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Abstract

A numerical framework for data-based identification of nonsta-

tionary linear factor models is presented. The approach is based on

the extension of the recently developed method for identification of

persistent dynamical phases in multidimensional time series allowing

to identify discontinuous temporal changes in underlying model pa-

rameters. Finite element method (FEM) discretization of the resulting

variational functional is applied to reduce the dimensionality of the

resulting problem and to construct the numerical iterative algorithm.

Presented method results in the sparse sequential linear minimiza-

tion problem with linear constrains. Performance of the framework

is demonstrated on two application examples: (i) in context of sub-

grid scale parameterization for Lorenz96 model with external forcing

and (ii) in analysis of climate impact factors acting on the blocking

events in the upper troposphere. The importance of accounting for the

nonstationarity issue is demonstrated in the second application exam-

ple: modelling the ERA40 geopotential time series via a single best

stochastic model with time-independent coefficients results in the fact

that all of the considered external factors are found to be statistically
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insignificant, whereas considering the non-stationary model (being

also demonstrated to be more appropriate in the sense of information

theory) identified by the methodology presented in the paper results

in identification of statistically significant external impact factor in-

fluences.
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Introduction

The parameterization of reduced dynamical models describing the behavior of

the observed (measured) multiscale data was a field of intensive research in the

last years. Approaches introduced in atmospherical science range from stochastic

differential equations (Majda et al. 1999, 2003; Wilks 2005), multiscale schemes

(Majda et al. 2003; Fatkullin and Vanden-Eijnden 2004), regression models (Or-

rell 2003), discrete Markov chain models (Khouider et al. 2003), hidden Markov

models (Majda et al. 2006; Horenko et al. 2008b,a) and conditional Markov mod-

els (Crommelin and Vanden-Eijnden 2008). In the present paper a purely data-

driven approach for parameterization by means of the nonstationary multivariate

autoregressive factor models (VARX) is introduced, based on the combination

of the stationary VARX models widely used in econometrics (Tsay 2005) with

the recently introduced FEM-clustering procedure (Horenko 2009b,c). Resulting

numerical strategy is demonstrated to allow the multiscale approximation of the

nonstationary dynamical processes via the optimal sequences of locally station-

ary fast VARX processes and some slow (or persistent) hidden process switching

between them. In atmospherical context it was recently demonstrated that the

FEM-clustering framework can be successfully applied to identify the large scale

dynamical circulation patterns in realistic AGCM models (Franzke et al. 2009).
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In the current manuscript the FEM-clustering framework is extended to allow for

discontinuous hidden processes via the formulation of the respective variational

problem in the space of the functions with bounded variation. Applications of the

proposed method are demonstrated in two different scenarios and compared with

standard purely data-driven methods (Orrell 2003; Wilks 2005): (i) in context

of the subgrid scale parameterization for a Lorenz’96 model (Lorenz 1996) with

nonstationary forcing in the right hand side and (ii) in context of climate impact

factor analysis for ERA40 historical geopotential data in Europe between 1958

and 2003 (Simmons and Gibson 2000).

The outline of the remainder of this paper is as follows. In section 1 the in-

verse problem for nonstationary dynamical systems is formulated as a clustering

problem and it is demonstrated how the multiscale assumption can be incorpo-

rated into the resulting variational formulation via the persistency condition in the

space of functions with bounded variation. The finite element method (FEM) is

deployed to reduce the dimensionality of the resulting optimization problem and

the iterative numerical scheme is introduced. In section 2 the numerical details of

the resulting FEM-VARX clustering method are explained. In section 3 different

strategies of postprocessing the clustering results are discussed wrt. their insight

into the analyzed data. In section 4 the performance of the presented framework
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is demonstrated on two practical applications and the discussion is presented in

section 5.

