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A quantum dynamical description of an atomic collision pair interacting with the electric field of a short
infrared laser pulse is developed. Inelastic processes in the electronic ground state are due to stimulated
emission resulting in photoassociation, or absorption leading to photoacceleration. A perturbative approach
based on a state space representation is compared with a numerical treatment using a grid representation in
coordinate space. Special emphasis is on the role of rotations and, in particular, of shape resonances. It is
shown that these quasibound states which are supported by the centrifugal barrier (forJ * 0) can be used as
initial states to effectively populate a selected bound state with specific vibrational and rotational quantum
number (photoassociation), or a partial wave of a scattering state with defined energy and rotational quantum
number (photoacceleration). Simulations are carried out for the prototype H+ Cl collision pair. Also the
effect of averaging over initial conditions (velocity, angular momenta) is investigated for a supersonic beam
experiment. For a narrow velocity distribution, we predict the presence of a resonance structure of the
association and acceleration probability as a function of the mean collision energy.

1. Introduction

When a pair of colliding atoms comes in close contact, the
arising dipole moment opens the way for control of the dynamics
by electromagnetic fields. The interaction of collision com-
plexes with infrared (IR) radiation can result in two different
inelastic scattering events.1 Stimulated emission ofn IR photons
may lead to boundr free transitions, resulting in diatomic
molecules in the electronic ground state

where ε and J are the scattering energy and the angular
momentum associated with the relative motion of the colliding
atoms and whereV and J are the vibrational and rotational
quantum numbers of the photoassociation product. It is
suggestive that associative scattering events are most likely when
the photon energypω is close to the resonance condition for a
transition from the initial scattering state at energyε to any of
the bound states levelsE(V,J) of the molecule AB

This photoassociative event competes with freer free transi-
tions of the collision pair

where absorption ofn photons results in photoacceleration of
the colliding particles with

This type of inelastic scattering event is also known in the
literature as collision induced absorption.2 It is noted that a
third class of light-induced scattering event is the absorption of
photons leading to molecular products in an electronically

excited state. This type of photoassociation is not considered
in the present work, because this pathway is not usually
accessible by IR radiation. However, it is the dominant
mechanism for visible (vis) and ultraviolet (UV) photoassocia-
tion which has been studied extensively for systems such as
alkali metals,3-9 rare gas halides,10,11and certain metals in the
second column of the periodic table,12 in particular mercury.13-15

The application of pulsed subpicosecond IR lasers to induce
photoassociation according to eq 1 has been proposed recently
for the first time16 in analogy to previous work on the reversed
process of photodissociation using pulsed IR lasers.17,18 In
simulations for the collision pair O+ H it has been shown that,
by optimal design of laser pulses, photoassociation can be made
very efficient for near-resonant cases and that a very high
selectivity with respect to the vibrational state of the OH
molecule can be achieved.16 In a subsequent study also the
control of photoacceleration according to eq 3 for nonresonant
cases has been investigated.19 It has been shown that there are
distinct maxima in the distribution of the energyε′ of the
scattered particles, which can be attributed to the absorption of
one or more IR-photons. The possibility of IR ps laser pulse
induced transitions between resonances embedded in the
continuum has already been investigated in ref 20; in particular
it was shown that transitions from long-lived to short-lived
resonance may be used to control the dissociative decay rate of
triatomic model systems.
In the present work, we extend the previous studies by

including the effect of rotations which had been neglected in
the one-dimensional rotationless models of refs 16, 19, 20. The
inclusion of rotational effects should open new spectroscopic
transition pathways in the manifold of ro-vibrational states of
the association product AB similar to the case of IR photodis-
sociation.18 In particular we shall investigate the possibility of
using photoassociation to prepare molecules in a specific ro-
vibrational quantum state, or photoacceleration to prepare

AB(ε,J) + pω f AB(V,J) + (n+ 1)pω (1)

E(ε,J) - E(V,J) ≈ npω (2)

AB(ε,J) + npω f AB(ε′,J) (3)

E(ε′,J) - E(ε,J) ≈ npω (4)
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collision pairs at a certain energy and in a specific angular
momentum eigenstate (partial wave). Some problems that will
have to be addressed include the efficiency of laser induced
association versus acceleration, and also the selectivity with
respect to the quantum state of the product.
Our main focus is on new effects that can be expected for

collisions withJ * 0 where a centrifugal barrier separates the
attractive potential well from the asymptotic region, giving rise
to shape resonances for collision energiesε lower than the barrier
height.21,22 Observations of these resonances in atomic beam
scattering experiments have been reported in ref 23. The wave
functions corresponding to these quasi-bound states exhibit a
high probability amplitude in the region of the well of the
effective potential where the dipole moment is strongest. Thus,
we expect that resonance states can be manipulated far more
effectively by external fields than nonresonant scattering states
if their lifetime is long compared to the laser pulses used to
induce an inelastic scattering event. It is noted that, due to their
large geometric cross sections and their relatively long lifetimes,
shape resonances also play an important role in the process of
(termolecular) collision induced association reactions (recom-
bination).24-27 In summary, the manipulation of shape reso-
nance states of collision pairs opens the way not only to a new
kind of spectroscopy of quasi-bound states trapped behind a
centrifugal barrier9 but also, as we shall demonstrate below, to
a novel approach to IR-sub-picosecond laser control of photo-
association versus acceleration.
The possibility of observing the effect of shape resonances

experimentally crucially depends on the preparation of the
collision pairs, because the width of the shape resonances is
extremely narrow and their spacing is not very wide compared
to thermal energy distributions. Indeed, the first direct experi-
mental observation of individual shape resonances has been
demonstrated only recently in a study on ultracold collisions of
Rb atoms.9 At thermal energies, however, superpositions of a
large number of partial waves with different angular momentum
J and averaging over a distribution of collision energiesε has
to be taken into account so that the effect of shape resonances
on the photoassociation probability may be obscured. Instead,
we propose an experiment using supersonic nozzle beams
yielding relatively narrow velocity distributions.28 Simulations
of laser induced control of collision pairs will be carried out,
and the question will be discussed whether the resonance
structure can be observed in beam experiments with varying
energy resolution. As a model, diatomic hydrides should be
especially suitable, due to the relatively large spacing of
vibrational and rotational energy levels. In particular, we choose
H + Cl collisions in the present study.
The organization of the article is as follows: Our model, as

well as the various levels of approximation used in the quantum
dynamical simulations, is developed in section 2. In the
following section 3 we present and discuss our results. The
final section 4 gives our conclusions.

