among them the multiconfiguration
time-dependent Hartree algorithm, the coupled coherent
states technique, and the matching-pursuit split-operator
Fourier transform method.'™ Quantum-classical or semiclas-
sical approaches, however, are motivated by the intrinsic
high frequencies of the dynamics and suitably augment clas-
sical transport equations for the approximation of nonadia-
batic transitions. Trajectory surface hopping constitutes a
popular family of algorithms within this class. It combines
classical transport along the electronic surfaces with some
nonadiabatic hopping between them. The different kinds of
hopping distinguish the many variants of the method.

Our aim here is to test the performance of the recently
proposed single switch algorithm,“’5 which has been derived
from a rigorous mathematical analysis of Schrodinger sys-
tems with conical crossings of potential energy surfaces.®™®
The single switch algorithm implements a deterministic
branching scheme, which splits a classical trajectory when-
ever it attains a locally minimal surface gap and weights the
branches according to a multidimensional Landau—Zener for-
mula. For an assessment of the obtained numerical results,
we compare with two other trajectory surface hopping meth-
ods, the well-established fewest switches alg011'thm9 intro-
duced by Tully in 1990 and the method of Voronin et al.,"’
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which can be viewed as an adoption of the original algorithm
of Tully and Preston.'' The three algorithms can be grouped
in at least three ways. On the one hand, the fewest switches
method and the approach of Voronin et al. are probabilistic,
while the single switch algorithm implements deterministic
dynamics. On the other hand, the fewest switches method
allows for nonadiabatic hops at every time step of the dis-
cretization, while the other two algorithms perform transi-
tions only when a classical trajectory attains a locally mini-
mal surface gap. Moreover, the single switch approach does
not adjust momentum, while the other two methods do.

Our numerical experiments use a two-state three-mode
vibronic coupling model for the ultrafast internal conversion
of pyrazine through a conical intersection of the two lowest
excited singlet states. The model has been introduced by
Schneider and Domcke'? in 1988. It has been used as a de-
manding test for various approximations,w’16 since it devel-
ops complex electronic and vibrational relaxation dynamics.
Our main focus is on the accuracy, with which the three
surface hopping algorithms compute level populations as
well as position, momentum, and energy expectation values.
However, issues of computational efficiency as memory
requirement and runtime are also addressed.

The article is organized as follows. Section II discusses
the three surface hopping algorithms in detail. Section III
briefly introduces the considered pyrazine model as well as
numerical implementation issues. Section IV presents the
comparative numerical experiments, which are also con-
cerned with momentum adjustment, efficiency, and Monte
Carlo sampling of the initial data. Section V offers some
concluding remarks.

Il. TRAJECTORY SURFACE HOPPING
We formulate a general scheme for trajectory surface
hopping algorithms for the solution of time-dependent two-

state Schrodinger systems,
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Such systems approximately describe the dynamics of n nu-
clei with masses m,, ...,m, under the influence of two elec-
tronic eigenstates. Note that the equation is cast in atomic
units, such that Zi=1. To transform the equation to dimen-
sionless coordinates, one sets

h=min(m,, ...,m,)""?

and rescales
q;— (m}/zh)_lq]*

In this way, one reformulates the Schrodinger operator as

2
- EAq+ V,

where h is typically ranging from 0.001 to 0.1. The
timescales on which the associated dynamics develop their
characteristic features are of order 1/h. Therefore, one also
rescales t—1t/h and obtains a Schrodinger system of the
form

I’l2
ihaﬂﬁ: - EAq¢+ Vl//? 'ﬂ(o) = 1100’ (1)

We assume that the two eigenvalues A™(g) <\*(g) of the
matrix have a conical intersection. That is, the crossing set
{g e RY\~(¢)=\*(g)} is a smooth codimension two sub-
manifold of the configuration space R?. In the three-mode
pyrazine model considered later on, the intersection set is a
straight line in the plane spanned by the two tuning modes.

