
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

SUSANNE KILIAN MATTHIAS MÜNCH

A new generalized
domain decomposition strategy
for the efficient parallel solution

of the FDS-pressure equation

Part I:
Theory, Concept and Implementation

ZIB-Report 09-19 (Juni 2009)

A new generalized domain decomposition strategy for
the efficient parallel solution of the FDS-pressure

equation
Part I: Theory, Concept and Implementation

Susanne Kiliana, Matthias Münchb

ahhpberlin, Ingenieure für Brandschutz GmbH
Rotherstr. 19, 10245 Berlin

bInteressengruppe Numerische Risikoanalyse (INURI)
c/o Freie Universität Berlin, FB Mathematik und Informatik, Arnimallee 6, 14195 Berlin

Abstract

Due to steadily increasing problem sizes and accuracy requirements as well as
storage restrictions on single-processor systems, the efficient numerical simula-
tion of realistic fire scenarios can only be obtained on modern high-performance
computers based on multi-processor architectures. The transition to those sys-
tems requires the elaborate parallelization of the underlying numerical concepts
which must guarantee the same result as a potentially corresponding serial exe-
cution and preserve the convergence order of the original serial method. Because
of its low degree of inherent parallelizm, especially the efficient parallelization of
the elliptic pressure equation is still a big challenge in many simulation programs
for fire-induced flows such as the Fire Dynamics Simulator (FDS). In order to
avoid losses of accuracy or numerical instabilities, the parallelization process
must definitely take into account the strong global character of the physical
pressure. The current parallel FDS solver is based on a relatively coarse-grained
parallellization concept which can’t guarantee these requirements in all cases.
Therefore, an alternative parallel pressure solver, ScaRC, is proposed which
ensures a high degree of global coupling and a good computational performance
at the same time. Part I explains the theory, concept and implementation of this
new strategy, whereas Part II describes a series of validation and verification
tests to proof its correctness.

Key words: CFD, Zero-Mach number scheme, domain decomposition, Fire
Dynamics Simulator (FDS), pressure equation, FFT, ScaRC, fire safety

Email addresses: S.Kilian@hhpberlin.de (Susanne Kilian), Matthias.Muench@inuri.de
(Matthias Münch)

1. Introduction

The Fire Dynamics Simulator (FDS) provided by the National Institute of Stan-
dards and Technology [23] is a world wide used tool for numerical simulation
issues of fire and smoke spreading. The FDS program is focused on fire-induced
flows. It is used as a prediction tool especially for thermal stresses and smoke
movement as well as the usefullness of fire-extinguishing systems, or smoke fun-
nels in buildings for practical fire engineering and scientific investigations.

One important feature of the program package FDS is the possibility to decom-
pose the computed domain geometrically into smaller subdomains or meshes.
This technique is a prerequisite for parallel computing and a time efficient nu-
merical computation of practical problems. But, the application of the parallel
FDS-version may cause inaccuracies or instabilities, as demonstrated by dif-
ferent authors e.g. [12, 19, 26]. The figure below presents an example that
shows the possibility of big differences in the computed temperature which are
inacceptable for fire safety engineering issues.

1 mesh 2 meshes 4 meshes

Figure 1: Comparision of the computed temperature of a burner in a shaft (FDS version 5.2).
The shaft includes left: 1, middle: 2 and right: 4 equal (sub-)domains

To be precise: These errors result from deficiencies in the domain decomposition/-
parallelization strategy in conjunction with the FFT-solver used to solve the
pressure equation in FDS, not from the implemented physical model. Therefore
computations without domain decomposition on single meshes are not affected
by this problem. But for the most practical problems domain decomposition and
parallelization are compelling features and unfortunately, FDS can not guaran-
tee the necessary accuracy in this case.

2

When designing a parallelization strategy for FDS, it is extremely important
to particularly account for one fundamental part, namely the pressure solver,
which causes the major difficulties within a reliable parallelization process. The
related pressure equation is an elliptic partial differential equation of Poisson
type which has a very specific intrinsic character: It possesses an infinite rate
of propagation for information, local information are spread extremely fast over
the whole subdomain. In order to guarantee robust and accurate solutions, its
parallelization MUST reproduce this global data flow as best as possible which
requires sophisticated strategies for global data exchange.

The current parallelization concept of FDS is based on a mostly local philosophy
which obviously isn’t able to reflect this gobal dependency in all cases. But this is
only a structural problem of the parallel solver and doesn’t impair the quality of
the serial FDS-version at all. In order to better extend the serial reliability into
the parallel case, this article presents a new generalized domain decomposition
strategy for the efficient parallel solution of the FDS-pressure equation which
guarantees the necessary global coupling and accuracy in the parallel case.

The article consists of two parts: Part I explains the theory, the concept and
the implementation of this new strategy. It illustrates the background theory
as well as the including mathematical details. Part II [20] describes a series of
validation and verification tests to proof the correctness of our new strategy. We
demonstrate its numerical quality by illustrating its convergence properties and
comparing the results with corresponding analytical solutions and the current
FDS-FFT scheme.

Section 2 of this part describes the theoretical background of the asymptotically
motivated Zero-Mach model used in the hydrodynamic solver of FDS. After a
short introduction of the asymptotic theory for small Mach numbers we explain
the consequences of the Zero-Mach number equations and derive the pressure
equation used in FDS. In section 3 we discuss the lack of the current FFT-solver
for the current parallel pressure equation in more detail. Section 4 presents the
new numerical scheme (FDS-ScaRC) and shows the enhancements compared to
the current scheme (FDS-FFT). The definition of the corresponding boundary
conditions is explained in more detail in section 5.

2. Theoretical background

In this section we present the theoretical background of the hydrodynamic solver
in more general terms. Specifically, we employ a non-dimensional notation
whereas the FDS program uses a dimensional formulation. Furthermore we
omit all details which are not necessary to describe the basics of the theory. The
fundamentals are the same and can be compared with [18]. Consider the dimen-
sionless governing equations of mass, momentum, and energy for fire-induced

3

fluid flows

d

dt

∫

V

ρ dV +
∮

∂V

ρu · n dA =
∫

V

Sρ dV

d

dt

∫

V

ρu dV +
∮

∂V

(ρu ◦ u) · n dA +
1

M2

∮

∂V

pn dA =
∫

V

Sρu dV

d

dt

∫

V

ρe dV +
∮

∂V

[ρe + p] u · n dA =
∫

V

Sρe dV .

(1)

To simplify the discussion all physical processes like radiation, combustion, heat
conduction, etc. are subsumed in the source terms Sρ, Sρu, and Sρe. The integral
conservation laws for mass, momentum, and energy then provide governing
equations for the density ρ, velocity vector u, pressure p, and energy density ρe
as functions of time and space coordinates (t,x) for arbitrary time independent
control volumes V with boundary ∂V .

Assuming a perfect gas with a constant isentropic coefficient γ the energy density
is defined in the equation of state

ρe =
p

γ − 1
+

M2

2
ρu · u . (2)

Non-dimensionalization changes neither the mathematical nor the physical con-
tent of the equations. However, one advantage of the dimensionless form is the
occurrence of dimensionless reference numbers which weigh the various terms in
the equations and explicitly characterize their relative order of magnitude. Here
we consider the reference Mach number M , which is a scale for the importance
of compressibility in a fluid flow computed by the relation between a reference
flow velocity uref and a reference speed of sound cref .

M =
uref

cref
. (3)

Fire-induced flows can be in the range of 1 to 10 m/s or more. To make an
order-of magnitude estimate, consider a cold inflow of uref = 1m/s with a speed
of cref ≈ 330 m/s. The resulting reference Mach number is small, M ≈ 0.003,
and this range is even valid for the hot smoke area.