2. Methods

2.1. Model. The quantum dynamics of photoinduced
inelastic scattering of the H+ Cl collision pair is governed by
the Hamilton operator

where the time-independent molecular Hamiltonian can be
expressed in spherical componentsr, θr, φr of the internuclear
distance vectorrb

wherem ) 0.97u is the reduced mass andĴ is the angular
momentum of the1H + 35Cl system. In the framework of the
Born-Oppenheimer approximation, only the potential energy
curve for the electronic ground state is considered, which is
modelled by a Morse potential function

with experimentally determined values ofre ) 0.1275 nm for
the equilibrium bond length,De ) 37249.2 cm-1 for the
dissociation energy, andâ ) 0.01868 nm-1 for the steepness
parameter.29

The time-dependent part of the Hamiltonian describes the
interaction between the molecular dipole momentµb and an
external electric fieldεb(t) in the semiclassical dipole approxima-
tion30

Here it is assumed thatεb is polarized along thez-axis, andθr is
the angle betweenµb andεb. We adapt a dipole moment function
for HCl from the literature31 using a spline fit to interpolate
between the tabulated values. The electric field of the laser
pulse is of the form

where|εbp| andωp are the amplitude and the frequency of the
pulse, respectively. A convenient choice of the pulse shape is
given by the function

with a pulse duration 2Tp, which is very similar to a Gaussian
pulse shape with a fwhm ofTp but offers the advantage of a
well-defined beginning and end of the pulse.
2.2. Bound and Continuum States.Throughout most of

this paper, representations in a basis of bound and free
eigenstates will be used. The corresponding wave functions in
position space are obtained by solving the one-dimensional time-
independent Schro¨dinger equation

for an effective potential including a term for the centrifugal
barrier

Bound state wave functions can be written as a product of a
radial and a spherical harmonic function

To solve eq 11 numerically, we calculate the discrete eigen-
values and the corresponding radial eigenfunctions using a
Fourier-grid Hamiltonian method.32 The Morse potential of eq
7 with the parameters for electronic ground state of HCl supports

Ĥ(t) ) Ĥmol + Ŵ(t) (5)

Ĥmol( rb) ) - p2

2m
∂
2

∂r2
+
Ĵ2(θr,φr)

2mr2
+ V(r) (6)

V(r) ) De{1- exp[-â(r - re)]}
2 - De (7)

Ŵ(t) ) - µb(r)εb(t) ) - µ̂(r)ε(t)cos(θr) (8)

εb(t) ) εbpgp(t)cos(ωpt) (9)

gp(t) ) sin2( πt
2Tp), 0e t e 2 Tp (10)

[- p2

2m
∂
2

∂r2
+ Veff,J(r)]øVJ(r) EV,JøV,J(r) (11)

Veff,J(r) ) V(r) +
J(J+ 1)p2

2mr2
(12)

〈 rb|VJM〉 )
øV,J(r)

r
YJ,M(θr,φr) (13)
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a total number of 984 bound states for 0e J e 65 where the
number of bound states varies from 24 forJ ) 0 to a single
state forJ) 65. The resulting bound levels are shown in Figure
1. For comparison, the minima (wells) and maxima (centrifugal
barriers) of the effective potential energy curves with respect
to J are also shown as interpolated solid curves.
Free states can be represented in position space by a basis

set similar to expression 13

Here the continuous radial wave functionøk,J(r) is normalized
asymtotically with respect to sin(kr - Jπ/2 + δJ) with a phase
shift δJ.
In our calculations we use scattering states which are linear

combinations of eqs 14

These scattering states exhibit the asymptotic behavior of an
incoming plane wave with a specific momentumpkB and of
outgoing spherical waves. The scattering energy of this state
is ε with k ) 1/px2mε. We emphasize, that we do not use
localized wave packets as initial states, but stationary scattering
functions of the form of eq 15 because we do not want the final
results to depend on the actual choice of the inital wave packet.
Our approach is also much more general since it is possible to
construct any wave packet from a linear combination of
stationary scattering states.

The corresponding radial wave functionsøk,J(r) are calculated
by numerical integration of the radial Schro¨dinger eq 11 with
ε > 0 starting from the classically forbidden region (r f 0) by
a Bulirsch-Stoer method.33 The solutions are truncated in the
asymptotic region at ca. 5.2 nm and fitted to sin(kr - Jπ/2 +
δJ).
2.3. Inelastic Scattering Cross Sections.In the following

we want to define inelastic scattering cross sections for the
processes of photoassociation and photoacceleration using pulsed
light sources. We proceed in close analogy to elastic scattering
theory where the collision pair asymptotically approaches the
superposition of an incoming plane wave characterized by its
momentumpkB and outgoing spherical waves and where the
elastic differential scattering cross section dσ/dΩ is given as

where Ji is the incoming andJo is the outgoing probability
current scattered into dΩ which for sufficiently larger is
inversely proportional tor2.34

In our quantum-mechanical description, we are dealing with
probability amplitudes|c(t)|2 obtained from quantum-mechanical
states which can be expressed as

where|n〉 represent either bound|VJM〉 (eq 13) or free|kJM〉
(eq 14) eigenstates of the unperturbed system given by eq 6.
Note that here and in the following, the combined sum/integral
denotes a sum over all discrete (bound) states and an integration
over the continuum (free) states, so that|cVJM(t)|2 is a (dimen-
sionless) probability and|ckJM(t)|2 has the dimension of a
probability per volume in momentum space.
For collision pairs interacting with time-dependent external

fields, eq 16 must be replaced by an equation for the quantum
mechanical probability of finding the collision partners initially
prepared in a scattering statei of the form of eq 15 in a final
state f. This probability per unit time and per volume in
momentum space is the product of the incoming probability
currentJi ) pk/µ and a time-dependent partial inelastic cross
section for the transitionf r i (for f * i). Therefore we can
define dσfi(t)/dΩ (with the dimension of an area),

which is differential with respect to the direction of the incoming
wave defined byθk, φk in eq 15. Note that thez-axis is already
given by the direction of the laser polarization. Iff is a
continuum state, this equation gives the probability of finding
the system in a state betweenf andf + df and dσ/dΩ will have
to be replaced by a doubly differential cross section d2σ/(dΩdf).
Integration over the duration of the light pulse (eq 10) then yields
time averaged partial cross sections