1. Constrained Clustering Method

a. Model distance functional

Let x0, . . . , xT ∈ Ψ ⊂ Rn be the observed n-dimensional time series with T + 1

snapshots in time interval [0, T ]. In the following we will assume that in this time

interval considered time series xt is approximated by a time-discrete output of the

certain direct mathematical model

F (xt, . . . , xt−mτ , θ(t), t) = 0, (1)

where F (·) is the model operator, τ is the model time step, mτ is the memory

depth (m = 1 for Markov models) and

θ(t) : [0, T ] → Ω ⊂ Rd, (2)

is a (time-dependent) set of the model parameters (including, if necessary in some

model contexts also some initial and/or boundary values) and d is the dimension
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of a model parameter space. Let

g (xt, θ(t)) : Ψ× Ω → [0,∞) , (3)

be a functional (further called model distance functional) describing the distance

between some given xt at time t and the output of the model (1) calculated for a

fixed set of parameters θ(t). In this case, for a given observation series x0, . . . , xT

and some fixed functional form g (·), the inverse problem (or the parameter iden-

tification problem) can be approached via the solution of the following variational

problem:

T∑
t=1

g (xt, θ(t)) → min
θ(t)

, (4)

subjected to the constraints (2). Problem (4) is clearly ill-posed if no special as-

sumptions about the temporal dependence of the unknown parameters θ(t) can be

made. In the following we will assume that for any t ∈ [0, T ] model distance func-

tional (3) can be represented as a convex linear combination of K ≥ 1 stationary

model distance functionals, i. e., model functionals dependent on some constant
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(time-independent) model parameters θi ∈ Ω, i = 1, . . . , K:

g (xt, θ(t)) =
K∑

i=1

γi(t)g (xt, θi) , (5)

with some time-dependent model affiliations γi (t) fulfilling the convexity condi-

tion

K∑
i=1

γi(t) = 1, ∀t ∈ [0, T ] (6)

γi(t) ≥ 0, ∀t ∈ [0, T ] , i = 1, . . . , K. (7)

In another words, we assume here that at any time t the global time-dependent

(or nonstationary) model distance functional (3) can be approximated by one

of K local time-independent (or stationary) model distance functionals chosen

according to some time-dependent probabilities (or model affiliations) Γ(t) =

(γ1(t), . . . , γK(t)). This idea for the inverse numerical problems is widely used

in the context of data clustering (Höppner et al. 1999), in presented general form

was introduced in Horenko (2009a) and stems from the classical spline interpola-

tion approach for direct numerical problems (see, for example, Deuflhard (2004)).

Inserting the ansatz (5) in (4) results in the minimization of the average clustering
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functional

L (Θ, Γ(t)) =
K∑

i=1

T∑
t=0

γi(t)g (xt, θi) → min
Γ(t),Θ

, (8)

subject to (2,6,7) with Θ = (θ1, . . . , θK).

In order to comprehend the above concepts it is instructive to consider a case

where the direct model (1) has a following simple form:

xt = θ(t) + εt, (9)

where εt is some independent identically distributed (i.i.d.) stochastic variable

with zero expectation E [εt] = 0 and θ(t) : [0, T ] → Rn is a time-dependent

parameter describing the evolution of the expectation value of the process xt. The

model distance functional (3) in such a case gets the form

g (xt, θ(t)) = ‖xt − θt‖, (10)

and the corresponding average clustering functional can be numerically mini-

mized applying the standard K-means-clustering algorithm (Bezdek 1981; Höpp-

ner et al. 1999). This means that with the help of the ansatz (5), the solution of
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the nonstationary inverse problem for dynamical system (9) can be approached

via the iterative clustering algorithm based on the minimization of the average

clustering functional (8).

In the following it will be explained in detail how these concepts can be inter-

preted and applied in context of more general nonstationary multivariate models

with external forcing (VARX models).

b. Non-stationary VARX models and VARX model distance functional

Stationary VARX model is a widely used dynamical multivariate tool to investi-

gate the time series subject to external forcing (Brockwell and Davis 2002; Tsay

2005). If, in addition to the time series x0, . . . , xT ∈ Rn (describing the in-

ternal degrees of freedom of the considered dynamical system), the time series

u0, . . . , uT ∈ Rl of the external influences (or forcing) is available, the non-

stationary non-linear VARX model has the following form:

xt = µ(t) + A (t) φ1 (xt−τ , . . . , xt−mτ ) + B (t) φ2 (ut) + C (t) εt, (11)

where φ1 (xt−τ , . . . , xt−mτ ) is some (in general non-linear function connecting

the previous observations xt−τ , . . . , xt−mτ ), φ2 (u) =
(
φ1

2 (u(t)) , . . . , φk
2 (u(t))

)
:
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Rnm → Rd is some fixed (nonlinear) function of the external factors, εt : [0, T ] →

Rh (h ¿ n) is a Gaussian process with zero expectation and E
[
εt

Tεt

]
= Idh×h;

µ(t) : [0, T ] → Rn, A (t) : [0, T ] → Rn×d, B (t) : [0, T ] → Rn×k and C (t) :

[0, T ] → Rn×h.