As a consequence, the pre-factor of the pressure term in the momentum equation
in (1) is very large. In the limit of a vanishing Mach number, a (mathematical)
singularity arises, which signals the physical transition from a compressible to
an incompressible flow. Such singularities are very hard to capture accurately
in numerical computations. In the present example, the truncation errors asso-
ciated with the approximation of the pressure gradient get amplified by 1/M2

and will destroy the accuracy of the velocity computation as M becomes very
small. Numerous solutions to this problem have been proposed, but it is still a
matter of active research.

Because for fire-induced flows we are not interested in resolving sound waves,
one may completely filter out their influence by considering the asymptotic

4

limit equations that arise as M → 0. The remaining set of equations describes
the advection of entropy and vorticity and the influence of the various source
terms on these quantities. A fundamental mathematical investigation for the
limit M %→ 0 is published by Klainerman et al. [14] and Schochet [28]. The
consequence is a pressure decompostion similar to the results found in Rehm
& Baum [25] for thermally driven buoyant flows and the necessity for a system
which does not resolve the propagation of sound waves. Based on these pressure
decomposition idea Klein [15] introduces an asymptotic multiple scale ansatz

U(x, t;M) =
∑

i

M i Ui(x,Mx, t) (4)

where U denotes the vector of the unknowns, which will be expanded with
regard to the power of the Mach number. By inserting this asymptotic multiple
scale ansatz into (1) Klein identifies three different physical relevant parts of
the pressure:

p(x, ξ, t) = p0(x, ξ, t)︸ ︷︷ ︸
thermodynamic

+Mp1(x, ξ, t)︸ ︷︷ ︸
acoustic

+ M2p2(x, ξ, t).︸ ︷︷ ︸
hydrodynamic pressure part

(5)

Here, x denotes the short hydrodynamic length scale and ξ = Mx represents
the acoustic scale. Furthermore, the results of the multiple scale asymptotic
advise the differentiation of three flow regimes:

• M = 1: the full compressible regime with the total pressure p,

• 0 < M & 1: the weak compressible ‘Low-Mach’ regime with the pressure
decomposition p = p0 + Mp1 + M2p2,

• M %→ 0: the incompressible ‘Zero-Mach’ regime with the pressure decom-
position p = p0 + M2p2.

The main difference between these regimes is the lack of an acoustic pressure
part in the ‘Zero-Mach’ regime similar to the theory of Rehm & Baum. We use
the definition of a ‘Zero-Mach’ number flow for the following discussion.

2.1. Zero-Mach number regime

One important result of the related asymptotic analysis is that the pressure may
be decomposed into two contributions with very different physical meanings
(details see [15, 16])

p(x, t) = p0(t) + M2p2(x, t). (6)

Furthermore, the asymptotics provide a constraint for the pressure p0

∮

∂V

p0 n dA = 0 (7)

which implies that this pressure is only a function of time and constant in space.

5

Physically the pressure p0 represents the thermodynamic part of the pressure p,
whereas the pressure p2 represents the hydrodynamic part which is responsible
for flow acceleration and for maintaining incompressibility.

Inserting the pressure ansatz (6) into the equations (1) and (2) leads to

d

dt

∫

V

ρ dV +
∮

∂V

ρu · n dA =
∫

V

Sρ dV

d

dt

∫

V

ρu dV +
∮

∂V

(ρu ◦ u) · n dA +
∮

∂V

p2 n dA =
∫

V

Sρu dV

d

dt

∫

V

ρe dV +
∮

∂V

[ρe + p0] u · n dA =
∫

V

Sρe dV

(8)

and a corresponding equation of state

ρe =
p0

γ − 1
. (9)

Inserting (9) into the energy equation in (8) leads to a divergence constraint for
the velocity field u

∮

∂V

u · n dA =
γ − 1
γ p0

∫

V

Sρe dV − |V |
γ p0

dp0

dt
. (10)

Therefore using this pressure decomposition reduces the energy equation in (1)
to a divergence constraint for the velocity field u for variable density flows
with vanishing Mach numbers. What does this divergence constraint mean in
practice and physics for numerical simulations of fire induced flows as described
in Münch et al. [21]

The consequence of the pressure decompostion (6) is a system of equations (8,
9) representing the governing equations for Zero Mach number flows. Sound
waves are not resolved and the pressure term in the momentum equation will
be determined by the hydrodynamic pressure p2. Furthermore, the momentum
and energy equations are decoupled, because the advection term in the energy
equation will be determined by the thermodynamic pressure p0. As a conse-
quence the velocity field must fullfill the divergence constraint (10). Although
the documentation of FDS never uses non-dimensional equations, the algorithm
of FDS is based on this asymptotic theory.

2.2. Hydrodynamic Model used in FDS

The Fire Dynamics Simulator is based on this asymptotic motivated model of
the previous section. But the developers decided to use a non-dimensionless
non-conservation formulation, therefore the influence of the dimensionless mach
numbers is hidden. Because the energy equation is reduced to a divergence

6

constraint the system (8) can be written as a set of partial differential equations
of mass and momentum

∂ρ

∂t
+∇ · (ρu) = Sρ

ρ

(
∂u
∂t

+(u · ∇)u
)

+ ∇p̃ = Sρu.
(11)

Here p̃ is analogous to the dimensionless hydrodynamic pressure M2p2. Includ-
ing the vector identity with the vorticity ω

(u · ∇)u = ∇ |u |2

2
− u× ω

into the momentum equation and some transpositions lead to a new formulation
of the momentum equation

∇p̃

ρ
= −∂u

∂t
− ∇|u |2

2
+ u× ω +

Sρu

ρ
. (12)

The divergence of this momentum equation (12) results in a Poisson-type equa-
tion with variable coefficients to compute p̃ with iterative solvers

∇ ·
(
∇p̃

ρ

)
= −∂(∇ · u)

∂t
+∇ ·

(
u× ω − ∇|u |2

2
+

Sρu

ρ

)
. (13)

Because of computational performance reasons the developers of FDS decided
to use a fast direct method that utilizes Fast Fourier Transforms (FFT). To be
able to apply this method, they use the ansatz

∇p̃

ρ
=
∇p̃

ρ∞
+

(
1
ρ
− 1

ρ∞

)
∇p̃ (14)

in (13) and separate the baroclinic torque in a way, that constant coefficients are
possible1. Furthermore instead of the hydrodynamic pressure p̃ a new variable
H is used as unknown pressure term

∇ ·
(
∇

[
|u |2

2
+

p̃

ρ∞︸ ︷︷ ︸
H

])
= −∂(∇ · u)

∂t
− ∇·F, (15)

with F = −u× ω +
(

1
ρ
− 1

ρ∞

)
∇p̃− Sρu

ρ
.

The variable F combines all the convective and diffusive influences and forces
of the momentum equation.

This pressure equation plays a decisive role within the numerical scheme of
FDS. In a first predictor step FDS computes a rough approximation of the
thermodynamic quantities for the next time step. Furthermore the velocity

1A first estimation about the errors neglecting the baroclinic torque for fire induced flows
can be found in Münch et al. [22]

7

is estimated at the next timestep using the new pressure term H. Based on
this estimated velocity a corrector step ’corrects’ the thermodynamic quantities
and computes the corrected velocity using a recomputed pressure H (for details
see the Technical FDS Guide [18]). The numerical scheme in FDS requires
the solution of the Poisson equation for the computation of the pressure H
twice within a time iteration. Because of the interaction with the calculation of
the thermodynamic quantities, the solution of the pressure equation affects the
computation of all quantities. Therefore the correct computation of (15)

∇2H = −∂(∇ · u)
∂t

− ∇·F (16)

is a central issue for the accuracy of the numerical scheme implemented in FDS.