Let x*(g) denote two normalized eigenvectors associ-
ated with the eigenvalues N\™(g) and define the correspond-
ing level functions

P (q.1) = (Pq.0|x" (q)2 (2)

of the solution of the Schrodinger Eq. (1). Here and in the
following, the scalar product between vectors x and y in the
Euclidian spaces C", neN, is denoted by (x|y)m=x"y*
%
:2;; l.x jyj .
One aims at the computation of expectation values

A= O]y (1))2= J Ay (g.0 ¢ (g,0)*dg,
]Rd

where the observables considered here are the identity opera-
tor id: ¢~ ¢, which generates the adiabatic potential energy
level populations, the position and momentum operators
Q;:—q;p and P ip—>—ihd;p for j=1,...,d, and the
energy operators
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h2
E-:— - EA,,(/H N

If the operator A is the Weyl quantization of a function
a:R??— C on classical phase space, then the expectation val-
ues can be expressed as phase space integrals,

A= O] (1)2= f a(q,p)W(y())(q.p)dqdp,
Hld
where

(Wi)(g,p) = (2mh)™ J e""y(g - 3y) g + y)*dy

R

is the Wigner function W(#):R?>?— R of the wave function
. The level populations are generated by the function
a(g,p)=1, the position and momentum expectation values
by a(q,p)=q; and alg,p)=p;, respectively, and the energy
expectations by a(q,p)=5|p|*+\"(¢q). We adopt this phase
space point of view for the following schematic exposition of
a trajectory surface hopping algorithm.

Phase space sampling. Derive from the initial level
functions ¢~(0) two sets of phase space points
(611i , pli) Sl (qﬁ , pi). In our simulations, we perform either
a grid-based or a Monte Carlo sampling of the two Wigner
functions W(~(0)).

Classical transport. Propagate the phase space points
along the trajectories of the associated Hamiltonian systems,

g=p. p=-V\"(q). 3)

Nonadiabatic transitions. The way of incorporating
nonadiabatic transitions is crucial and distinguishes the dif-
ferent surface hopping methods. The choices of the exam-
ined algorithms are thoroughly discussed in Secs. II A-II C.

Computation of expectation values. At some final time ¢

one obtains two sets of phase space points
(q7-p1)s--»(qy»pyy) Wwith associated real-valued weights
Wy ,...,w,,. The size of the weights depends on the number

of transitions the underlying trajectory has performed. For
the probabilistic methods the number of initial and final
phase space points coincides, while the deterministic ap-
proach generates a larger number of final points. The
weighted sums

M

> algip)wi 6
k=1

then approximate the desired expectation values. Depending
on the initial sampling, the integration weight &,>0 is the
volume element of the grid or 1/N for a Monte Carlo sam-
pling with N initial phase space points per level.

A. Single switch algorithm

For each individual classical trajectory t— (g, ,p,"), the
single switch algorithm® monitors the gap g(g)=\*(q)
—\"(g) between the electronic surfaces. If the function
t— g(qf) passes a local minimum, a deterministic branching
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occurs. The weights of the branches are given by a multidi-
mensional Landau—Zener rate, which is derived from the di-
abatic potential.

One writes the potential matrix as the sum of half its
trace and its trace-free part,

vi(g)  va(q) )

V(g) = Etr(v(q)) + (vz(CI) -v,(q)

Let dv(g) denote the 2Xd gradient matrix of the vector
v(q)=(v1(q),v,(q)). If t—>g(g,") attains a local minimum at
time 7, then

(dv(g;)p;|v(g;))e2=0. (4)

If (¢,p) is the phase space point, at which the trajectory
attains its local minimal gap, then the transition rate is

7 (@) )
h |dv(q)pl)”

The branch switching to the other level takes the old weight
times T(q,p), while the one remaining on the same level is
reweighted with the factor 1-T(q,p).