Summation over all final states gives the total cross section for
inelastic scattering for a given initial statei. We also define
the association cross section dσi

ass/dΩ as the summation over
all final bound statesf ) |VJM〉 and the acceleration cross section
σi
acc as the integration over all final free statesf ) |kJM〉.

Figure 1. Bound states and resonance states for the electronic ground
state of HCl. The envelopes illustrate theJ-dependence of the well
depth and of the barrier height of the effective potential energy curve
(eq 12). The insert shows the two possible transitions from the (V ) 7,
J) 59) resonance state to the (3,58) or (2,60) bound states induced by
laser pulses as specified in the text.

dσ
dΩ

)
Jor

2

|Ji|
(16)

|Ψ(t)〉 ) ∑∫ncn(t)eiEnt/p|n〉 (17)

dσfi(t)
dΩ

:) 1
|Ji|

d
dt
|cf(t)|2 (18)

dσfi
p

dΩ
) 1
2Tp
∫02Tpdσfi(t)

dΩ
dt )
|cf(t ) 2Tp)|2

2Tp|Ji|
(19)

〈 rb|kJM〉 ) 4π
(2π)3/2

1
k

øk,J (r)
r

YJ,M (θr,φr) (14)

〈 rb|kB〉 )
4π

(2π)3/2
1

k
∑
J
∑
M

iJeiδJ
øk,J(r)

r
Y*J,M(θk,φk)YJ,M(θr,φr) (15)
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We note that the actual value of the association and acceleration
cross section will depend on the laser parameters. In particular,
the actual size of the cross sections can be easily controlled by
changing the amplitude of the laser pulse. The time-dependent
coefficients |cf(t)|2 and hence the inelastic cross sections
dσfi

p/dΩ are obtained by numerical integration of the time-
dependent Schro¨dinger equation. In the following subsections
we will present two different numerical techniques used in the
present investigation.
2.4. Numerical Solution. In our nonperturbative approach

we solve the time-dependent Schro¨dinger equation in position
space. In spherical coordinates the initial wave functionψi-
(rb;t) can be expressed generally in terms of spherical harmonics
YJM

Note that a negative imaginary potential is used to avoid the
effect of the periodic boundary conditions.35 Inserting this
approach into the time-dependent Schro¨dinger equation and
projection on|YJM〉 results in a set of coupled partial equations
for the time-dependent radial wave functions

with the Hönl-London factors36

representing the matrix elements of the direction cosine cosθr
(eq 8) in the basis of spherical harmonics.
The radial wave functions are represented on an equally

spaced grid which facilitates evaluation of the kinetic energy
operatorT by FFT techniques.37 The grid consists of 4096
points covering the range up tor ) 5.3 nm where we had to
cut off the scattering wave function. The relatively large grid
size was chosen to avoid effects of the finite grid size on the
photoinduced dynamics. Though we consideredJ-values from
0 to 77 in our calculations, we never propagated more than three
neighboringJ-terms at the same time. That means we just
coupled three different partial waves together and not the whole
range of 78 partial waves. For weak couplings which means
weak laser fields this will be a good approximation.
For sufficiently small time steps∆t, the Hamiltonian of eq 5

can be regarded to be time-independent thus permitting an easy
evaluation of the time evolution operator using the split
operator38,39

Typically, a time step of 0.1 fs was used to propagate fromt )
0 to t ) 2Tp. Finally, the coefficients|cf(t ) 2Tp)| in eq 17 are
obtained by projecting the time-dependent wave functions〈rb|ψi-
(t)〉 on that of the final statesf as given by eqs 13 and 14.
2.5. Perturbation Theory. In our perturbative approach we

use a state space representation. Inserting theansatzof eq 17
into the time-dependent Schro¨dinger equation and projecting
on one of the eigenstates yields a system of coupled first order
integro-differential equations for the time-dependent expansion
coefficientscn(t)

HereWnm(t) ) 〈n|W(t)|m〉 gives the matrix elements of the
perturbation operator for then r m transition, andωnm ) (En
- Em)/p is the corresponding Bohr frequency.
The usual approach of time-dependent perturbation theory

for weak interaction assumes negligible changes of the popula-
tion numbers, thus rendering the coefficientscm(t) ) cm(t ) 0)
on the right hand side of eq 25 to be independent of time.4

Hence, for the system initially prepared in statei, we obtain
for the coefficient of the final statef * i

where the expression 8 for the electric dipole interaction operator
and the explicit time-dependence (eq 9) of the electric field
has already been inserted and where the detuning of the light
frequency from the Bohr frequency is given by

Integration of eq 26 over the perturbation time (pulse duration)
then yields the coefficients at the end of the laser pulse

where the effective line shape functionG is obtained as the
Fourier transform of the sin2-like pulse shape function

Assuming the light pulse being long compared to the Bohr
period (2Tp . 1/ωfi ), eitherG(Ωfi

-Tp) or G(Ωfi
+Tp) will be

neglected for stimulated emission (Ef < Ei ) or absorption (Ef
> Ei), respectively (resonant approximation).
For the photoinduced processes under investigation, analytical

expressions for the coefficientscf of eq 28 can be given with
the help of the position space representations of bound eq 13
and free eq 14 states. First, we define the radial matrix element
of the dipole moment function

dσi
ass

dΩ
) ∑

VJM

dσfi
p

dΩ
;

dσi
acc

dΩ
) ∑

JM
∫kdk k2

dσfi
p

dΩ
(20)

