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Abstract

The possibility of calculating vibrationally resolved spectra from short numerically exact and approximate quantum
dynamical propagations using the new filter-diagonalization method is explored. The benchmark process under study
concerns electron photodetachment in the IyAr complex. Comparison with results obtained from long-time propagations2

and with experiment reveals the power of the filter-diagonalization scheme. Using the new methodology it now becomes
possible to extract positions of spectral peaks for large polyatomic systems from approximate quantum propagations e.g., by
means of the recently developed classical separable potential approach. q 1997 Elsevier Science B.V.

1. Introduction

The idea of calculating spectra from time-depen-
dent wavepackets goes back to the work of Heller
w x1–3 some twenty years ago. The time-dependent
method, based on converting the autocorrelation
function into the spectrum via a Fourier transform,
represents in many cases a favorable alternative to

w xthe usual time-independent approach 4 . Within the
time-dependent formulation a single wavepacket
propagation is sufficient for obtaining the whole
spectrum, in contrast to the time-independent meth-

1 Humboldt Awardee at the University of Kaiserslauten, Ger-
many.

ods where the absorption cross-section has to be
repeatedly evaluated for each energy. A thorough
discussion of this subject with many examples can

w xbe found in the recent book by Schinke 5 .
The resolution of a spectrum obtained by Fourier

transforming the autocorrelation function is of course
inversely proportional to the length of the propaga-
tion. For direct or near-direct photodissociation pro-
cesses and for multidimensional cases where relax-
ation to the ‘‘bath’’ is fast, lines are broad and
short-time propagation usually suffices. On the other
hand, narrow lines corresponding long-lived states
created by a certain photochemical process require
costly long-time propagations. The situation is par-
ticularly critical for large polyatomic systems where
numerically exact propagation is not possible and
approximate quantum dynamical methods have to be
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employed. Due to their approximate nature these
methods deteriorate in time and therefore do not
allow for long accurate simulations. Most of these
approaches such as the time-dependent self-con-

Ž . w xsistent field TDSCF method 6–8 or the recently
Ž .developed classical separable potential CSP method

w x9 are based on the mode separability Ansatz or go
Ž w xbeyond it multiconfiguration TDSCF 10–15 or

w x.configuration interaction extension of CSP 16,17 .
In this study we employ the CSP approach together
with numerically exact propagations.

A general method for extracting positions of spec-
tral peaks from short-time signals called filter-di-

Ž .agonalization FD has recently been proposed and
successfully applied for extracting frequencies and

w xwidths of resonances 18–21 . The basic idea is to
restrict the calculation to a narrow spectral range and
to use the short-time autocorrelation function for
generating a good basis set for the peak positions
and widths evaluation in the given range. In this
Letter, where a bound photochemical process is sim-
ulated, we apply the FD method not to extract reso-
nances but stationary states which represents a chal-
lenge in its own right.

Although the CSP method is tailored for systems
with up to 100–1000 atoms, we do not fully exploit
the potential of the CSP approach here. Instead, in
order to compare spectra obtained from approximate
simulations to numerically exact propagations, we
restrict ourselves to a small, albeit realistic and
experimentally relevant system. The process under
study concerns the vibrational quantum dynamics
following electron photodetachment in the IyAr2

cluster as investigated using photoelectron and ZEKE
w xspectroscopy in the group of Neumark 22,23 and

using quantum propagations in our earlier studies
w x9,17,24 . The principal purpose of this work is to
present a method for obtaining the positions of spec-
tral peaks from short approximate or numerically
exact propagations using filter-diagonalization, which
opens new possibilities in spectra modeling of large
systems.

The Letter is organized as follows. In Section 2
we briefly review the new computational techniques
and give details about the system under study. In
Section 3 we present and discuss the results of the
calculations and in Section 4 we summarize the main
achievements.

2. Method and system

2.1. Time-dependent approach to spectroscopy

In the seventies, Heller pioneered a time-depen-
Ždent approach for the calculation of absorption or

. w xphotoelectron spectra 1–3 . Within this scheme a
Ž .wavepacket C q , . . . , q , t is propagated for a1 N

sufficiently long time and the corresponding autocor-
Ž . ² Ž . < Žrelation function C t s C q , . . . , q , 0 C q ,A 1 N 1

.:. . . , q , t is evaluated. The formula for the spec-N
Ž . w xtral intensity I v is 3

I v ;v=H` C t eiŽE iqv . td t , 1Ž . Ž . Ž .y` A

where E represents the initial energy.i

The standard way to obtain the spectrum from the
autocorrelation function is via a the Fourier trans-

Ž Ž . w xform e.g. using the fast Fourier transform FFT 25
.algorithm . However, to achieve good spectral reso-

lution the Fourier transform requires a sufficiently
long propagation and there are many cases, espe-
cially involving polyatomic systems, where this is
computationally excluded. For systems with more
than four atoms numerically exact calculations be-
come prohibitively costly and the separable methods,
which are usually applied, are short-time approxima-
tions which tend to deteriorate if the propagation is
carried for too long. The next subsection briefly
describes a recently developed method for extracting
the positions of the spectral peaks from short propa-
gations.