3. Current Parallelization Concept for the Pressure Equation in FDS

From a mathematical point of view the pressure equation (15) is an elliptic
partial differential equation of Poisson type. When designing solvers for the
pressure equation, it is very important to take into account the following intrinsic
character of elliptic problems: Local influences or perturbations change the
solution in the whole computational domain. In other words, there is an infinite
rate of propagation for information which makes up the greatest hurdle on the
way to an efficient parallelization: The fast and robust solving of the equation of
Poisson type is essentially based on the fact of how good the numerical method
reproduces this global dependency.

3.1. Comparision of FDS4 and FDS5

The current solving strategy within FDS is based on the application of a highly
optimized FFT-method (Fast Fourier Transformation), see e.g. Schwarz [29].
For single-mesh problems this methodology has proven to be very robust, reli-
able and extremely fast. For multi-mesh problems, a local FFT-method is per-
formed on each single subdomain with a corresponding data exchange for the
definition of local boundary conditions. But during the development of FDS4 it
became apparent, that a purely local coupling of the local FFT-solutions may
be insufficient to guarantee the global convergence for all cases. This can be
illustrated by a simple FDS4-example for an angled 2D-domain in figure 2 which
was subdivided into 3 and 5 subdomains, respectively.

Obviously the domain decomposition sustainably broke up the physical connec-
tivity, which couldn’t be compensated by the local data exchange. There are
many other examples where the volume and mass flow couldn’t consistently be
computed along the interior boundaries.

Due to the mathematical theory, a purely local approach isn’t sufficient to re-
produce the global data dependencies for elliptic problems, see Rannacher [24].
Increasing the number of subdomains will worsen the convergence rate, possibly

8

1 mesh 3 meshes 5 meshes

Figure 2: Example of a subdivision in 3 and 5 subdomains with FDS4

right up to divergence at a (problem-dependent) critical number of subdomains.
To find a remedy, a domain-spanning correction process must take place which
is able to spread global information all over the domain.

With the release of FDS5 a new pressure-correction process was introduced
which is based on an averaging process on the coarse grid level (the grid of
the subdivision itself) ensuring the consistency of the volume flow along interior
boundaries. For a detailed derivation of the pressure correction see the Technical
FDS Guide [18]. In the course of the single subreleases of FDS5, many other
substantial improvements have been done. Except for very small variations, no
visual differences can be detected in our pipe example any more, see figure 3.

1 mesh 3 meshes 5 meshes

Figure 3: Example of a subdivision in 3 and 5 subdomains with FDS5

Nevertheless, remember figure 1 in the introductory section which was already
computed with FDS5. Obviously, it demonstrates strong differences in the com-
puted temperature. Therefore a purely visual comparison of the computational
results is not an adequat method to proof the qualitiy of a numerical scheme.
For a reliable evaluation more mathematical-numerical criteria are necessary.

9

Figures 2 and 3 illustrate another important argument for the need of a new,
strong parallel solver: Because of the restriction to rectangular meshes in FDS,
the simple flow-field geometry in the one-mesh case can only be realized by
inserting obstacles (yellow areas in the left pictures) and taking out complete
areas in the computational domain off. Although these areas don’t belong to
the real flow-field, they consume a considerable part of the storage space and
computational time. To avoid ‘dead ranges’ like this, it’s highly desirable to have
the possibility to subdivide complex geometries into regular parts and solve the
whole problem reliably with an efficient parallel solver.

3.2. Numerical quality criterias

As demonstrated above, numerical discretization schemes have a crucial influ-
ence on a CFD code’s quality and decisively affect the stability and accuracy
behaviour of the overall method.

From a physical point of view the solution of the underlying set of equations
must be independent of the underlying domain decomposition. Simplified: the
solution of a single- and multi-mesh-calculation should be the same. But what
does that explicitly mean? Domain decomposition methods for the solution of
boundary value problems always lead to more or less additional numerical errors
and increase the inaccuracy of a numerical scheme. Nevertheless, the numerical
error of a domain decomposition method or parallelization strategy must be
limited by the numerical error defined by the order of the underlying numerical
scheme. In case of FDS the scheme should be of second order accuracy in time
and space (see FDS Verification Guide [17]).

The common methods to proof the accuracy of a numerical scheme are conver-
gence tests. With convergence tests, the correctness of a numerical scheme can
be probed empirically. As the grid size ∆x vanishes, the truncation error should
vanish as well at a rate determined by the order of the scheme,

lim
∆x→0

(
∂ϕ

∂x
− ∆ϕ

∆x

)
= 0. (17)

Convergence studies involving calculations of the same problem on grids with
varying mesh sizes are necessary to check this basic aspect. Only a series of
convergence tests on well-selected non-trivial test problems can establish with
reasonable certainty that a code correctly implements the discretization schemes
that it has been built upon. Unless a code has passed such tests, one cannot
expect that it produces reliable results for realistic application problems.

It is beyond the scope of the present paper to provide more than an rough
overview of the related investigations. In part II of this article we give an
introduction to test strategies which are much more suited for a reliable evalu-
ation than simple visual comparisions of numerical results. With these tests we
demonstrate the quality of our new numerical scheme.

10

4. A New Parallelization Concepts for the Pressure Equation

The upper deficiencies suggest to develop completely new strategies for the
solution of the pressure equation. Subsequently, a new parallelization concept,
the generalized domain decomposition/multigrid method ScaRC, is presented
which is no longer based on a direct methodology as the current FFT-solver but
on an iterative one. For a clearer understanding the differences between direct
and iterative methods are shortly illustrated in the beginning. After explaining
the most important core component of ScaRC, the so called basic iteration,
and some of its most important representatives, its algorithmic description is
given. For more information about the underlying concepts see Kilian, Turek
[11, 13]

4.1. Discretization Strategy

In FDS the computational domain is divided into rectangular boxes with rect-
angular equidistant grid cells inside. The spatial derivatives of the governing
quantities are approximated by second-order accurate finite difference methods.
Scalar quantities such as the pressure are assigned in the center of each grid
cell. The corresponding discretized pressure equation looks like

Hi+1,jk − 2Hijk + Hi−1,jk

δx2

+
Hi,j+1,k − 2Hijk + Hi,j−1,k

δy2

+
Hij,k+1 − 2Hijk + Hij,k−1

δz2
= −Fx,ijk − Fx,i−1,jk

δx
(18)

−Fy,ijk − Fy,i,j−1,k

δy

−Fz,ijk − Fz,ij,k−1

δz
− ∂

∂t
(∇ · u)ijk

where different discretizations for the time derivative of the divergence are used
in the predictor and corrector step, see the Technical FDS Guide [18]. The
definition of the corresponding boundary conditions is explained in more detail
in section 5.

For a single-mesh computation with n grid cells in total this leads to the foll-
lowing system of equations

Ax = b

where A is a matrix in Rn×n and x, b are vectors in Rn. The multi-mesh case
is discussed below. Due to its bad conditioning, this system of equations must
be solved with very robust and efficient solvers.

11

4.2. Direct Methods Versus Iterative Methods

Direct Methods:

At a first glance, the ongoing improvements in the current computer technology
motivate the use of direct methods such as the Gaussian elimination method
(and its variants for symmetric, positive definite matrices) for the solution of
the resulting systems of equations. The decision for the local FFT-methods in
FDS follows this trend: FFT-methods are known to be highly efficient direct
methods which are successfully used in many different branches of science.