The most simple and straightforward form of the VARX-model used in the

literature is the linear autoregressive factor model with φ1 (xt−τ , . . . , xt−mτ ) =

[xt−τ , . . . , xt−mτ ] and a VARX model equation (Brockwell and Davis 2002)

xt = µ(t) +
m∑

q=1

Aq (t) xt−qτ + B (t) φ2 (u(t)) + C (t) εt, (12)

We will further assume that the noise matrix C (t) (describing the coupling

between the h-dimensional Gaussian noise process to the analyzed time series xt)

for any t ∈ [0, T ] can be represented as

C (t) = P (t)Λ (t) , (13)

where P (t) : [0, T ] → Rn×h is an orthogonal matrix function and Λ (t) :

[0, T ] → Rh×h is a diagonal matrix function with nonnegative diagonal elements.

Defining θ (t) = (µ (t) ,A (t) ,B (t) ,C (t)) and under the assumption (13), the
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VARX model distance functional (3) of dynamical system (11) can be written as

g (xt, θ(t)) = ‖xt − µ(t)−A (t) φ1 (xt−τ , . . . , xt−mτ )−B (t) φ2 (u(t)) ‖P(t),

(14)

where the P (t)-weighted norm ‖ · ‖P(t) =
√

(·P† (t) ,P (t) ·)2 is used and † de-

notes the matrix transposition. The main advantage of the above definition of

the least squares residual norm (14) (compared to the standard Gaussian norm

based on the C (t)-weighted norm ‖ · ‖C(t) =
√

(·,C (t) ·)2 is that it preserves

the norm of the original residuals of the least-squared problem in the essential

noise dimension.) If the aforementioned assumptions are fulfilled, then it is easy

to demonstrate that the time series of model distances g (xt, θ(t)) , t = 0, . . . , T

is a χ2-process. In the application examples below it will be demonstrated how

this property of the process can be used to estimate the confidence intervals of the

model parameters. In context of stationary VARX models (e. g., in the case of the

time independent parameter matrices A,B and C) this property can be deployed

to a posteriori check the model assumption (11) and to demonstrate the asymp-

totical normality of the resulting parameter estimates (i. e., to demonstrate that

for T → ∞ the parameter estimates are distributed according to the multivariate
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Gaussian) (Reinsel 1993). Applying the ansatz (5), the nonstationary parame-

ter identification problem can be approached via the solution of the minimization

problem (8) (with θi = (µi,Ai,Bi,Ci)). This can be done by means of the iter-

ative clustering algorithm (in the same way as it was described for the K-Means

clustering) (Höppner et al. 1999; Horenko 2009b).

c. Incorporation of additional information

Direct numerical treatment of the problem (8) is hampered by the following prob-

lems: (i) the problem is ill-posed since the number of unknowns can be higher

then the number of known parameters, and (ii) because of the non-linearity of

g the problem is in general non-convex and the numerical solution gained with

some sort of local minimization algorithm depends on the initial parameter values

(Deuflhard 2004). Perhaps it is even more important that the solution Γ of the

above constrained minimization task might be an irregular function: To see this

let us assume that we already know the minimizing values Θ∗ for Θ. Then, the

minimizer Γ∗ for the affiliation vector Γ has the following form:

γ∗,i(t) =





1 if i = arg minj g(xt, θ∗,j)

0 otherwise
, (15)
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thus the datum xt has perfect affiliation with state i if the model distance functional

for xt is minimal in state i. That is, if the process exhibits strong variability then

the affiliations are rather non-smooth functions. Whenever the affiliation functions

just take values 0 or 1 we will call them deterministic in the following, which is

meant in the sense that then for every datum in the time series it is certain to which

cluster it belongs.