〈 rb|ψ(t)〉 ) ∑
JM

φJ(r;t)

r
YJM(θr,φr) (21)

ip
∂

∂t
φJ(r;t) ) [-

p2

2m

∂
2

∂r2
+ Veff,J(r)]φJ(r;t) -

µ(r)ε(t)∑
J′M′

SJMJ′M′φiJ′(r;t) (22)

SJM,J′M′ :)∫0πdθr sinθr,

∫02π
dφrY*J,M(θr,φr)cos(θr)YJ′,M′(θr,φr)

)x (J- M)(J+ M)

(2J- 1)(2J+ 1)
δJ,J′+1δM,M′ +

x(J- M + 1)(J+ M + 1)

(2J+ 1)(2J+ 3)
δJ,J′-1δM,M′ (23)

ψ(t + ∆t) ) e-i∆t/pĤψ(t)

) e-i∆t/2pe-i∆tV̂/pe-i∆tT̂/2pψ(t) + O(∆t)3 (24)

ip
d
dt
cn(t) ) ∑∫mWnm(t)e

iωnmtcm(t) (25)

d
dt
cf(t) ) - 1

2ip
〈f|µb̂‚εbp|i〉 sin2( πt

2Tp)(eiΩfi
+t + eiΩfi

-t) (26)

Ωfi
( :) (ωp +

Ef - Ei
p

(27)

cf(2Tp) )
Tp
2p

〈f|µb‚εbp|i〉(G(Ωfi
+Tp) + G(Ωfi

-Tp)) (28)

G(Ωfi
(Tp) :)

1
iTp
∫02Tpdt sin2( πt

2Tp)eΩfi
(t

) ei2Ωfi
(Tp - 1

2Ωfi
(Tp[(Ωfi

(Tp/π)
2 - 1]

(29)

µfi :)∫0∞dr ø*f (r)µ(r)øi(r) (30)
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wherei andf represents eitherV, J for bound states ork, J for
scattering states. These matrix elements are obtained numeri-
cally from the grid representations of the radial wavefunctions
ø(r) (see previous section). Their squares give the Franck-
Condon factors of the corresponding transition. For a discussion
of the peculiarities of these factors for boundr free transitions,
we refer to the review in ref 40.
For the photoassociation transition from an initial scattering

state|kBi〉 to a bound state|VJM〉 (eq 13) the coefficients of the
bound states at the end of the laser pulse are

Accordingly, the transition from the same initial scattering state
|kBi〉 to a specific partial wave|kJM〉 (eq 14) of the photoaccel-
erated collision pair can be described by the coefficients

In the present work, a further simplification of eqs 31 and 32 is
reached by assuming the incoming plane waveskBi to be parallel
to the z-axis (and hence to the polarization direction of the
electric field). Then the expression for the spherical harmonics36

eliminates the summation overM′ in eqs 31 and 32, so that the
problem is reduced to a two-dimensional oneM′ ) 0. Apart
from being computationally much easier to solve, the perturba-
tion ansatz also offers a much easier interpretation of the
inelastic cross sections. From the above equations it is clear
that, apart from normalization factors, the cross sections are
proportional to Franck-Condon and Ho¨nl-London factors as
well as the effective line shape function (eq 29) of the pulsed
light source. However, there may be interferences between the
two terms corresponding to the only nonvanishing Ho¨nl-
London factors (see eq 23) forJ′ ) J + 1 andJ′ ) J - 1. In
the present investigation these interference effects do not play
a major role, because, for a given scattering energy coinciding
with a shape resonance, the Franck-Condon factors are only
large for one specific value ofJ′.

3. Results

3.1. Shape Resonances.Shape resonances are located in
two different ways. First, scattering states are calculated by
integrating the Schro¨dinger equation numerically as described
above and monitoring the phase shiftδJ(ε) as a function of the
scattering energyε. Normally, this function changes slowly
with respect to the scattering energyε except at the resonance
energiesεR where it changes rapidly byπ (for an example, see
Figure 2) which allows us to determine the position and width
of quasibound shape resonances. The latter is obtained from

For comparison, we use the program LEVEL 6.0 by R. J.

LeRoy41 which employs an Airy function boundary condition
method to determine the resonance energies, as well as a uniform
semiclassical approximation to calculate their widths. The
results obtained from these two approaches are found to be in
good agreement with each other. For 9e J e 77 we discover
a total of 176 quasibound states which are also included in
Figure 1. Although resonance states are not truly bound states,
we designate quasibound states according to the numberV of
nodes within the potential well formed by the centrigugal barrier.
The calculated lifetimesτR ) p/Γ of the resonance states vary

greatly with the vibrational quantum number where the highest
quasibound states just below the centrifugal barrier exhibit
shortest lifetimes. For our model of the HCl molecule, the
shortest-lived resonance state is found for (V ) 10, J ) 53 )
with τR ) 150 fs,Γ ) 35 cm-1. However, this is a rather
untypical case because it almost coincides with the height of
the centrifugal barrier. Most resonances exhibit lifetimes of at
least a picosecond or, in many cases, considerably longer. This
corresponds to energetic widths ofΓ e 1 cm-1.
In the following, we focus our attention on the energetically

most isolated quasibound state as the best candidate for state-
selective processes. Surveying the resonance energies, one finds
that this is the (7,59) state atε0 ) 3747.4 cm-1 which is
separated by more than 120 cm-1 from its lower and upper
neighbors (4,63) and (5,62).The energetic width of the (7,59)
stateΓ ) 1.0352 cm-1 corresponds to a lifetime ofτR ) 5.13
ps. The wavefunction and the effective potential (eq 12) forJ
) 59 is illustrated in Figure 3. Although most of the probability
amplitude|ψ(r)|2 is inside the potential well, there is yet some
amplitude outside in the asymptotic region, which is typical for
the very highest quasibound states because of the nonnegligible
effect of tunneling.
3.2. Population Dynamics. In this section we study the

process of laser-induced stabilization of the (7,59) resonance
state atε0 ) 3747.4 cm-1 by transition to the highest bound
state (at negative energy). With the selection rule∆J ) (1
being valid, these are the (3,58) state atε ) -852.4 cm-1 and
the (2,60) state atε ) -794.1 cm-1 (see the insert of Figure
1). To get the population dynamics of the association process,
we use our nonperturbative treatment. For simplicity, we choose