If there are no trajectories on opposite levels, which per-
form simultaneously their branching at nearby phase space
points, then the single switch algorithm is an asymptotically
correct method. The mathematically proven convergence
rate® is h'/8, while all numerical experiments so far*>® have
even shown a rate of order 1",

T(g.p) = eXp< (5)

B. Tully’s fewest switches

In Tully’s fewest switches approach,9 one solves two ad-
ditional ordinary differential systems. If the normalized
eigenvectors are chosen real-valued,

(7 —sin 6
X*(q)=(c?s q), X‘(q)=< o ‘1), (6)
sin 0,1 cos 0q

where the angle 0‘]:% arctan(v,(q)/v,(q)) e [-m/2,7/2] is
half the four quadrant inverse tangent of v,(g) and v,(q),
then the so-called nonadiabatic coupling vector,

d(q) =(x"(@)|Vx (9))c2s

is also real-valued. The additional systems have the form

ihd%ci(t) =M=(t)c™ (1), (7)
with
. A (q)) Iih<pf|d(qf)>>
M= = + + =, =+ .
g <:ih@,|d<qt>> A" (q?)

A trajectory switches from the upper to the lower level at
time 7, if

2ATR(S(D (DX pild(gh))ea) > el ()

where A7 is the length of the time interval since the last
nonadiabatic hopping decision and { a random number uni-
formly distributed in the interval [0, 1]. The corresponding
condition for a switch from the lower to the upper level is

2
k]
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= 2A7R(3 (DT (D p7ld(q7))ca) > Lei (D]

If the switch is accepted, say in a point (g,p), then the tra-
jectory is assigned a new point before evolving on the new
level. The new point has position ¢,=¢ and its momentum
P, is chosen such that 3|p|>+\*(g)=1[p.|>+\7(¢,). The
precise prescription is the following. One defines two nor-
malized nonadiabatic coupling vectors n*(q)
=+ |d(q)['d(g) and sets

¥ == (pln* (@) + \pln™ (@)% = 28(q).

For a switch from the upper to the lower level the new mo-
mentum is p,=p+y'n*(g). For an upward switch one
chooses p,.=p+7yn(q), if y is real-valued, and suppresses
the hop otherwise. The suppressed transitions are called clas-
sically forbidden hops.

C. Method of Voronin et al.

The algorithm proposed by Voronin et al. s also proba-
bilistic. If #—g(g,") reaches a local minimum at time 7 in a
point (g,p), then one uses the values of the gap for the last
three points of time ¢ to compute two parameters A and B,
which are defined by

+ 5 3 o2

g(g;) = VB (t— 1% + 4A%.

These parameters constitute a Landau—Zener transition rate
of the form

. ( T 2A2)
vmy = €Xp hBlp|)
If Tyyy={ for a uniformly distributed random number ¢
€[0,1], then the trajectory switches to the other surface, and
one performs the same momentum adjustment as described
in Sec. II B.

If nonadiabatic transitions are only performed when the
energy gap g(g) is of order h'?, then an easy argument
shows that the Landau—Zener rate Tymy rate agrees with the
one of the single switch algorithm up to a term of order /1'%,
Moreover, for such small gaps the momentum adjustment is
a correction of order ' as well.

lll. NUMERICAL SETUP

We briefly provide the necessary details of the consid-
ered pyrazine model and discuss the numerical realization of
the three surface hopping algorithms.

A. The pyrazine model

The two-state three-mode Hamiltonian for the internal
conversion of pyrazine is originally formulated in dimen-
sionless normal coordinates.'” It reads

3
Ey +(x|g)c \q3
15 o ,
= \g3 Ey + {klg)c

where the parameters are given in Table I. To obtain a
Schrédinger equation of the semiclassical form (1), we set
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TABLE 1. The parameters of the original (Ref. 12) and the rescaled pyrazine
model.

