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Abstract
A new approach to derive transparent boundary con-

ditions (TBCs) for wave, Schrödinger and drift-diffusion
equations is presented. It relies on the pole condition ap-
proach and distinguishes physical reasonable and unrea-
sonable solutions by the location of the singularities of the
spatial Laplace transform U of the exterior solution. By
the condition that U is analytic in some region TBCs are
established. To realize the pole condition numerically, a
Möbius transform is used to map the region of analyticity
to the unit disc. There the Laplace transform is expanded
in a power series. The equations coupling the coefficients
of the power series with the interior provide the TBC. Nu-
merical result for the damped wave equation show that the
error introduced by truncating the power series decays ex-
ponentially in the number of coefficients.

Introduction
Transparent boundary conditions are a key ingredient

for the simulation of wave propagation on unbounded do-
mains. In this talk work in progress is presented.

Prototypes of the governing equations under consider-
ation are the wave, drift-diffusion and Schrödinger equa-
tions on the real line for t > 0 given by

∂ttu = ∂xxu − k2u, (1)

∂tu = ∂xxu + 2d∂xu, (2)

i∂tu = ∂xxu − k2u. (3)

All of these have to complemented by appropriate initial
values. To treat (1) - (3) simultaneously the symbol p(∂t)
is introduced. Hence the generic equation is

p(∂t)u = ∂xxu + 2d∂xu − k2u. (4)

For the procedure to derive exact non-local transparent
boundary conditions we refer to the recent review arti-
cles [1]. The pole condition approach is an alternative
and as we hope to show a more flexible way of deriv-
ing transparent boundary conditions. Almost immedi-
ately the pole condition approach yields an algorithm to
implement approximate local transparent boundary con-
ditions. The pole condition for time-harmonic problems
is studied in [2], where it is shown that it coincides with
the Sommerfeld radiation condition.

Alternative derivation of TBCs
Suppose we are only interested in the solution u re-

stricted to the interval [−a, a]. Furthermore suppose that
the initial value(s) are compactly supported in [−a, a]. To
truncate the computational domain TBCs are needed. The
exact TBCs are in general convolution in time, i.e. they
are non-local.

Variational formulation
Multiplying (4) by a test function and integrating over

the real line yields
∫

p(∂t)uv dx =

∫

−∂xu∂xv + 2d∂xuv − k2uv dx. (5)

As test functions we chose v(x) = e−s(x−a) for x > a
and v(x) = es(x+a) for x < −a with a complex parame-
ter s with <s > 0. The integral over the real line is split
into three parts: an integral from −∞ to −a, from −a to
a and from a to ∞. Defining

U (r)(t, s) :=

∫

∞

0
u(t, x + a)e−sx,

which is the Laplace transform of the solution u in the
right exterior, and similar U (l) one obtains after some
simple manipulations
∫ a

−a

p(∂t)uv dx + p(∂t)U
(r) + p(∂t)U

(l) =

∫ a

−a

−∂xu∂xv + 2d∂xuv − k2uv dx

+s(sU (l) − u−a) − 2d(s(U (l) − u−a)) − k2U (l)

+s(sU (r) − ua) + 2d(s(U (r) − ua)) − k2U (r),

where u±a are the boundary values of u at the left and
right boundary.

Pole Condition
Consider the equation for the right exterior only, sup-

pose for the moment that u is given on [−a, a] and set

u′ :=

∫ a

−a

p(∂t)uv dx + ∂xu∂xv − 2d∂xuv + k2uv dx

then the equation for U (r) is given by

s(sU (r)−ua)+2d(sU (r)−ua)−k2U (r)−p(∂t)U
(r) = u′ .
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Taking a Laplace transform in time with dual variable ω,
p(∂t) corresponds to a multiplication with p(ω) = ω,
p(ω) = iω or p(ω) = ω2 depending on the type of equa-
tion. Solving for U (r)(s) one obtains

U (r)(s) = (s2 + 2ds − k2 − p(ω))−1(u′ + sua + 2dua).

Clearly U (r)(s) is analytic in s except for two poles (or
more generally for several singularities). If s− and s+ are
the roots of (s2 + 2ds − k2 − p(ω)) one can write by
Cauchy’s integral formula

U (r)(s) =
1

2π

∮

γ
−

(σ2 + 2dσ − k2 − p(ω))−1

σ − s
dσ

+
1

2π

∮

γ+

(σ2 + 2dσ − k2 − p(ω))−1

σ − s
dσ

where γ± are paths enclosing s±. In this simple setting
this is equivalent to a partial-fraction decomposition.

U (r)(s) =
r+(s, u′, ua)

s+ − s
+

r−(s, u′, ua)

s− − s
,

with r± = 1/2(ua ± (u′ + 2dua)/
√

p(ω) + k2 + d2).
Transforming back to space domain we have the corre-
spondence

1

s− − s
↔ es

−
x and

1

s+ − s
↔ es+x.

Suppose that we can identify es+x as an incoming wave
or a exponentially increasing solution. Thus depend-
ing on the location of the poles s± we can now distin-
guish incoming/exponentially increasing waves from out-
going/exponentially decreasing waves. So we are in the
position to formulate TBCs as a condition on U (r)(s).
The pole condition says: A wave is outgoing if U (r)(s)
is an analytic function in the half plane E of possible
locations of s+. This is equivalent to the condition that
r+ = 0, which yields the classical transparent boundary
condition. But we are not required to form the expression
for r+.