Figure 2. (a) Scattering phaseδ59(k) in the vicinity of the (V ) 7, J)
59) resonance state atε0 ) 3747.4 cm-1. The maximum slope is used
to determine position and width of the resonance state (see eq 34). (b)
Association cross section versus scattering energyε. The peak is mainly
due to the (3,58)r (7,59) transition. (c) Acceleration cross section vs
scattering energy.

cVJM(2Tp) ) -
4π

(2π)3/2

εpTp

2p

1

ki
∑
J′M′

{iJ′eiδJ′Y*J′,M′(θki
,φki) ×

SJM,J′M′µVJ,kiJ′
G(ΩVJ,kiJ′

+ Tp)} (31)

ckJM(2Tp) ) -
(4π)2

(2π)3

εpTp

2p

1

kki
∑
J′M′

{iJ′eiδJ′Y*J′,M′(θki
,φki) ×

SJM,J′M′µkJ,kiJ′
G(ΩkJ,k

- iJ′Tp)} (32)

YJ,M(θki
) 0,φki) )x2J+ 1

4π
δM,0 (33)

Γ ) 2(dδJ

dε |ε)εR)-1

(34)
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the initial wave function (eq 21) to be a single partial wave of
the scattering state (eq 15)

with k0 ) 1/px2mε0. Then we solve the coupled partial
differential eqs 22 forJ ∈ [58; 60] and t ∈ [0; 2Tp]. By
projection on the bound states (eq 13) we calculate the squares
of the expansion coefficients|cVJ(t)|2 for values ofJ ) 58,60
and V ) (0, 1, 2, 3). We optimize the laser pulse in such a
way, that the population transfer to the (3,58) state will be
maximized. For constant amplitude of the fieldεp ) 514 MV/m
corresponding to a maximum pulse intensity ofIp ) 3.5× 1010

W/cm2 and for constant pulse duration 2Tp ) 200 fs, we obtain
the optimal frequency ofωp ) 4605.9 cm-1 which implies a
detuning ofΩ+ ) -6.6 cm-1 with respect to the Bohr frequency
of the (3,58)r (7,59) transition. The resulting population
dynamics is shown in Figure 4. During the pulse duration of
200 fs, we see a continuous rise of the target state population
(3,58). Although the (2,60) state is energetically very close to
the (3,58), the population of the latter remains by approximately
3 orders of magnitude lower than that of the former. Further-
more, we see an intermediate buildup of population in the other
vibrational states of theJ ) 58 manifold. As has been shown
in our previous study on photoassociation and photoaccelera-
tion,19 the contribution of these states is relatively small unless
the frequency is near-resonant for higher order processes. For
the given example with the frequencyωp being about halfway
between the resonance condition for two-photon transitions to
either the (0,58) or the (1,58) level, the corresponding popula-
tions are found to be several orders of magnitude below that of
the (3,58) state. We also tried to optimize the laser pulse with
respect to population of the (2,60) target level. The resulting
population of the target state is about one order of magnitude
smaller than for the previous case, because the Franck-Condon
factor (see eq 30) sensitively depends on the difference in the
vibrational quantum numbers of initial and final state.

3.3. Validity of Perturbative Treatment. We now compare
the numerical and perturbative treatment for the example of the
transition from the (7,59) shape resonance to the (3,58) bound
state, which was already investigated in the previous section.
The comparison is performed by calculating the partial cross
section dσ3,58;7,59

p /dΩ which is obtained by averaging over the
duration of the laser pulse according to eq 19. The amplitude
εp of the electric field, and hence the intensity of the pulse, is
varied, while the values of all other pulse parameters are those
of the optimized pulse.
The numerical treatment follows the description in section

3.2, and the cross section is calculated for different values of
the laser amplitudeεp ∈ [514 MV/m; 262 GV/m]. This
corresponds to an intensity between 3.5× 1010 and 9.1× 1014

W/cm-2. In the perturbative treatment we use eq 31 to calculate
|c3,58(2Tp)|2 and henceσ3,58;7,59

p . In both cases, we simplify the
simulations by assuming the incoming plane wave to be parallel
to the electric field (see eq 33), and by assuming the initial
state to comprise of a single partial wave (see eq 35). The
comparison of the results obtained for the two approaches is
shown in Figure 5.
It is clear that for the first-order perturbative treatment the

partial cross section varies linearly with respect to the pulse
intensity, because the coefficientc3,58(2Tp) in eq 31 depends
linearly onεp. The two methods are in very good agreement
for laser intensities up to 5× 1012 W/cm-2. Up to this point
the linear rise of the perturbation-based result exactly matches
the numerically values for partial cross section as can be seen
in Figure 5. Beyond that threshold, the numerical values start
to level off and the discrepancy between the two sets of results
increases rapidly with the intensity. Our perturbative treatment
is not suitable to describe the nonlinear effects occuring in this
regime unless higher order terms are included, which, however,
would lead to considerably more complicated expressions for
the cross sections. All calculations in the remainder of the
present work, with the exception of this comparison, were
carried out for an electric field amplitude ofεp ) 514 MV/m
(corresonding to 3.5× 1010 W/cm2 ). Hence, all the cross
sections displayed in Figures 6-10 can be enlarged by two
orders of magnitude with the perturbation ansatz still being valid.
It is noted that, for intensities of about 1013 W/cm-2, the

Figure 3. (a) Effective potential energy curves forJ ) 0 (dashed)
andJ ) 59 (dotted) and quasibound wave function (solid) for the (7,
59) shape resonance atε) 3747.4 cm-1. The cross indicates the position
of the maximum (centrifugal barrier) of the effective potential. (b)
Dipole moment function for the electronic ground state of HCl, adapted
from ref 31.