E;=3.94 x=(0.037,-0.105,0) »=(0.126,0.074,0.118)
E,=4.84 k=(-0.254,0.149,0) A=0.262

C=4.39 a=(-0.521,0.081,0) a=(1.703,1,1.595)
C,=-0.45 b=(0.698,-0.467,0) B=1216

the smallest of the three oscillator frequencies as 2=0.074
and rescale the coordinates according to

h .
qj_> ’/_qj (]=1’2’3)'
\'wj

The resulting Schrodinger equation is
h2
ihatlﬁ: - EAqlp"' V{ﬂ? 'ﬂ(o) = lzbO’

and has a potential matrix defined by
3

Ste(V(g) = C, +(alg)s + 52 afq,
j=1

v(q) = (Cy +(blg)c3.Bq3).

The new parameters are also collected in Table I. The eigen-
values N*(g) intersect on a straight line in the plane spanned
by the two tuning modes, that is, for g,=—(C,y+b,q,)/b, and
q3=0. As in the previous benchmark computations for the

mode],B_16 the initial wave function is chosen as ¢,= 3)(*,
where
3 /4
«; a;
T A (_ a z,)
(q) ]1:[1 (m) Pl =24

is the ground state of the quantum mechanical harmonic os-
cillator in semiclassical scaling %E?z 1(_h2(9jz+aqujz) and x* is
an eigenvector associated with the S,-state of pyrazine.
There is some freedom in the choice of the phase of the
eigenvectors, which can be used to alleviate the discontinuity
of the real-valued eigenvectors (6) on the slit v,(g) <0,
v,(g)=0. Since the functional support of the initial oscillator
state is rather close to the discontinuity, we have used the
complex-valued eigenvectors,

Y@ =ef%(cf’s ”q). ®)

sin Gq

The initial level functions #~(q,0) defined by Eq. (2) are
insensitive to any choice of phase, while the quantum solu-
tion ¢(q,r) slightly changes in momentum. An easy argu-
ment shows™ that level expectation values are altered by
terms of order A, which is below the accuracy of surface
hopping algorithms.

For a reference solution, the Schrodinger Eq. (1) is
solved by a Strang splitting scheme, which discretizes the
Laplacian using the fast Fourier transform. The time interval
[0,500 fs] is divided into 200 000 time steps, while the com-
putational domain [-2,2]® is discretized by 128 uniformly
spaced grid points per direction. Comparing the solution with
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TABLE II. Differences of the solution computed by the pseudospectral
Strang splitting scheme with full and half resolutions. Each entry shows the
maximum error of the recorded points of time. The error of the energy is a
relative error, all other numbers are absolute errors.

L*-norm Position exp. Momentum exp. Energy exp.

0.022 0.0013 0.0011 0.000 04

the one obtained by half the number of time steps and half
the number of grid points per direction, one observes a norm
difference of roughly 2% and deviations in the expectation
values around and below one permille, see Table II. Hence,
the solution is sufficiently accurate for the validation of sur-
face hopping algorithms and can be regarded as a reference.

B. Numerical implementation of surface hopping

The numerical implementation of the three surface hop-
ping algorithms has to realize the initial sampling and the
solution of ordinary differential equations. For the present
test case a grid based initial sampling is still feasible, while
the complementary numerical experiments with a simple
Monte Carlo approach presented in Sec. IV D achieve com-
parable accuracy. The initial Wigner functions are

1

3
W(y3)(g.p) = (wh) [ ] CXP(— %qf- - —hpf> ©)
j=1 Q;j

and W(¢;)(q,p)=0. Hence, for the lower level there are no
sampling points. The upper level function is sampled by the
following grid-based approach. One discretizes the six-
dimensional rectangle [-A,A]*X[-B,B]®> with A=3.5h'?
and B=5h"? using m=12 uniformly spaced grid points per
direction. Then one chooses the minimal number of points
(q1.p1). ---.(gn.py) such that
N

> W) (qop) 8= 1= 541, (10)
=k

where 8,=(4AB/m?)? is the volume element of the sampling
grid and sy, a predefined sampling tolerance. Our default
choice s,,=0.05 is smaller than the expected accuracy of the
surface hopping algorithms and results in 6656 sampling
points.