Direct methods compute the solution of a system of equations within one single
(possibly very complex) computational cycle without any approximations in-
between. They may be performed with enormous speed and are often used
for the demonstration of potential computer power, see the LINPACK-tests by
Dongorra et al. [6, 7]. They distinguish themselves to be very robust even in
the non-symmetric and ill-conditioned case and are nearly independent of the
degree of grid distortion.

In contrast to iterative methods, they don’t need a good initial solution, but
they don’t take advantage of the fact if such an initial guess is already available.
They achieve high computational accuracies, but they don’t take advantage of
the fact if only a moderate accuracy is needed.

Because of their highly recursive character direct methods are not very suited for
an efficient parallel solution of sparse systems of equations as they occur in FDS.
Usually the underlying parallelization strategies follow algebraic considerations,
see Frommer [8], and are most often not conformal with geometrically motivated
domain decompositions as they are used in FDS.

Iterative Methods:

Iterative methods produce a sequence of iterates during multiple computational
cycles (with lower computational complexity) approximating the exact solution
more and more. Most often they are easier to implement than direct ones,
because they can be reduced to a series of core components such as matrix-vector
multiplications, linear-combinations of vectors, scalar-products and inversion of
tridiagonal or lower triangular systems, which may be suitably optimized.

However, iterative methods may depend on special properties of the underlying
problem such as symmetry or positive-definitness and may convergence very slow
for ill-conditioned problems. They often require the optimal choice of different
method parameters such as relaxation parameters which can be very difficult.

The convergence rate of iterative methods usually depends on the grid reso-
lution, but can be considerably improved by a suitable preconditioning which
will be of great importance subsequently: The use of a preconditioning matrix
B ∈ Rn×n transforms the original system Ax = b into an equivalent system
B−1Ax = B−1b which may be solved much faster.

12

The preconditioning matrix B has to fulfill two contradictory conditions: On the
one hand, B−1 should be a good approximative inverse of A, i.e. B−1A ∼ I, or
in other words, B ∼ A. On the other hand, B should be easily applicable, i.e.
B ∼ I. The more special properties of the problem can be incorporated in B,
the better the convergence is, but the higher the computational costs are. So,
a careful compromise has to be found between those conflicting requirements.

Nevertheless, iterative methods have shown very satisfactory convergence results
for a wide variety of applications which will be discussed in more detail below.
Especially with regard to an efficient parallelization, iterative methods seem to
be easier and more universally applicable than direct ones. Therefore they are
the favorite candidates for our new pressure solving strategy.

4.3. The Basic Iteration

Following the above considerations the core of the new concept is the so called
basic iteration

xk = xk−1 − ωB−1(Axk−1 − b) (19)

Again, B is a matrix in Rn×n, xk, xk−1 are vectors in Rn and ω is a relaxation
parameter which must be chosen very carefully. This basic iteration represents a
simple defect-correction scheme for the solution of Ax = b with preconditioning
matrix B and initial solution x0.

Please keep in mind, that this basic iteration has to be performed in the predictor
and corrector step of each encompassing time iteration in FDS, where the index
‘k’ doesn’t belong to the time iteration, but only to the basic iteration. To be
precise, the vector ‘xk’ ought to be indexed with respect to the time as well,
but to simplify the notation this is omitted.

The term dk−1 := Axk−1 − b is denoted as defect and serves as name giver for
this class of methods. Measured in a suitable norm, it indicates how good the
equation Ax = b is fulfilled by the current iterate xk. For the error x − xk in
the k-th iteration step, there holds

x− xk = (I − ωB−1A)k(x− x0)

with the error propagation operator F = (I − ωB−1 A). The sequence of itera-
tions xk converges to the solution of Ax = b if and only if its spectral radius (the
maximum of the absolute values of the eigenvalues) is smaller than 1. To put
it briefly, the sense of a preconditioning consists in finding a better distribution
of the eigenvalues for the transformed system B−1Ax = B−1 b to reach a faster
convergence.

The general form (19) of the basic iteration is very well suited for an efficient
implementation: As already mentioned it allows the splitting into matrix-vector
multiplication, preconditioning and linear combinations where each can be sep-
arately performed with high performance tools if available. Besides, the explicit
use of the complete defect Axk−1 − b is advantageous for certain techniques for
implementing boundary conditions (see Turek [30]).

13

Typical candidates for the preconditioner B are:

• B = diag(A) corresponds to Jacobi iteration

• B = lower part(A) corresponds to Gauß–Seidel schemes

• B = tridiagonal(A) corresponds to linewise variants of the above schemes

• B = L̃Ũ(A) corresponds to incomplete LU decomposition

A detailed overview on different preconditioners is given in Hackbusch [10] and
Deuflhard [5].

4.4. Efficient Generalizations of the Basic Iteration

Especially in case of very complex geometries the convergence properties of the
pure basic iteration are not very satisfactory. Therefore more efficient gener-
alizations such as the global conjugate gradient method (CG) or a multigrid
method (MG) may be used, which are probably the most efficient techniques
for the solution of huge systems of equations arising from the discretization of
partial differential equations.

Both classes are closely related, because they are based on simple defect cor-
rection iterations, which approximate the error by using a sequence of smaller
subproblems. The main difference between both classes is found in the choice
of the underlying subspaces. This issue is discussed in more detail in Hack-
busch [10]. Subsequently a short comparison of both classes is given. For an
algorithmic description of both methods see the subsection 5.1.1.

4.4.1. CG-Methods:

The CG-method is an effective descent method for symmetric, positiv-definite
problems which only needs less storage space for several auxiliary vectors. In the
course of one iteration a matrix-vector multiplication is needed which requires
local data exchange in case of a parallel execution. Furthermore global scalar
products are computed which contribute to a strong global coupling and a high
stability. The parallel computation of these global scalar products is based on
a global data exchange which only has a low parallel efficiency.

The convergence rate of CG-methods also depends on the discretization pa-
rameters, but can be considerably improved by corresponding preconditioning
techniques, especially on the base of domain decomposition, see Bramble, Pas-
ciak, Xu [4]. There also exist variants for the non-symmetric case, so called
bicg-methods see e.g. Saad [27] or Axelsson, Barker [2].

14

4.4.2. MG-Methods:

Excellent convergence rates independent of the grid size with moderate compu-
tational complexity may be reached with MG-methods. The name ‘multigrid’
must not be confused with the term ‘subdomain’: It doesn’t mean a sequence of
different subgrids arising from a domain decomposition but rather a hierarchy
of grids with different resolutions for one and the same domain/subdomain.

The basic idea behind MG-methods is to improve the convergence speed of
the basic iteration by correcting the defects on successively coarser grids. The
process explicitly exploits an important property of the single representatives
of the basic iteration, the so called smoothing property. This special property
is based on the fact that the new iteration value in one single grid point is
computed as more or less simple mean value of the surrounding grid values.
The complete procedure looks like this:

Starting from a given initial solution on the finest grid level, several steps of a
simple basic iteration with a suitable matrix B are performed. After only a few
iteration steps the mentioned smoothing property usually effects a considerable
reduction of the high-frequent error components of the defect while the low-
frequent components are nearly unchanged and still may be very large. This
suggests to restrict this smoothed defect on the next coarser grid (e.g. with the
double grid size) by using a suitable restriction Operator I2h

h , where it can be
approximated at much lower costs, see figure 4.