2.2. Filter-diagonalization

The filter diagonalization method described in
w xdetail elsewhere 18–21 enables one to calculate the

energy spectra of the system either only from the
Ž .autocorrelation functions C t or, in the case ofA

several propagations from different initial wavefunc-
tions, also from the cross-correlation functions

Ž . w xXC t 21 , where t-T. The key points are:nn
Ž .i Propagation time T can be much shorter than

the time which is required to get the energy spectra
by FFT or by other known methods.

Ž .ii There is no need to know what the Hamilto-
nian is for which the autorcross correlation func-
tions were calculated. The time-evolution operator is
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represented by a matrix U which is constructed only
from the knowledge of the autorcross correlation
functions.

Ž . Ž .iii The energy E spectra of the system are
obtained from solving a general eigenvalue problem

UCslSC , 2Ž .

where U and S are the time propagator and overlap-
Ž .y1 w xping super-matrices and Es i D t ln l 21 .

The FD method also provides an error estimate
Žassociated with the FD scheme itself and not with
approximations in propagations as in the case of CSP

.calculations of the calculated spectra. The error is
obtained by the diagonalization of the time-evolution
operator U calculated by the FD method at different

w xtimes, tsD t, 2D t, 3D t 20,21 . For bound systems
where the eigenvalues E should have real values
only, the imaginary parts of the calculated eigenval-

Ž .ues E i.e. the widths of the peaks can be used as
another error estimate of the results obtained by the
FD method. In the present work we use the latter
values as error estimates since they come out larger
than the former values.

2.3. Classical separable potential method

Quantum propagations were performed both nu-
merically exactly and using the recently developed
CSP method, detailed description of which is given

w xelsewhere 9,16 . Briefly, the basic concept of the
CSP approach lies in simplifying the multidimen-
sional coupled quantum dynamical problem by con-
structing an effective time-dependent separable
mean-field potential for each degree of freedom us-
ing auxiliary classical trajectories. With the use of
this ensemble of trajectories, an effective potential
for each mode is computed. Subsequently, a one-di-
mensional quantum propagation is performed for
each mode using the above potentials.

The initial coordinates and momenta for the set of
� Ža .Ž . Ža .Ž . Ža .Ž .n classical trajectories q t , q t , . . . , q t ,T 1 2 N

4as1, . . . , n are chosen such as to map the initialT

wavepacket using the Husimi phase space distribu-
w xtion 26 corresponding to the initial quantum state of

the system. A set of trajectories is then generated by
solving the classical equations of motion. A separa-

Ž .ble time-dependent effective potential V q , t forj j

Ž .each mode j js1, 2, . . . , N is then constructed
by averaging over all trajectories as follows:

nT

Ža . Ža . Ža .V q ,t s V q t , . . . ,q t ,q ,q t ,Ž . Ž . Ž .Ž . ŽÝj j 1 jy1 j jq1
as1

1yN
Ža .. . . ,q t w q V t , 3Ž . Ž . Ž ..N a N

where V is the fully coupled potential, N is the
number of modes, and the summation runs over all
MD trajectories and w is the Husimi weight ofa

trajectory a . The time-dependent but coordinate-in-
dependent constant V

nT

Ža . Ža . Ža .V t s V q t , . . . ,q t ,q t ,Ž . Ž . Ž . Ž .ŽÝ 1 jy1 j
as1

qŽa . t , . . . ,qŽa . t w 4Ž . Ž . Ž ..jq1 N a

does not influence the dynamics and only ensures
that the single-mode potentials sum up approxi-
mately to the total potential energy.