Pole Condition in Hardy space
How to handle the pole condition numerically? An-

alytic functions can be expanded into power serieses,
which convergence in some ball, yet the pole condition
is a condition set on a complex half plane. The Möbius
transform is a conformal transformation that transforms
a half plane to the unit ball. The Möbius transform is
thus the key ingredient to make our algorithm fly. Let
s 7→ s̃ = M(s) be the Möbius transform that maps the

half plane E to the unit ball. We can now reformulate the
pole condition: A wave is outgoing if U (r)(s̃) is analytic
in the unit ball. Expanding

U (r)(s̃) =

∞
∑

`=0

a`s̃
` (6)

one has to deduce equations for the a`. Then simply trun-
cating the series expansion by setting a` = 0 for ` > L
an algorithm is obtained, to realize TBCs.

The details are as follows. The Möbius transform

s 7→ s̃ = M(s) :=
s + s0

s − s0

maps the half plane {z : <(−z/s0) < 0} onto the unit
disk. (e.g. for positive real s0 the left half plane is mapped
onto the unit ball; the imaginary axis is mapped to the unit
circle; −s0 is mapped to 0; and 0 is mapped to −1.) The
inverse is again a Möbius transform

s̃ 7→ s = M−1(s̃) := s0
s̃ + 1

s̃ − 1
.

Space discretization
For the sake of clearness we consider the case d = 0

only. Space discretization is done using third order finite
elements resulting in the standard local mass and stiffness
matrices, that are assemble to a global system. At the
right boundary (and similar for the left boundary) we use
the special exp-element as test function

vs(x) =

{

e−s(x−a) x ≥ a
x−(a−h)

h
a − h ≤ x ≤ a

and obtain

p(ω)U (r) + p(ω)u(0)
a = u(2)

a − k2u(0)
a +

s0
s̃ + 1

s̃ − 1

(

s0
s̃ + 1

s̃ − 1
U (r) − ua

)

− k2U (r),
(7)

where u
(0)
a and u

(2)
a are the boundary contributions

u(0)
a =

∑

j

∫ a

a−h

ujφjvs dx ; u(2)
a =

∑

j

∫ a

a−h

ujφ
′

jvs dx

Setting u′
a = (p(ω) + k2)u

(0)
a − u(2), multiplying (7) by

(s̃ − 1)2 and rearranging terms yields

(

s2
0(s̃ + 1)2 − (s̃ − 1)2(p(ω) + k2)

)

U (r)

= (s̃ − 1)2u′

a + s0(s̃
2 − 1)ua.



Inserting the power series (6), sorting for powers of s̃ and
comparing coefficients yields equations for the aj:

(

s2
0 − p − k2

)

a0 = u′

a − s0ua, (8)

2
(

s2
0 + p + k2

)

a0 +
(

s2
0 − p − k2

)

a1 = −2u′

a, (9)
(

s2
0 − p − k2

)

a0 + 2
(

s2
0 + p + k2

)

a1

+
(

s2
0 − p − k2

)

a2 = u′

a + s0ua,
(10)

(

s2
0 − p − k2

)

a`−1 + 2
(

s2
0 + p + k2

)

a`

+
(

s2
0 − p − k2

)

a`+1 = 0, ` = 1, . . . , L
(11)

with aL+1 = 0. Similar equations hold for the left bound-
ary. Transforming back to time-domain equations (8)
to (11) yield a system of ordinary differential equations
for the coefficients aj for j = 1, . . . , L.

Take a closer look at (8). If one would choose s0 to be
time or ω dependent, s0 =

√

p(ω) + k2 then (8) is the
well-known exact non-local TBC; equations (8) to (11)
decouple and all a` vanish for ` ≥ 2. Choosing s0 to be
constant gives local approximate TBCs.

In case of the wave equation (i.e. p(ω) = ω2) choosing
s0 = ω gives local TBCs. In case k = 0 this choice gives
the exact TBCs.

Numerical results
The numerical results for the wave equation (1) inte-

grated from t = 0, . . . , 20 with an extremely small step-
size of ∆t = 10−4 using the trapezoidal rule are shown
below. The computational domain is [−5, 5], k = 5, the
initial value is a Gaußian u(x, 0) = exp(−x2) and the
initial velocity is set to zero. Space discretization is done
by third order finite elements on an equidistant grid with
∆x = 0.002. The reference solution is calculated on a
domain [−15, 15]; this way the dominating error compo-
nent should be the truncation error in the power series
representation. Figure 1 shows the evolution of the error
in energy norm for different L. Figure 2 shows the error
in energy-norm vs. the number of coefficients L in the
power series.

Extensions and future work
The concepct is easily extended to systems

Mp(∂t)u = A∂xxu + 2D∂xu − Ku.

with matrices M , A, D and K . These type of systems
arise for example for two dimensional problems on a strip
{(x, y), |y| < b,∞ < x < ∞} after a discretisation of
the y component. The extension to general two or three
dimensional problems is currently under investigation.
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Figure 1: Evolution of the error for different L.
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Figure 2: Error vs. L at different t.
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