Figure 4: Restriction to the next coarser grid

This presmoothing process may be continued until the coarsest grid level has
been reached where the remaining coarse grid problem is solved exactly. At this
stage the low-frequent components are resolved by the maximum possible global
coupling. Then, the resulting coarse grid solution is successively prolonged on
the next finer grids whereby several steps of the basic iteration can be performed
on each level for postsmoothing, depending on the type of the MG-method, see
Hackbusch [10]

All in all, each grid level is responsible for the reduction of a special range of the
error frequencies. The low-frequent components on a finer grid appear as high-
frequent components on the next coarser grid. The efficiency of the complete
method substantially depends on the fact of how good the ranges, which are
smoothed on the single grid levels, are adjusted among each other.

15

There is not only ONE single MG-method but a big class of MG-methods con-
sisting of very different components (smoothers, transfer operators between the
single grids, coarse grid solvers) which can be adjusted to the underlying problem
to the highest possible extend. The close-meshed connectivity of the different
grid stages leads to an extremely strong coupling which will be very convenient
for the solution of the pressure problem.

Unfortunately, not all ingredients of a MG-methods are equally suited for an
efficient parallelization. The coarser the grid resolutions are, the worse the ratio
of computational work to communication overhead gets. Besides, the inher-
ent recursive character of many serial MG-methods (especially the underlying
smoothing procedures) must be split off in order to achieve a better parallel
efficiency. But this splitting is usually associated with a considerable loss of
numerical efficiency (worse convergence behavior, dependencies on the number
of subdomains or the refinement parameters), so a proper compromise has to
be found. Especially, the exact solution of the coarse grid problem represents a
serious bottle-neck: It is only a small problem with low computational complex-
ity which additionally requires a global data exchange. Its computation implies
a logarithmical growth of the communication overhead if the number of sub-
domains is increased, which however seems to be an unavoidable disadvantage,
especially for increasing complexity of the underlying problem. Nevertheless,
by using adequate domain decomposition strategies high numerical efficiencies
may be reached, such that usually only a few MG-iterations must be performed.

4.5. Preconditioning by Domain Decomposition Techniques

A finite-difference discretization of the Poisson equation (16) in the multi-mesh
case on the base of a subdivision into N subdomains leads to N local systems
of equations

Aixi = bi i = 1, . . . N ,

where each subgrid has ni local grid cells. Here, Ai ∈ Rni×ni is the local system
matrix on subdomain i and with corresponding local solution vector xi and right
hand side vector bi in Rni . Informally, Ai is the restriction of the global matrix
A to the subdomain Ωi, i.e. Ai ∼ “A

Ωi
”.

For the choice of the preconditioning matrix B domain decomposition strategies
can be used in a very natural way. The so called Additive Schwarz preconditioner
looks like this

B−1
as =

∑̃N

i=1
A−1

i . (20)

The marked sigma sign indicates that a suitable averaging at internal boundaries
has to take place. Obviously, the preconditioning is based on the local solutions
of the single subdomain problems. In this way, many specific properties of the
whole problem can be exploited. Depending on the underlying problem, it may
be sufficient to solve the local problems only approximately up to a certain
accuracy. The local solutions can be calculated by any efficient method, for
example with local FFT-methods.

16

But this ansatz suffers from the same problems than the current FFT-strategy:
Even for simple Poisson problems with moderate geometric irregularities this
locally based approach is not satisfactory, especially for growing number of sub-
domains. According to the mathematical theory, its convergence rate depends
of the number of subdomains. By the use of an additional coarse grid matrix
Ac ∈ RN×N , defined as Poisson matrix only on the coarse grid cells itself, this
dependency may be considerably mellowed or even abolished. The correspond-
ing Additive Schwarz preconditioner with coarse grid correction is defined as:

B−1
asc = A−1

c +
∑̃N

i=1
A−1

i . (21)

Now, the complete preconditioning process not only uses the local subdomain
solutions but also the solution of the coarse grid problem, which explicitly in-
corporates the global transfer of data.

Based on these requirements, the generalized domain decomposition/multigrid
approach ScaRC is defined as symbiosis of efficient global and local iterative
techniques. In its simplest form, ScaRC consists of the nested combination of
an outer (global) defect-correction with N inner (local) defect-corrections.

Basic ScaRC preconditioner:

• Solve the global problem
Ax = b

by an overall defect-correction with additive Schwarz preconditioning

B−1 := B−1
as or B−1 := B−1

asc corresponding to (20) or (21)

xk = xk−1 − ωB−1(Axk−1 − b) .

• In each step k of the global defect-correction solve N local problems

for the restricted defects dk−1
i := “(Axk−1 − b)

Ωi
”

Aiyi = dk−1
i , i = 1, . . . , N ,

with direct methods or with local defect-corrections based on

suitable preconditioners Ci for Ai

ym
i = ym−1

i − ωiC
−1
i (Aiy

m−1
i − dk−1

i) , i = 1, . . . , N .

The global defect-correction method corresponds to a block Jacobi scheme on
subdomain level. Its preconditioning consists in the solution of local subdomain
problems which involve a high computational complexity and can be done in a
processor-optimized way. A detailed description of the algorithmic concept and
all related topics can be found in Kilian, Turek [11, 13].

17

The notation ScaRC stands for:

• Scalable, w.r.t. the number of global (‘k’) and local solution steps (‘m’),

• Recursive, since it may be applied to more than 2 global/local levels,

• Clustering, since adaptive blocking of subdomains is possible.

As already mentioned, the convergence properties of the pure basic iteration are
not satisfactory for complex situations. Further optimizations can be reached,
if the simple defect-corrections are accelerated by corresponding CG- or MG-
methods. So, in the standard version of ScaRC the outer iteration is replaced
by a data-parallel global MG-method which is mainly based on the blockwise
smoothing with local Schwarz problems. The local iterations on the m subdo-
mains may also be replaced by local MG-methods with specially optimized local
smoothers. Equally, it is possible to use a data-parallel global CG-method for
the outer defect-correction and/or local CG-methods for the inner ones. Even
direct local solvers with local FFT-methods are possible. By a sophisticated
combination of global and local MG- and CG-strategies the advantages of both
classes are combined to the greatest possible extend and a high numerical effi-
ciency is reached, see Kilian [11], Becker [3].

The combination of a data-parallel global MG-method with optimized local MG-
methods of Schwarz type corresponds to the execution of a complete Schwarz
domain decomposition method on each level of the subgrids. In spite of the usual
MG-features with low degree of parallelizm (e.g. the coarse grid problem), this
double MG-structure effects a very strong global coupling such that the resulting
high numerical efficiency dominates the losses in parallel efficiency. Especially
in case of irregular geometries, the Schwarz smoothing has proven to be very
robust.

All in all, ScaRC represents a large class of methods which contains a wide
spectrum of the known multigrid and domain decomposition approaches for the
solution of discretized PDE’s. The most important representatives are:

• set k = 1 (globally), solve exactly (locally)
−→ Parallel CG-method with Additive Schwarz preconditioning

• set m = 1 (locally) and Ci = part(Ai)
−→ Standard multigrid with blockwise smoothing

• set m > 1 (locally) and Ci = part(Ai) and solve approximately (locally)
via MG, CG, FFT
−→ full ScaRC

Figure 5 illustrates the CG-variant and the full MG-variant for a 2×2 -subdivision
of a square domain. Here, the red arrows indicate a local data exchange between
neighboring subdomains whereas the blue arrows indicate a global global data
exchange. For the MG-variant the staggered sub-squares symbolize the use of
a subgrid hierarchy.