φk0,J
(r, t ) 0))

δ59,Jδ0,M{ 1

(2π)3/2k0
iJeiδJx4π(2J+ 1)øk0J(r)} (35)

Figure 4. Population dynamics for the photoassociationf ) (V, J) r
i ) (7, 59) for the optimized laser pulse (see text). The duration of the
laser pulse is 200 fs (Tp ) 100 fs).
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photoassociation cross sections can be quite large approaching
values of a few nm2.
3.4. State Selectivity.After the investigation of the popula-

tion dynamics in section 3.2, where the initial state was assumed
to be asinglepartial wave (eq 35), we now want to discuss the
question of state selectivity of the photoassociation product for
the initial state being a full scattering state as given by eq 15
comprising ofall partial waves. We again consider a scattering
energy ofε0 ) 3747.4 cm-1 exactly coinciding with the (7,59)
shape resonance and the laser pulse optimized for the (3,58)r
(7,59) transition.
As anticipated in the introduction, the non-resonant partial

waves (J * 7) exhibit much lower probability amplitude than
the resonant partial wave in the region of short internuclear
separations where the dipole moment function is nonvanishing.
Hence, their individual contribution to the photoassociation
probability is much smaller. The photoassociation cross sections
as a function of the quantum numbers (V, J) of the final bound

state are displayed in Figure 6. The distribution lies in the
vicinity of a curve corresponding to equal energyε-ωP in the
V, J plane. It spreads fromJ ) 60 down to the lowestJ-states.
The oscillatory pattern in the distribution along the curve is due
Franck-Condon factors. Nevertheless, for the example dis-
cussed here, the final population of the (3,58) target state is by
far the largest and exceeds that of the second highest, the (19,15)
state, by a factor of 56. However, summing up the photoas-
sociation probabilities for all nonresonantJ-values yields a non-
negligible contribution to the total association probability.
Nevertheless, the final population of the (3,58) target state is a
factor of 4 larger than the sum of the populations of all other
bound states at the end of the laser pulse.
In summary, we find very high state selectivity which

originates in the existence of shape resonances. For the shape
resonance atε0 ) 3747.4 investigated here, the initial scattering

Figure 5. Partial cross section for the association (3, 58)r (7, 59) vs
laser intensity. The remaining parameters are those of the optimized
pulse (2Tp ) 200 fs,ωp ) 4605.9 cm-1). Comparison of numerical
(solid curve) and perturbative treatment (dashed curve).

Figure 6. Partial cross section dσfi
p/dΩ (in pm2, with an offset of 1

pm2) for the association process withi ) (7, 59) andf ) (V, J) using
the optimized laser pulse (εp ) 514 MV/m, 2Tp ) 200 fs,ωp ) 4605.9
cm-1).

Figure 7. Association cross section dσi
ass/dΩ as a function of

different initial scattering energies (solid line). Some of the peaks in
the spectrum are labeled with quantum numbers according to the main
boundr resonance transition. The stars show the density of bound
states per energy interval of 0.01 cm-1 shifted by the laser energy 4606
cm-1.

Figure 8. Acceleration cross section dσi
acc/dΩ as a function of

different initial scattering energies. Some of the peaks are labeled with
the (V, J) quantum numbers of the initial shape resonance state. In each
case, these resonances are either the highest or the second-highest
quasibound statesV for a givenJ.
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state (eq 15) shows a shape resonance only for one specific
J-value (J ) 59). Because of the large overlap of resonance
states with the dipole moment function, this partial wave is
strongly favored in both the association and acceleration process.
The combination with an optimized laser pulse designed to
maximize the population of a bound target state results in the
observed high state-selectivity.
3.5. Photoassociation Cross Section.In this section, we

calculate the association cross section defined in section 2.3 as
a function of the scattering energyε. We follow the perturbative
treatment of section 2.5 and we use the laser pulse of section
3.2 (εp ) 514 MV/m, 2Tp ) 200 fs, ωp ) 4605.9 cm-1)
optimized for the (3,58)r (7,59) transition. The scattering
wave function of eq 15 is used as an initial state. In our
calculations, the value ofε is varied from 1000 to 5000 cm-1

with a step size of∆ε ) 1.0 cm-1. This increment is needed
to resolve at least the energetically wider resonances with a
lifetime shorter than 5 ps. Our choice of the step size is just
small enough to resolve the (7,59) resonance which has an
energetic width of slightly more than 1 cm-1. This consideration
gives another justification for the choice of this particular shape
resonance. Apart from being the energetically most isolated
one, its width in energy and time is very favorable. On the
one hand, the relatively large energy width can be resolved
without resorting to an extremely small energetic step size; on
the other hand, the lifetime of about 5.13 ps is long enough to
use sub-picosecond laser pulses (Tp ) 100 fs) to manipulate
the resonance state within its lifetime.
Our association spectrum can be seen in Figure 7. First of

all, the curve shows a couple of very sharp peaks corresponding
to certain boundr resonance transitions. The largest of these
peaks have been identified and labeled by the respective initial
and final states in the figure. Although the scattering energy
covers almost the whole range of shape resonance states of the
HCl molecule, only a small selection of the 176 resonances
causes a peak in the spectrum. The reason for this is obvious.
According to eq 2, the photon energyωp must match the energy
difference between a quasibound and a bound state within the
width of the effective line shape of the laser pulse (eq 29) which
is of the order of a few 100 cm-1. Clearly, the peak for the
scattering energy coinciding with the (7,59) shape resonance
exhibits the largest photoassociation cross section. This peak
is almost exclusively due the (3,58)r (7,59) transition. Again,
this confirms the very high state selectivity of the photoasso-
ciation process. The height of the other peaks mostly depends
on how closely the transition energy resembles the carrier
frequencyωp of the laser pulse.
Finally, we want to discuss the broad background of the