For the ordinary differential systems (3) and (7), we use
the algorithm of Dormand and Prince DOPRI5(4), a Runge
Kutta method of order of 5 with automatic step-size
control."” For the detection of the minimal gap, the regula
falsi method is combined with the interpolation routine of
DOPRI5(4), which does not require any further evaluations
of the right-hand side of Eq. (3). For the single switch algo-
rithm as well as the approach of Voronin et al., the rigorously
derived Landau—Zener rate (5) is employed.

IV. NUMERICAL RESULTS

The numerical experiments are concerned with momen-
tum adjustment, runtime and memory requirements, the
achieved accuracy of the computations, and the performance
of a simple Monte Carlo sampling of the initial data.
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FIG. 1. The population of the S,-state (top) and the total energy of the
system (bottom) computed for the first 200 fs by variants of the method
proposed by Voronin et al. The population improves considerably without
momentum adjustment, whereas the loss in total energy is of the order of
magnitude of the error induced by the initial sampling error.

A. Momentum adjustment

We numerically investigate the effects of the momentum
adjustment contained in the fewest switches algorithm and
the method of Voronin er al.

Figure 1 shows the upper level population for the first
200 fs and the total energy of the system as computed by the
Voronin method using the rigorously derived Landau—Zener
rate (5). The thick solid line is the outcome of the grid-based
reference solution. The thin solid line represents the result of
the original suggestion, that is, with momentum adjustment.
For the dashed lines, momentum is not adjusted, while clas-
sical forbidden jumps are either suppressed (thin dashed) or
allowed (thick dashed). Since the initial sampling according
to Eq. (10) achieves an initial population of 1-s,,, all sur-
face hopping computations do not start with unity.

The outcome of the two computations without momen-
tum adjustment deviates only slightly, namely, at most 0.05
and 0.02 in average. However, an adjustment of the momen-
tum strongly deteriorates the resulting population. The com-
putations with and without momentum adjustment show er-
rors around 0.12/0.39 and 0.04/0.14 (mean error/maximal
error), respectively. On the other hand, the improvement in
total energy, which is shown in the lower plot of Fig. 1, is
negligible compared to the error already induced by the ini-
tial sampling. Thus, for the following comparison in Sec.
IV C, we use the Voronin approach without momentum ad-
justment and allow for forbidden hops. Since this version
differs from the single switch algorithm only with respect to
the probabilistic nonadiabatic transfer, we refer to it as the
probabilistic single switch method.

For the fewest switches algorithm the situation is differ-
ent. Figure 2 shows again the population of the upper state
and the total energy of the system, using the same line styles
as before. The three variants of the fewest switches method
differ less drastically as in the previous experiments. More
precisely, the average errors are between 0.04 and 0.08,

J. Chem. Phys. 129, 034302 (2008)
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FIG. 2. The population of the S,-state (top) and the total energy (bottom) for
200 fs computed by variants of the fewest switches method. Momentum
adjustment does not alter the outcome as drastically as in the method by
Voronin et al.

whereas the maximal errors range between 0.16 and 0.17.
The two revivals around =100 fs and =175 fs are best re-
produced by two different versions without momentum ad-
justment, namely, the one with suppressed forbidden jumps
on the one hand and the one allowing all hops on the other
hand. Since a good deal of the time, the original method
seems to interpolate between the other two, we do not
alter the fewest switches approach for the comparison in
Sec. IV C.

B. Efficiency

A crucial problem for the deterministic single switch al-
gorithm is the branching of trajectories at points of minimal
gap, which leads to an unmanageable growth of particle
numbers as time evolves. However, most particles carry neg-
ligible weight and can be removed without loss of accuracy.
Thus, every time a trajectory with weight w attains a local
minimal gap at a point (¢,p), a new particle is added if and
only if its weight T(q,p)w exceeds a given tolerance w,. If
the remaining particle’s weight (1-7(g,p))w is smaller than
this tolerance, the weight is transferred completely.