Next, the time-dependent Schrodinger equation¨
within the separable approximation is solved for
each mode j

Ec q ,tŽ .j j ˆi" s T qV q ,t c q ,t ,Ž . Ž .ž /j j j j jE t

js1, . . . , N. 5Ž .
ˆHere, 2p" represents Planck’s constant and T is thej

kinetic energy. Normal mode coordinates of the an-
ionic species are used in this simulation. The total
wavepacket for the system under study is finally
given as a product of the single-mode wavefunctions

N

C q , . . . ,q ,T s c q ,t . 6Ž . Ž .Ž .Ł1 N j j
js1

2.4. System and computational details

The IyAr complex has the shape of an isosceles2
Ž . w xnearly equilateral triangle 23,24 . In our simula-
tions the ground state vibrational wavefunction is
promoted upon electron photodetachment to the neu-

w xtral I3r2 surface 17,23 , where it undergoes dynam-
ical evolution. After electron photodetachment, the
energy of the system is below the dissociation limit
and consequently the atomic motions are bound. The
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anionic and neutral iodine–argon potentials were
w xdetermined from ZEKE experiments 22 . In this

work we use the same pair potential parameters as in
w xour previous studies 9,17,24 .

The coordinates used in the quantum simulations
were the three anionic normal modes — symmetric
and asymmetric stretch and the bending mode. The
initial wavepacket was taken as product of the corre-
sponding harmonic eigenfunctions. A grid of 64
points for each degree of freedom proved to be
sufficient. The CSP wavepackets were propagated

w xusing the split-operator technique 27 with a time-
step of 0.65 fs. The numerically exact wavefunctions

w xwere propagated using the Chebyshev method 28
with a 6.5 fs time-step. In all simulations, the action
of the kinetic energy operator was evaluated using

w xthe Fourier approach 29 . 200 classical trajectories,
which provided converged classical separable poten-
tials, were generated using a standard Gear routine
w x30 . For the filter-diagonalization calculations 50
basis functions provided well converged results in
the interval y240 to y150 cmy1, where zero corre-

sponds to the energy of a fully dissociated neutral
cluster.

3. Results and discussion

Vibrational motions of individual modes on the
neutral I3r2 surface of the IAr complex have typi-2

cal periods of motion of around 1 ps. Therefore,
quantum propagation for tens of picoseconds is nec-
essary to extract the vibrationally resolved photo-
electron spectrum using the standard Fourier trans-
form method. Fig. 1 depicts the modulus of the
numerically exact autocorrelation function on the
interval 0 to 24 ps. A rather complicated pattern is
observed which is dominated by a series of major
recurrences spaced by 2–2.5 ps, among which more
irregular small recurrences occur. This pattern gives
us information about the reappearances of the evolv-
ing wavepacket in the initial Franck–Condon region.

As discussed in the Introduction, large polyatomic
systems, such as big atomic and molecular clusters,
biomolecules, or condensed phases, to which most

Fig. 1. Absolute value of the autocorrelation function obtained from a long-time numerically exact propagation.
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interest is directed, do not allow for a numerically
exact quantum dynamical description. Often, the
quantitative accuracy of the approximate methods
decays before sufficient information for the Fourier
transform of the autocorrelation function is gained.
In Fig. 2 comparison is made between the short-time
numerically exact and CSP autocorrelation functions.
While for about 500 fs CSP is an excellent quantita-
tively correct approach, an error slowly starts to
build up afterwards. Clearly, we cannot expect CSP
to provide accurate information about the whole 24
ps dynamics. Still, it gives a resonable description of
the early dynamics till about 1200 fs.

Conversions of the long and short-time autocorre-
lation functions into spectral information is shown in
a complex Fig. 3. Direct application of the FFT
method to the long 24 ps numerically exact autocor-
relation function yields the main peak with relative

y1 Žintensity of 1 at y231 cm with the energy of the
.fully dissociated neutral cluster set at zero . A tail to

the blue with major peaks spaced by approximately
15 cmy1 and a few minor peaks is observed in good

w xagreement with the ZEKE experiment 23 . As a
matter of fact, the spectral resolution of 1.5 cmy1

which comes from Fourier transforming a finite time
signal is better than that of the experimental spec-
trum.

Application of the filter-diagonalization method to
the 24 ps autocorrelation function gives superior
results by far to the above discussed FFT scheme in
terms of spectral resolution. All the major peaks are

Žperfectly sharp the corresponding error bars in Fig.
.3 form optically a single line with the spectral

resolution being better than 0.001 cmy1. Only the
peaks in the tail of the spectrum come out less sharp,
but still significantly better than the FFT ones. One

Fig. 2. Short-time numerically exact and CSP autocorrelation functions.
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of the practical consequences of this is that we can
now resolve peaks which were earlier hidden within
one relatively broad line, such as the three peaks at

y1 Ž .around y185 cm see Fig. 3 . Note that, unlike
the sizes of the FFT peaks, the intensities of the FD
peaks in Fig. 3 are purely arbitrary and their values
are chosen such as to provide a clear picture.