18

Figure 5: CG- and full MG-variant of ScaRC

Another fundamental philosophy of this approach is the preservation of a maxi-
mum of data locality by the best possible discovery of locally structured blocks.
Local irregularities should be hidden within the single subdomains and com-
pensated by the optimized local smoothing. In this context, the good choice of
suitable smoothing procedures for the local MG-methods plays a very prominent
role. Experience has shown, that linewise Jacobi and Gauss-Seidel methods, es-
pecially ADI-TRIGS-methods, do a very good job. The application of local
FFT-methods instead of the local MG-methods will be analyzed carefully in
the medium term.

This strategy involves a high degree of arithmetical work which can be per-
formed purely locally. The subgrids are mainly based on local tensor product
meshes (with linewise numbering) which optimally fits to the rectangular grids
of FDS. Additionally the single grid cells can be shifted towards local irregular-
ities which allows very fine local grid resolutions and constitutes a form of fine
grid adaptivity, see 4.6.2. These linewise grid structures enable the local appli-
cation of optimized libraries in combination with highly regular data structures,
which permit an optimized exploitation of local processor features like e.g. the
cache, see Turek et. al. [1, 9]. Altogether, high computational efficiency as well
as very fine local grid resolutions can be achieved.

In contrast to the current FFT-strategy this concept rests upon a global dis-
cretization where the grid points are grouped within the single subdomains. The
corresponding matrix A of the global basic iteration is only formally defined and
will never be assembled on the whole, but is distributed over the single proces-
sors. The complete iteration is globally defined and uses the solution of the
subdomain problems only for the approximate solution of the global defect. All
matrix-vector multiplications produce the same result as they would do if one
performed the whole computation on one huge serial processor which is called
data-parallel execution. During a global matrix-vector multiplication only local
data exchange between neighboring macros are neccessary.

19

A very important advantage of this strategy is the fact that there is no need
to impose artificial conditions at interior subdomain boundaries. Nodes along
interior boundaries are inner nodes related to the virtual global matrix A and
are treated as normal inner nodes. The computation ends with a global solution
which is completely consistent along interior boundaries (especially with respect
to the volume flow) without any further averaging processes. This stands in
contrast to the more loose coupling of the local solution in the FFT-method.

4.6. Special Features

4.6.1. Adaptivity on Coarse Grid Level

A very important initial step is the careful choice of a suitable coarse grid which
is already adjusted to the special characteristics of the underlying problem.
In this context, two important requirements should be fulfilled: The coarse
grid should consist of as much as possible ‘orthogonal’ subdomains. This fact
decisively improves the convergence properties of our favourized local smoothing
procedure (above all in situations with strong local anisotropies), namely the
linewise Gauss-Seidel method. Additionally, due to the block-Jacobi character
of the global smoothing procedure (blockwise composition of local solvers), the
differences in size from one subdomain to its neighbors should be of moderate
size. Instead of big jumps the use of some more subdomains should be preferred.

4.6.2. Adaptivity on Fine Grid Level

As mentioned before one important strategy of our ScaRC-concept is based on
generalized tensor product meshes which should be used on the single subdo-
mains as far as possible. This allows for the application of highly regular data
structures and an optimized exploitation of the local processor power. In order
to achieve extremely fine grid resolutions these special meshes can simply be
shifted in the direction of an anisotropic detail without loosing the logical shape
of a tensor product mesh. A detailed formal definition of this shifting procedure
is given in Kilian [11].

4.6.3. Blind Nodes

In order to resolve complex details adaptively and to minimize the number
of global unknowns at the same time, finer grid resolutions on some special
subdomains with geometric irregularity is possible. This leads to blind nodes
along inner boundaries which have to be treated carefully, especially in the
context of the local communication of inner boundary nodes.

Only one level of difference in the local resolution modes is allowed between
two neighboring subdomains, see figure 6. If a very fine mesh width is needed,
the refinement has to be staggered over a series of neighboring subdomains
successively.

20

Figure 6: Different stages of refinement for the velocity and the pressure

4.6.4. Introduction of a Master Solver

Usually, it is more efficient to solve the small coarse grid problem not in parallel.
Each subdomain is only responsible for a few nodes, so that the computational
complexity on a single process is extremly low. In contrast to that, it requires
the frequent exchange of small data over the whole network when, e.g., solved
with the Gaussian elimination. This process is far from from exploiting the
computing power of modern processors.

Therefore, it may be better to solve the coarse grid problem only on one single
process. This process may be an already existing subgrid process or an addi-
tional master process. This separate master process would have to gather the
coarse grid data from the subgrid processes using a global data exchange, then
to compute efficiently the exact solution of it and, at last, to spread the solution
back to the subgrids.

Experience has shown that most often the use of a master process is computa-
tionally faster than a distributed solution. In addition to it, the application of
sophisticated distribution strategies could allow to use this master process not
only for the solution of the coarse grid problem, but also for some other compu-
tations which might be done independently from the single subgrid processes.

Naturally, the use of a master process always induces a loss of parallel efficiency.
It may happen, that all subgrid processes have to wait until the master process
has finished its global calculation. But in order to reach a strong global coupling
this kind of efficiency loss seems to be unavoidable.

Fortunately, the biggest part of the computational work can be done locally on
the single subgrid processes. The current FDS strategy for starting a paral-
lel computation of a given problem is to request as many processors as there
are subdomains. The use of an additional master process would require one
processor more.

21

5. Computational Details

5.1. Definition of Boundary Conditions

For the proper definition of external boundaries, different types of boundary
conditions are used, see the Technical FDS Guide [18].

• At vents or solid boundaries no-flux or forced-flow boundary conditions

∂H
∂n

= −Fn −
∂un

∂t

are applied with the normal component Fn of F and the prescribed rate
of change ∂un/∂t in the normal component of velocity at a forced vent.

• At open external boundaries the setting

H = |u|2/2 outgoing ,
H = 0 incoming

is used, depending on whether the flow is outgoing or incoming.

Let’s have a closer look at the definition of the external boundary conditions.
As an example we regard a simple unit square geometry in 2D with equidistant
grid in x- and z-direction, h := ∂x = ∂z. In this case, the no-flux condition at
the floor z = 0 is given by

Hi,1 −Hi,0

h
= Bi,0

or equivalently
Hi,0 = Hi,1 − h Bi,0 (22)

where Bi,0 := −Fz,i,0. Following the FDS notation, only the indices i and k are
used, whereas the index j (which is always 1 for 2D-cases) is omitted for the
sake of simplicity.

The resulting matrix line corresponding to node (i, k) looks like

1
h2

(Hi,k−1 + Hi−1,k − 4Hi,k + Hi,k+1 + Hi+1,k) = Ri,k (23)

with some value Ri,k for the right hand side corresponding to the definition in
(19). Setting (22) into (23) for all ghost cells with k = 0, there holds

1
h2

(
Hi−1,1 − 3Hi,1 + Hi+1,1 + Hi,2

)
= Ri,1 +

1
h

Bi,0

At an open boundary (say i = nx) H is defined as

Hnx+ 1
2 ,jk = (u2

nx,jk + v̄2
nx,jk + w̄2

nx,jk)/2 , unx,jk > 0 ,

Hnx+ 1
2 ,jk = 0 , unx,jk < 0 ,

22

with corresponding interpolations to the boundary locations (indicated by the
overbars) and the ghost cell value defined by linear extrapolation

Hnx+1,jk = 2Hnx+ 1
2 ,jk −Hnx,jk .

And again this is used in (23) for all cells with i = nx + 1 to get

1
h2

(
Hnx,k−1 + Hnx−1,k − 5Hnx,k + Hnx,k+1

)
= Rnx,k −

2
h2

Hnx+ 1
2 ,k .