Setting the sampling tolerance s,,,=0.05, one starts with
6656 initial sampling points, and the unfiltered single switch
computation breaks down at approximately 220 fs, when
44 682 174 particles occupy the available 2 GB RAM. Intro-
ducing a filtering with w,;=0.1, produces 21 484 particles
after 200 fs and results in a population of the S,-state, which
differs at most by 0.003 from the unfiltered computation.
However, too generous filtering tolerances deteriorate the ac-
curacy. Figure 3 shows the population of the S,-state for two
different choices of wy,. At the final time 500 fs, the toler-
ances w,;=0.1 and w,;=0.5 produce 46 532 and 14 352 par-
ticles, respectively. However, the level populations of both
computations differ by 0.055 on average with a maximal
deviation of 0.072.

For the sampling and filtering tolerances s,,;=0.01 and
wi1=0.05, one starts with 15 911 and ends with 89 190 par-
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FIG. 3. The population of the S,-state as computed by the single switch
method with different sampling and filtering tolerances, s,,; € {0.01,0.05}
and wy,; €{0.01,0.1,0.5}. The choice of the tolerances strongly influences
the final particle numbers as well as the quality of the approximation.

ticles. Table III illustrates that the deterministic single switch
algorithm even deteriorates by 1%, since the finer sampling
seems to amplify the tendency to overestimate the popula-
tion. The other two probabilistic methods are rather robust
with respect to the initial sampling. For the following com-
parison of the algorithms, we therefore choose the sampling
and filtering tolerances s,,=0.05 and w,;=0.1.

The runtime of each of the three surface algorithms on a
3 GHz Pentium IV computer with an initial grid-based sam-
pling with 5,,=0.05 and 6656 points is shown in Table IV.
The probabilistic single switch and the fewest switches
method are the fastest and the slowest method, respectively.
The long runtime of the fewest switches method despite the
constant number of particles is due to the additional ordinary
differential systems (7), which are more oscillatory than the
pure classical transport, and the fact that the frequent check-
ing of the hopping rate prohibits long time steps for the
ordinary differential equation solver.

C. Comparison of the algorithms

We turn to the central comparison of the three surface
hopping algorithms, the deterministic and probabilistic single
switch, and the fewest switches method. The first quantity
we study is the population of the S,-state again. Figure 4
shows the population produced by the three algorithms for
the first 200 fs. Both single switch results are more accurate
than the one of the fewest switches method, whereas the
difference between the deterministic single switch and its
probabilistic counterpart is on average of 0.012 and does not
exceed 0.044.

Figure 5 show the corresponding long-time behavior.
The bottom plot illustrates that the fewest switches method
produces an almost constant population for times larger than

TABLE III. Accuracy of the algorithms depending on the initial sampling
tolerance. The table shows the average and maximal errors of the upper
level population for the time interval [0,500 fs]. The single switch method
uses the filtering tolerances w,=0.1 and w,=0.05, respectively.

Stol Single switch Fewest switches Prob. single switch
0.05 0.032/0.128 0.033/0.170 0.023/0.140
0.01 0.044/0.140 0.032/0.164 0.026/0.136

J. Chem. Phys. 129, 034302 (2008)

TABLE IV. Runtime of the algorithms.

Single switch Fewest switches Probabilistic single switch

5ml0s 11m3ls 1m23s

200 fs. Both single switch approaches, however, also capture
the long-time oscillations. Even the two population increases
around =400 fs are qualitatively reproduced. Again, the dif-
ference between both approaches is negligible.