In terms of future applications to much larger
systems a crucial question arises about how much
information can be extracted from a short-time prop-
agation where separable approximations still hold
well. The chosen short 1.2 ps time interval covers
roughly one vibration of the individual modes and
represents only half way to the first major recurrence
in the autocorrelation function. Not surprisingly, FFT
for such a short time signal gives only a broad

Žspectral envelope and is essentially useless see Fig.
.3 . What might be more of a surprise is that a lot of

spectral information is obtained using the FD ap-
proach. When applied to the short time numerically
exact autocorrelation function it gives sharply the
position of the main peak and correctly, though
much less sharply, the second and one more peak.
The non-negligible widths of the side peaks are
consequences of the incomplete time information,
nevertheless the positions of the peaks come out well

Žand the peaks are well resolved the widths do not
.overlap .

Since within the FD approach we are not calculat-
ing spectral intensities it is possible to improve the
short time results by performing propagations from

Ž .other initial vibrational states than the experimental
Ž .ground vibrational state denoted 000 on the anionic

surface, or possibly even from an initial state which
is a linear combination of the corresponding vibra-
tional eigenstates. The additional propagations help,

Fig. 3. Comparison between spectra obtained using FFT and filter-diagonalization for long- and short-time numerically exact and CSP
propagations. Error bars indicate the precision of the filter-diagonalization method.
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in better exploring the configurational space and thus
gaining more information within the short-time dy-
namics. They also allow the evaluation of cross-cor-
relations which were shown to be helpful in extract-
ing broad resonances from short-time propagations

w xstarted from delocalized initial wavepackets 21 .
However, in the present work concerning a bound
problem studied via propagations of initially rather
localized wavefunctions the cross-correlations proved
to be practically redundant and were not used.

In this study we performed additional numerically
exact short-time propagations started from the 111
and 222 harmonic initial states and used these to
refine the previous results. The choice of these lower
vibrational eigenstates was influenced by the fact
that the CSP approximation, for which the numeri-
cally exact results serve as a benchmark, works best
for localized initial states, which can be well repre-
sented by a moderate number of points from the
Husimi phase space distribution. As can be seen on
Fig. 3 we can now extract significantly more peaks.

ŽAlso some of the old peaks e.g., the second most
.intense peak can now be determined more accu-

rately and sharply.
Finally and most importantly, Fig. 3 shows that

the approximate CSP short-time propagation com-
bined with the FD method gives results of compara-
ble quality with the corresponding numerically exact
calculation. Indeed, from a single short-time autocor-
relation function the same well resolved three peaks
are extracted by the two dynamical methods. The
error caused by the CSP approximation is small —
the main peak becomes less sharp and the side peaks
are less than 1 cmy1 off the short-time numerically
exact values and even slightly sharper. We note here
that for better comparison, all the CSP peaks de-
picted in Fig. 3 were shifted by 16.376 cmy1 which
is the difference between the numerically exact and
the approximate CSP total energies of the cluster
after electron photodetachment. Adding more auto-
correlation functions corresponding to propagations
started from different initial wavefunctions has the
same effect as in the case of numerically exact

Žpropagations. Three functions 000, 111 and 222, as
.before allowed already the resolution of five peaks

Žand adding four more functions started from the
100, 200, 101 and the 110 harmonic vibrational

.functions on the anionic surface brings new spectral

peaks and improves resolution of some of the exist-
ing ones.

4. Conclusions

In the present study we showed how vibrationally
resolved spectra can be extracted from quantum dy-
namical simulations of the electron photodetachment
process in a small benchmark system — the IyAr2

complex. From a long-time numerically exact simu-
lation, a spectrum which is in good agreement with
the ZEKE experiment is extracted using the standard
FFT method. Filter-diagonalization gives the same
peak positions as the FFT method but with a grosly
improved resolution. More importantly, the positions
of the main peaks can also be extracted using FD
Ž .but not FFT from a short-time propagation, using
numerically exact or approximate CSP methods and
they can be further refined by performing additional
simulations starting from different initial wavefunc-
tions. The new results presented here are encourag-
ing and have far reaching consequencies for future
simulations of large systems where numerically ex-
act quantum dynamical calculations are not possible.
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