For the case that a Neumann-boundary meets a Dirichlet-boundary, e.g. for
(nx,1), we get

1
h2

(Hnx−1,1 − 4Hnx,1 + Hnx,2) = Rnx,1 +
1
h

Bnx,0 − 2
1
h2

Hnx+ 1
2 ,1 .

The resulting matrix A is irreducibly diagonally dominant which guarantees the
solvability by many iterative methods.

5.1.1. Communication Effort for the Global CG-Method and MG-Method

Subsequently a short overview of the communication effort for the global CG-
and MG-method is given in terms of an algorithmic description in combina-
tion with a specification of the communication type. The notation Clocal on
the right hand side of a single instruction means that a local communication
between neighboring subgrids takes place whereas Cglobal stands for a global
communication concerning all subgrids. If no specification is used, the related
instruction may be performed completely locally without any communication
overhead.

The communication effort strongly depends on the choice of the global precon-
ditioning matrix B. As far as there is no coarse grid problem involved as e.g. for
a CG-method with additive Schwarz preconditioning without coarse grid correc-
tion, the parallel efficiency is rather high because the preconditioning only needs
a local data exchange whereas a global exchange only takes place for the compu-
tation of the global scalar products. Using an additional coarse grid correction
requires a global exchange of the coarse grid data in each preconditioning step
as well.

The execution of the smoothing steps in the global multigrid only requires lo-
cal data exchange because only the local additive Schwarz techniques are used
whereas the solution of the coarse grid problem needs a global communication
as described above.

23

Parallel CG-Iteration

Initialization:

r0 = A x0 − b

!
v0 = B−1 r0

!
d0 = −v0

!

k ≥ 0 :

αk = (rk, vk)/(dk, A dk)

!
xk+1 = xk + αkdk

!
rk+1 = rk + αkA dk

!
vk+1 = B−1 rk+1

!
βk = (rk+1, vk+1)/(rk, vk)

!
dk+1 = −vk+1 + βkdk

Clocal
"

{
B−1 = B−1

as : Clocal

B−1 = B−1
asc : Clocal + Cglobal

"

"
{

A dk : Clocal

(dk, A dk) : Cglobal

"
{

B−1 = B−1
as : Clocal

B−1 = B−1
asc : Clocal + Cglobal

" {
(rk+1, vk+1) : Cglobal

24

Let there be given a hierarchical sequence of L meshes for the domain Ω with
corresponding mesh parameters 0 < h(L) < . . . < h(0) , starting from a coarse
grid associated with the index ‘0’. On every mesh level l, l = 0, . . . , L , the
corresponding matrices, solution vectors and right hand side vectors are denoted
with A(l), x(l) and b(l), resp. Further, let R(l)T

be the prolongation from level l
to level l + 1 and R(l) the corresponding restriction.

The parallelization is based on a non-overlapping domain decomposition in N
subdomains Ωi with Ω = ∪i=1···N Ωi .. Corresponding to the single levels we
define the local matrices A(l)

i and vectors x(l)
i , etc., with the index ‘i’ denoting

the affiliation to subdomain Ωi. Let R(l)
i be a restriction operator which maps

a global vector x(l) of level l on its local counterpart x(l)
i on subdomain Ω(l)

i ,

namely R(l)
i x(l) = x(l)

i , and let R(l)
i

T
be the appropriate prolongation operator.

Further, let A(l)
i be the local portion of the matrix A(l) corresponding to sub-

domain Ω(l)
i on level l. By construction there should hold A(l)

i = R(l)
i A(l)R(l)

i

T
.

As already mentioned, the global matrices A(l) are never assembled on the whole,
but only partially on the single submeshes. So, a global matrix-vector product
on MG-level l is computed as

A(l)x(l) =
N∑

i=1

R(l)
i

T
A(l)

i R(l)
i x(l) =

N∑

i=1

R(l)
i

T
A(l)

i x(l)
i .

The same holds true for the right hand sides and defects on the single levels.

To simplify the notation, the global defect-correction index ‘k’ is omitted. In-
stead of the entire indexing in (19), the notation x(l) ← x(l)−B(l)

(
A(l)x(l)−b(l)

)

is used to indicate that the left hand side is assigned to the value of the right
hand side on level ‘l’.

We restrict ourselves to the presentation of the most inner kernel which is asso-
ciated with the smoothing procedure of a global MG-cycle. As indicated above,
the global smoothing is based on the blockwise composition of optimized local
solvers associated with the single subdomains. These may be local MG-methods
which use quite different smoothing procedures specially adapted to the local
(anisotropic) situations within the single subdomains.

The notation MG(l, A(l), B(l), x(l), b(l)) denotes the application of a global multi-
grid cycle on level l using the corresponding global matrix A(l), the Schwarz
preconditioner B(l) = B(l)

as , the iteration vector x(l) and the right hand side
vector b(l) on MG-level l.

Now, one pre- or postsmoothing step on level l of the global MG-method can
be described as follows:

25

Parallel MG-Iteration for level l ≥ 1: x(l) ← MG(l, A(l), B(l), x(l), b(l))

presmoothing:

x(l) ← x(l) −B(l)
(
A(l)x(l) − b(l)

)

!

coarse grid correction:

restriktion

b(l−1) ← R(l−1)(A(l)x(l) − b(l))

!
solution of coarse grid problem

• for l > 1 call of:

MG(l − 1, A(l−1), B(l−1), x(l−1), b(l−1))

• for l = 1 (exact) master solution:

A(l−1)x(l−1) = b(l−1)

!
prolongation

x(l) ← x(l) −R(l−1)T
x(l−1)

!

postsmoothing:

x(l) ← x(l) −B(l)
(
A(l)x(l) − b(l)

)

"

Clocal:

d(l) ← b(l) −A(l)x(l)

y(l) ← B(l)d(l)

"

Clocal:

d(l) ← b(l) −A(l)x(l)

b(l−1) ← R(l−1)d(l)

" Clocal

" Cglobal

"
{

Clocal:

y(l) ← R(l−1)T
x(l−1)

"

Clocal:

d(l) ← b(l) −A(l)x(l)

y(l) ← B(l)d(l)

26

6. Current Stage of Implementation

The presented ScaRC ansatz was first integrated into a private copy of the
current version 5.3.0 of FDS. This so-called FDS-ScaRC solver was extensively
checked by different test series based on various geometric situations and pa-
rameter constellations. As far as possible the attained parallel solutions were
compared to the according serial ones (based on single-mesh computations) and
the corresponding FFT-solutions.

The results looked very promising: The parallel solutions were notedly con-
formable to the corresponding serial ones, the consistency of the global volume
flow was automatically guaranteed. A detailed description of the considered test
series can be found in part II of this article which is devoted to the verification
and validation of FDS.

Up to now, FDS-ScaRC is based on a global, data-parallel CG-iteration with
different block-preconditioning techniques (block-Jacobi, block-SSOR, block-
FFT). This ansatz already shows a very good numercial stability and accuracy
as far as the domain decomposition is isotropic or moderately anisotropic. For
more irregular decompositions it will be indispensable to implement the global,
data-parallel MG-iteration, especially with ADI-TRIGS-smoothing techniques,
as described in Kilian [11]. This very important step of the implementation is
currently in work and will most probably lead to a massive stabilization of the
whole method even for strong anisotropic cases.

Experientially, the MG-ansatz will result in a significantly better runtime perfor-
mance compared to the current CG-ansatz which still shows a runtime drawback
up to a factor of 2 compared to the current FDS-FFT-version. But it shouldn’t
be forgot that a fast runtime is only of little value if the results aren’t accurate
and reliable at the same time. Finally, this ansatz is very suited to an extension
to adaptive grid refinement strategies which are under development as well.