The upper plot in Fig. 6 shows the position expectation
of the ¢;-mode for the S,-state as computed by the determin-
istic single switch algorithm. The average error is 0.07 with a
maximum of 0.45 at 80 fs. As before, the difference between
both single switch approaches is small, namely, at most 0.12
and 0.02 on average. The fewest switches method’s error is
comparable for the first 20 fs and increases up to 0.32 in the
long-time regime. This behavior is qualitatively met for all
expectation values of position and momentum of the two
levels.

The third direction shows an interesting symmetry. Both
the position and the momentum expectation value of the
single switch method are constantly equal zero, see the mo-
mentum expectation in Fig. 6. Since the eigenvalues obey
N (q1,92,93)=—3N"(q1,92,—q3), the classical trajectories
are axially symmetric with respect to the third coordinate.
The related property of the vector v(g), which builds the
diabatic potential matrix,

v1(41.92.93) = v1(q1.92.— q3)

02(41,92,93) = = v2(q1.92.— q3) »

guarantees that the minimal gap condition (4) and the
Landau—Zener rate (5) are symmetric in the third direction,
too. Moreover, the grid-based initial sampling preserves the
symmetry of the initial wave function {(¢g). Hence, the
single switch algorithm produces vanishing position and mo-
mentum expectations for the third coordinate, whereas the
probabilistic elements of the other two methods do not pre-
serve this symmetry. The oscillations in the reference solu-
tion are induced by the complex phase of the eigenvector (8),
which causes a small initial momentum of the wave function
of order h not being resolved by the surface hopping ap-
proximations. Analytic computations show that an initial da-

= Reference

—— Single Switch

= = = Prob. Single Switch
- - - Fewest Switches

Population(+)

1 60 200
Time(fs)

FIG. 4. Population of the S,-state during the first 200 fs as computed by the
three surface hopping algorithms. The single switch results are more accu-
rate than the one of the fewest switches approach.
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FIG. 5. Long-time behavior of the population of the S,-state as computed by
the single switch algorithms (top) and the fewest switches approach (bot-
tom). For times larger than 200 fs, fewest switches produce an almost con-
stant population.

tum, which uses a real-valued eigenvector (6), yields a solu-
tion, whose position and momentum expectation values for
the third direction vanish identically, compare the Appendix.

Finally, we investigate the energy expectation values
with respect to both the S;- and the S,-state. Figure 7 illus-
trates that all algorithms approximate the S,-energy with
comparable accuracy, while the fewest switches algorithm
benefits from the momentum adjustment and reproduces the
Si-energy best. Indeed, for the S,-state, the single switch
algorithms show average relative errors around 0.022 com-
pared to 0.035 for fewest switches. For the S;-state, the few-
est switches approach has an average relative error of 0.008
compared to 0.03 for the single switch approaches. The
maximal relative S,-errors are around 0.14 for all three algo-
rithms and occur at times with low population.

D. Monte Carlo sampling

A grid-based sampling of the initial data is clearly bound
to low-dimensional problems. However, a Monte Carlo sam-
pling of the simple Gaussian function of the test case at hand
also allows for a drastic reduction of sampling points. One

% 0.6 | —— Reference —— Single Switch|—
o

E 0.4

3

& 02
i

i 0
O o .
0 100 200 300 400 500

s T T T :

T 02 j
i)

§ 0.1

é o]

% -0.1
n

l, —0.2
o L . . s
0 100 200 300 400 500
Time(fs)

FIG. 6. Position expectation in g,-direction (top) and momentum expecta-
tion in ps-direction (bottom) with respect to the S,-state as computed by the
single switch algorithm.
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FIG. 7. Energy expectation with respect to the S,-state (top) and the S;-state
(bottom). The S,-approximations are of comparable accuracy, while the few-
est switches algorithm reproduces the S;-energy best.