spectrum in Figure 7. This contribution to the photoassociation
probability is caused by boundr free transitions where the
initial (free) state does not represent a shape resonance state. It
slightly rises with the scattering energy and reaches its maximum
at a scattering energy of aboutε ) 4400 cm-1, after which it
rapidly falls off. To explain this behavior statistically, we
calculate the density of bound states with respect to energy.
The stars in Figure 6 give this density per energy interval of
0.01 cm-1 shifted by the laser energyωp ) 4606 cm-1. It
increases steeply from low values in the region of the lowest
bound states up to a maximum just below the dissociation limit
beyond which it disappears. Hence, the density of bound states
shows the same qualitative behavior as the background of the
photoassociation spectrum thus demonstrating the mainly
statistical nature of the photoassociation process in the absence
of shape resonances. Only the fact that the rise of the
background with increasing energy is slightly steeper than the
rise of the density of states is due to the course of the respective
Franck-Condon factors.
3.6. Photoacceleration Cross Section.In the following,

the cross section for the photoacceleration process due to the
absorption of a photon is studied. As in the previous section
on photoassociation, we use our perturbative treatment, and we
vary the initial scattering energyε from 1000 cm-1 to 5000
cm-1 with a step size of∆ε ) 1 cm-1. In order to make the
association and acceleration cross sections comparable, we use
the same optimized laser pulse as in the previous section.
Methodologically, the main difference to the treatment of
photoassociation in section 3.5 is that the final states are not
discrete states but form a continuum of free (scattering) states,
see eq 20. We approximate this continuum using a discrete

Figure 9. Averaged association cross sections dσass/dΩ assuming a
nozzle beam velocity distribution for three different values of the speed
ratio S vs the mean scattering energyp2ks

2/(2m) of the initial state
distribution. The resonance peaks correspond to those shown in Figure
7.

Figure 10. Averaged acceleration cross sections dσacc/dΩ assuming a
nozzle beam velocity distribution for three different values of the speed
ratio S vs the mean scattering energyp2ks

2/(2m) of the initial state
distribution. The resonance peaks correspond to those shown in Figure
8.
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number of continuum wave functions with a density of one
function per energy interval of 1 cm-1. Usually, this density
is high enough to obtain converged acceleration cross sections,
except if the energy of the final state coincides with a shape
resonance. With the optimized frequency of the laser pulse
beingωp ) 4605.9 cm-1, only the six energetically highest
shape resonances are eligible as target states for photoaccel-
eration of collision pairs with an energy ofε > 1000 cm-1.
However, with the laser pulse optimized for the (3,58)r (7,59)
transition, the photon energy does not match any of the possible
resonancer resonance transition. Below, we will study this
specific process for other photon energies on its own.
The resulting acceleration cross section as a function of the

scattering energy is shown in Figure 8. The sharp peaks
correspond to certain continuumr resonance transitions. These
are inelastic transitions from a quasibound state to a higher free
scattering state. For the main peaks, quantum numbers of the
initial state have been assigned in Figure 8. In principle, one
should expect all 176 shape resonances to show up in the
spectrum whenever the initial scattering energy coincides with
any of the resonance energies. This is in contrast to the
association spectrum where only those shape resonances are
visible for which a boundr resonance transition is in near-
resonance with the laser frequency. However, in the simulations
of the photoacceleration process, only about 25 peaks are
detected for two different reasons. On the one hand, using a
finite step size∆ε ) 1 cm-1 (or using a spectroscopic apparatus
with this resolution), shape resonances with an energetic width
below approximately 0.1 cm-1 usually cannot be seen which
results in an upper bound for the lifetime of about 50 ps. This
excludes relatively low-lying quasibound states. Hence, the
main peaks in Figure 8 are caused by the shorter-lived shape
resonances. These are typically the highest or second highest
of the quasibound states for a givenJ and are found just below
the centrifugal barrier of the effective potential (eq 12). On
the other hand, if a shape resonances is extremely close to the
centrifugal barrier it has an unusually short lifetime (i.e., in the
femtosecond regime). As can be seen for the examples of the
(10,53) state at 2896 cm-1 or the (12,48) state at 2183 cm-1,
these resonances result in a broad and low peak because of their
exceeding energetic width ofΓ > 30 cm-1.
As has been discussed for the association spectrum, also the

acceleration spectrum exhibits a background caused by freer
free transitions where neither the initial nor the final energy
matches any of the shape resonances. This background signal
falls off slowly with the scattering energy as a result of the
dependence of the Franck-Condon factors for freer free
transitions on the energy of the initial (free) state.
In Figures 2b,c we compare the cross sections of the

competing processes in the vicinity of the (7,59) resonance
energy. Here we used a smaller step size of∆ε ) 0.1 cm-1 to
obtain a higher resolution. The peaks of both the photoasso-
ciation and photoacceleration cross sections coincide with the
jump of the partial scattering phaseδ59(ε0) (see Figure 2a) again
showing the uniqueness of the shape resonance state. For a
scattering energy of aboutε) ε0 ) 3747.4 cm-1, which matches
the (7,59) shape resonance, the cross section for photoassociation
is about three times larger than that for photoacceleration.
Finally, we also study resonancer resonance transitions

between shape resonance states. As an example, we optimize
the laser frequencyωp with respect to the transition (7,60)r
(7,59). The energy of the (7,60) target state isε ) 4144 cm-1.
The optimized laser energy isωp ) 423 cm-1 in the far infrared
region, which implies a detuning ofΩ- ) 30 cm-1. Qualita-

tively, the cross section behaves like that in Figure 2c. However,
the absolute values are considerably larger than for photoasso-
ciation or for photoacceleration with the final state being a free
state. For the example studied here, the value of the cross
section reaches aboutσi

acc ) 1.45 nm2. This value can be
compared with e.g.σi

ass) 0.007 nm2 for the optimized (3,58)
r (7,59) transition. Clearly, the huge cross sections for
resonancer resonance transition are due to the very large
Franck-Condon factor for a transition with∆V ) 0.
3.7. Averaging. In the previous sections, we always

assumed initial scattering states of the form (eq 15) with a sharp
momentumpk parallel to ebz. In the following we want to
investigate spectra for a realistic atomic beam scattering
experiment. In crossed beam experiments using well collimated
beams, the distribution of collision angles can be made
sufficiently narrow so that we do not have to consider it here.
However, there is a nonnegligible distribution of relative
velocities of the collision partners. In order to simulate this
spread of velocities, we perform an incoherent average by
integrating the association and acceleration cross section over
different initial k -values.