During the complete implementation phase of FDS-ScaRC and all the described
tests series, there was an intense intercommunion with the main developers
at the National Institute of Standards and Technology (NIST) in Gaithers-
burg/USA. Motivated by the first achievements with the new method, they
decided to include FDS-ScaRC into the official FDS-repository where it will be
available for the whole FDS-community for beta-testing in the medium-term.

27

References

[1] Altieri, M.; Becker, C.; Turek, S.: Proposal for SPARSE BANDED
BLAS techniques. Technical report, Universität Heidelberg, 1999. Preprints
SFB 359, Nummer 99–11.

[2] Axelsson, O.; Barker, V. A.: Finite element solution of boundary value
problems. Computer Science and Applied Mathematics. Academic Press
Inc., Orlando, FL, 1984. ISBN 0-12-068780-1. Theory and computation.

[3] Becker, C.: Strategien und Methoden zur Ausnutzung der High-
Performance-Ressourcen moderner Rechnerarchitekturen für Finite-
Element-Simulationen und ihre Realisierung in FEAST (Finite Element
Analysis & Solution Tools). PhD thesis, Universität Dortmund, Logos
Verlag, Berlin, may 2007. http://www.logos-verlag.de/cgi-bin/buch?
isbn=1637, ISBN 978-3-8325-1637-6.

[4] Bramble, J. H.; Pasciak, J. E.; Xu, J.: Parallel Multilevel Precondi-
tioners. Math. Comp., volume 55:pages 1–22, 1990.

[5] Deuflhard, P.; Hohmann, A.: Numerical Analysis in Modern Scien-
tific Computing: An Introduction, volume volume 43 of Texts in Applied
Mathematics. Springer Verlag, New York, 2003. ISBN 0387954104.

[6] Dongarra, J.: Linear Algebra Libraries for High-Performance Com-
puters: A Personal Perspective. IEEE Parallel Distrib. Technol., vol-
ume 1(1):pages 17–24, 1993. ISSN 1063-6552.

[7] Dongarra, J. J.; Duff, L. S.; Sorensen, D. C.; Vorst, H. A. V.:
Numerical Linear Algebra for High Performance Computers. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1998. ISBN
0898714281.

[8] Frommer, A.: Lösungen linearer Gleichungssysteme auf Parallelrechnern.
Teubner, 1990. ISBN 978-3528063979.

[9] Göddeke, D.; Buijssen, S. H. M.; Wobker, H.; Turek, S.: GPU Ac-
celeration of an Unmodified Parallel Finite Element Navier-Stokes Solver .
Technical report, Fakultät für Mathematik, TU Dortmund, april 2009.
Ergebnisberichte des Instituts für Angewandte Mathematik, Nummer 392.

[10] Hackbusch, W.: Iterative solution of large sparse systems of equations,
volume 95 of Applied Mathematical Sciences. Springer-Verlag, New York,
1994. ISBN 0-387-94064-2. Translated and revised from the 1991 German
original.

[11] Kilian, S.: ScaRC: Ein verallgemeinertes Gebietszerlegungs–/Mehr-
gitterkonzept auf Parallelrechnern. PhD thesis, Universität Dortmund, Lo-
gos Verlag, Berlin, 2002. ISBN 3-8325-0092-8.

[12] Kilian, S.: Iterative Gebietszerlegungskonzepte für den FDS-Drucklöser
zur Stärkung der globalen Kopplung. 2. FDS-Usergroup Workshop, hhp-
berlin, Berlin, 4.-5. Dezember 2008.

28

[13] Kilian, S.; Turek, S.: An example for parallel ScaRC and its application
to the incompressible Navier-Stokes equations, 1997.
URL citeseer.ist.psu.edu/article/kilian97example.html

[14] Klainerman, S.; Majda, A.: Compressible and Incompressible Fluids.
Comm. Pure Appl. Math., volume 35:pages 629–653, 1982.

[15] Klein, R.: Semi-Implicit Extension of a Godunov-Type Scheme Based
on Low Mach Number Asymptotics I: One-Dimensional Flow . Journal of
Computational Physics, volume 121:pages 213–237, 1995.

[16] Klein, R.; Botta, N.; Schneider, T.; Munz, C.-D.; Roller, S.;
Meister, A.; Hoffmann, L.; Sonar, T.: Asymptotic adaptive meth-
ods for multi-scale problems in fluid mechanics. Journal of Engineering
Mathematics, volume 39:pages 261–343, 2001.

[17] McDermott, R.; McGrattan, K. B.; Hostikka, S.; Floyd, J.: Fire
Dynamics Simulator (Version 5) – Technical Reference Guide, Volume 2:
Verification. Technical report Volume 2, National Institute of Standards
and Technology, Building and Fire Research Laboratory, February 2009.

[18] McGrattan, K. B.; Hostikka, S.; Floyd, J.; Baum, H.; Rehm, R.;
Mell, W.; McDermott: Fire Dynamics Simulator (Version 5) Technical
Reference Guide, Volume 1: Mathematical Model . National Institute of
Standards and Technology, Building and Fire Research Laboratory, 5.2
edition, February 2009.

[19] Münch, M.: Ist eine Gebietszerlegung in mehrere Gitter bei FDS-
Simulationen zulässig? . 2. FDS-Usergroup Workshop, hhpberlin, Berlin,
4.-5. Dezember 2008.

[20] Münch, M.; Kilian, S.: A new generalized domain decomposition strategy
for the efficient parallel solution of the FDS-pressure equation, Part II:
Verification and Valdiation. Technical report in preparation, Konrad-Zuse-
Zentrum für Informationstechnik Berlin, 2009.

[21] Münch, M.; Klein, R.: Critical numerical aspects for field model appli-
cations. EUSAS-Journal , volume 4:pages 41–54, July 2008.

[22] Münch, M.; Schmidt, H.; Oevermann, M.; Klein, R.: Numerical
Investigation of the Baroclinic Torque in the Context of Smoke Spread .
In Abstracts of Work-In-Progress Poster Presentations, Thirty-First Inter-
national Symposium on Combustion, University of Heidelberg, Germany,
page 174. The Combustion Institute, 5001 Baum Boulevard, Suite 635,
Pittsburgh PA 15213 - 1851, August, 6 - 11 2006.

[23] NIST: Fire Dynamics Simulator (FDS) and Smokeview .
URL http://fire.nist.gov/fds

[24] Rannacher, R.: Numerische Mathematik 2 , 2006.
URL http://numerik.iwr.uni-heidelberg.de/\~lehre/SS06/numer%
ik2/

29

[25] Rehm, R. G.; Baum, H. R.: The Equations of Motion for Thermally
Driven Buoyant Flows. Journal of Research, volume 83(3):pages 297–308,
1978.

[26] Rogsch, C.: Parallelrechnung in der Praxis - Ist FDS5 wirklich besser als
FDS4? . 1. FDS-Usergroup Workshop, hhpberlin, Berlin, 6.-7. März 2008.

[27] Saad, Y.: Iterative methods for sparse linear systems. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, second edition, 2003.
ISBN 0-89871-534-2.

[28] Schochet, S.: The mathematical theory of low Mach number flows.
M2AN , volume 39(3):pages 441–458, 2005. +DOI: 10.1051/m2an:2005017.

[29] Schwarz, H. R.: Numerische Mathematik . Teubner, Stuttgart, 4. edition,
1997. ISBN 3-519-32960-3.

[30] Turek, S.: Efficient Solvers for Incompressible Flow Problems: An Algo-
rithmic and Computational Approach. Springer, Berlin, 1999.

30