views the Wigner function (9) as a six-dimensional normal
distribution with mean zero and diagonal covariance matrix
generated by the vector

h(l 11 )
-\ 7777a17a2,a3

2\ oy oy

and draws ny;c sampling points from it. For our experiments
we consider nyc=100, 250, 500, 1000, 2500, and 5000.
Figure 8 shows boxplots of the mean error in the short-
time regime [0,250 fs] and the maximal error in the long-
time regime [250,500 fs] of the deterministic single switch
algorithm for 20 runs with initial Monte Carlo sampling. The
plots contain the median, the box bounded by the first and
third quartile, whiskers extending the box out to the most
extreme error within three halves of the interquartile range,
and plus marks for outliers. Even small particle numbers
result in a mean error comparable to the grid-based approach,
which is indicated by the horizontal line in the plot. As ex-
pected, the variance between different runs is reduced with

“(L) 0.1 T T T T T T
o +
']
S o
2 008} . .
e - - N —
s L HAa=s4 = =
é . . L
100 250 500 1000 2500 5000
£ 0.06 . . l : .
3
) o — .
Q L ! i
g 0.05 ] - — -
5 = = = =
5 004r : . 1
P%3 N
o
= 0.03 : :

100 250 500 1000 2500 5000
Sampling points

FIG. 8. Boxplots of the error in the population of the S,-state for the single
switch algorithm. The upper plot shows the mean error on [0,250 fs], the
lower the maximal error on [250,500 fs].
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higher initial particle numbers. The other two surface hop-
ping methods show the same behavior with a larger overall
variance, which is due to their probabilistic treatment of
nonadiabatic transfer.

V. CONCLUSION

We have tested the single switch surface hopping algo-
rithm for a two-state three-mode model for the internal con-
version of pyrazine. The computed level populations and ex-
pectation values differ from their reference values on average
by 3%. Even the long-time oscillations of the system are well
reproduced.

The related approach of Voronin et al., which also com-
bines nonadiabatic transitions at points of locally minimal
surface gap with a multidimensional Landau—Zener formula,
computes level populations only with an average error of
12%. However, if one omits the method’s momentum adjust-
ment, one reaches an accuracy comparable to the single
switch approach. Without momentum adjustment the Voronin
method can be viewed as a probabilistic counterpart to the
single switch algorithm, since in the regime of small surface
gap their Landau—Zener rates only differ by a term of order
h'2. Therefore, we call the Voronin algorithm with the rig-
orously derived transition rate (5) and without momentum
adjustment the probabilistic single switch method. It outper-
forms the deterministic algorithm with respect to runtime
and memory requirement.

The well-established algorithm of the fewest switches is
comparable to the single switch results in the short-time re-
gime, but does not reproduce the long-time oscillations of
the population. However, it approximates the energy of the
S,-state with an average relative error of 1%, which has to be
compared with an average relative error of 3% for the single
switch approaches.

In summary, the probabilistic single switch approach ob-
tains the best results among the considered algorithms with
respect to accuracy and efficiency. A detailed study of the
algorithm’s performance for other systems than the pyrazine
model has to be the subject of future research.
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APPENDIX: SYMMETRY OF THE REFERENCE
SOLUTION

Assume an initial datum of the form =y x*, where x*
denotes the real-valued eigenvector (6). We define the opera-
tor J, which acts as

('//1(5]1,61%4]3)) _( (q1.92.— 43) )
J = .
12(q1.92.93) = (41,92, 43)

Using Og,.95-05="0%q,.97.95) it is easily seen that Jip=iy,.
Moreover, J commutes with the Schrodinger operator
H:—(hz/Z)Aq+V, that is, JH=HJ. As a consequence we
have

Je-iHilh _ p=iilh |
and Ji(1)=y(r). Thus,

(%(611"127613,1)) :< 1(q1,92,— q3:1) )
(q1,92,93,1) - (q1.92.— q3.1) )

Combining this with the explicit form of the eigenvectors,
one obtains that the level functions  fulfill

U (q1.92.~-q3.0)= * ¥7(q,,492,q5,t). Hence, the expectation
values of position and momentum in the third direction are
zero for all times.
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