whereg(k) is the distribution function of (relative) velocities.
In our investigation we assume the use of supersonic nozzle
beams with their typically very narrow velocity distributions

Herepks/m gives the stream velocity of the beam andS is the
speed ratio (stream velocity divided by thermal velocity relative
to the former) characterizing the quality of the beam.28,42

Figures 9 and 10 show averaged cross sections for photoas-
sociation and photoacceleration of the H+ Cl collision pairs,
respectively. The results are for a mean scattering energy
p2ks

2/(2m) between 1500 and 4500 cm-1 and for three different
S-values (S) 100, 500, 1000 ). The general trend illustrated
in the figures is always such that for decreasingS the peaks
associated with the shape resonances are becoming less pro-
nounced with respect to the background which is due to the
association/acceleration of free states.
The averaged photoassociation cross sections of Figure 9

show that also after applying the averaging procedure (eq 36)
all the peaks in the photoassociation spectrum are still visible.
Furthermore, the peak for the (3,58)r (7,59) transition is
somewhat larger than the peaks for any of the other boundr
resonance transitions. However, already forS ) 1000 its
absolute height does not exceed that of the background at around
4400 cm-1. Another interesting aspect is the relative amplitude
of the peaks. For example, the narrow, high peak (i ) 13, 44)
and the wide, low peak (i ) 13, 45 ) of Figure 7 become
comparable upon averaging. This tendency continues for
decreasing the speed ratioS. Finally, forS) 100 most peaks
have disappeared and the remaining (13,44), (13,45), and (7,59)
are of comparable size and shape.
Similar trends can be found in the averaged photoacceleration

spectra of Figure 10. ForS) 1000 all the peaks can still be
distinguished. However, their height relative to the background
has decreased. Also some relative intensities have changed e.g.,
the two peaks (12,47) and (11,49) around 2000 cm-1). The
tendency of broadening increases forS) 500. Finally, forS

σjass/acc)∫dk g(k) σi)k
ass/acc (36)

g(k) ∝ k2 exp(-
S2(k- ks)

2

ks
2 ) (37)
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) 100 the shape resonances can only be recognized as small
oscillations of the background.

4. Conclusions

We have shown that shape resonances play an important role
for the processes of photoassociation and photoacceleration
which were investigated previously only using a rotationless
model.16,19 The localization of probability density mainly at
internuclear separations shorter than that of the centrifugal
barrier where it strongly overlaps with the molecular dipole
moment function results in large Franck-Condon factors for
transitions from quasibound states to either bound or free states.
Thus, shape resonances open an effective way for the manipula-
tion of collision pairs in the electronic ground state by infrared
(IR) light. This is in analogy with recent findings on the role
of shape resonances in three-body collisions such as collision
induced stabilization and dissociation.27 On the one hand,
stimulated emission can lead to photoassociation which may
be used to prepare molecules, in particular in extremely high
rovibrational states. Thus, photoassociation spectroscopy pro-
vides a tool to probe molecular states which are difficult or
even impossible to probe by traditional means.6 On the other
hand, the competing absorption of light causes photoacceleration
which can be used to prepare collision pairs at higher energies.
The influence of shape resonances together with the use of

sub-picosecond laser pulses can be used to control the efficiency
and the state selectivity of the photoassociation and photoac-
celeration process. Because the resonance condition is met only
for one specific partial wave occurring in the decomposition of
a plane wave describing the initial scattering state, this partial
wave is favored in both the association and acceleration process
giving rise to high rotational state selectivity. Furthermore, for
photoassociation it has been shown that optimization of the laser
pulse can also be used to either favor the P or the R branch
transition. In addition, vibrational state selectivity of the
association product16 or energy selectivity of an accelerated
collision pair19 can be achieved by optimization of the laser
pulse.
In principle, similar results could also be obtained by means

of continuous light sources. However, the use of pulsed lasers
offers additional advantages: A fascinating possibility could
be the observation of buildup or decay of shape resonances in
real time by appropriate pump-probe techniques, see ref 9.
Moreover, for a permanent association to occur, the laser-
induced processes have to be faster than possible relaxation
mechanisms (e.g., the collision with third particles, or, in the
case of a polyatomic product, the intramolecular energy
redistribution). Finally, short laser pulses can be used to
enhance the efficency of photoassociation and photoacceleration,
especially when the pulses are taylored to an incoming wave-
packet which is spatially and temporally well localized. In
summary, a combination of the use of a scattering energy
coinciding with a shape resonance and the use of optimized IR
laser pulses allows the production of molecules in a specific
rovibrational state or of collision pairs at specific energy and
angular momentum.
An experimental observation of the predicted effects crucially

depends on the energy resolution. A first experimental observa-
tion was reported recently for the association of laser-cooled
atoms.9 In the present work we suggest an alternative realization
in a scattering experiment using crossed atomic beams. On the
basis of our calculations, we predict that, (for high beam quality
(S g 100), it should be possible to resolve individual shape
resonances in both association and acceleration spectra.

In future work, photoassociation spectroscopy could be used
to investigate potential energy functions and (transition) dipole
moment functions. In particular, the information gained for very
high rovibrational states can be used to refine these functions
at very large internuclear distances. Another possible applica-
tion could be to exploit the very high sensitivity of the optimized
laser pulse parameters with respect to the dynamics of the
collision pair to generate isotope selected photoassociation
products (e.g., H35 Cl vs H37 Cl). We also want to point out
the possibility of using shorter laser pulses to generate coherent
superpositions of rovibrational states of the molecular prod-
uct.14,15 The corresponding wave-packet dynamics could be
probed by excitation into a fluorescing or an ionizing state which
would provide a means to image the photoassociation process
in real time. Finally, it is a challenge to extend the present
approach to other systems including polyatomic hydrides where
selective photoassociation or acceleration has to compete with
dissipative channels such as intramolecular rovibrational redis-
tribution.
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