As was demonstrated in the literature (Horenko 2009b,c), one of the possi-

bilities to approach the two aforementioned problems simultaneously is first to

incorporate some additional information about the regularity of the observed pro-

cess (e.g., in the form of smoothness assumptions in space of time-continuous

functions Γ (·)) and then to apply a finite Galerkin-discretization (e. g, FEM-

discretizatization) of this infinite-dimensional Hilbert space. In context of Tykhonov-

based FEM-clustering methods, this was done assuming the weak differentiability

of the time-continuous functions γi, i. e.:

|γi|W1,2(0,T ) = ‖ ∂tγi (·) ‖L2(0,T )=

∫ T

0

(∂tγi (t))
2 δt ≤ C < +∞, i = 1, . . . , K,

(16)

where W1,2 (0, T ) is the Sobolev space of weakly differentiable functions, e. g.,
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functions with the L2 (0, T ) integrable first derivatives.

As was demonstrated in (Horenko 2009a), one possibility to incorporate this a

priori information from (16) into the optimization is to modify the functional (8)

and to write it in the Tykhonov-regularized form

Lε(Θ, Γ, ε2) = L(Θ, Γ) + ε2

K∑
i=1

∫ T

0

(∂tγi (t))
2 δt → min

Γ∈W1,2(0,T ),Θ
. (17)

However, introduction of the ε2-dependent penalty term in the formulation of

the Tykhonov-regularized problem (17) changes the functional form of the origi-

nal clustering problem (8) and biases the position of the solution of the respective

minimization problem with growing ε2, e. g., the solution of the regularized prob-

lem may have a significant deviation from the global minimum of the original

problem. As was demonstrated in ((Horenko 2009b,c)), increasing the ε2 leads to

the ”smoothing out” of the sharp transitions between the cluster states1. More-

over, the formulation (16) of the persistency condition in W1,2 sense relies on the

differentiability and continuity of the underlying cluster affiliation functions γi(t).

This can not in general be assumed to be granted in the cases where the transitions

1The influence of the Tykhonov regularization in W1,2 Sobolev norm is equivalent to the action
of the diffusion operator ε2∆t on γi(t), e. g., increase of the regularization parameter ε2 results in
the stronger diffusion of the affiliation function γi(t) through the interface separating the clusters
in time. For a detailed discussion of the W1,2 regularization effects and its influence in different
clustering scenarios see Horenko (2009b,c).
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between the cluster states are sharp (e. g., when the function γi(t) has jumps and

is discontinuous).

In the following, an alternative way to incorporate the persistency assumption

into the original clustering problem (8) (avoiding the two above mentioned prob-

lems) will be presented, based on the formulation of the persistency condition

in a functional space allowing for a discontinuity of its elements (functions with

bounded variation, BV (0, T )).

d. Persistence in BV (0, T )-sence: constrained BV -clustering method and FEM-

discretization

Instead of limiting ∂tγi in L2 sense (which relies on the differentiability and con-

tinuity assumption for the cluster affiliation function γi(t)), we will consider the

time-discrete functions γi(t) defined only at the time instances where the obser-

vations xt are available. We will formulate the persistency condition in the time-

discrete BV (0, T ) sense

|γi|BV (0,T ) =
T−1∑
t=0

|γi(t + 1)− γi(t)| ≤ C, (18)
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where the persistency parameter C defines the maximal number of transition be-

tween the cluster state i and all other states in time interval (0, T ). Note that

since at least in the time-continuous caseW1,2 (0, T ) ∈ BV (0, T ) (Moreau 1988),

this kind of persistency condition will also allow to preserve the ”smooth” W1,2-

transitions between the cluster states in the continuous limit by an appropriate

choice of the persistency parameter C.

Let D be the discrete difference operator (the right-hand derivatives) wrt. t

D =




−1 1 . . . 0

0 −1 . . . 0

. . . . . . . . . . . .

0 . . . −1 1




. (19)

For a given Θ = (θ1, . . . , θK) let

gi (θi) = [g(x0, θi), . . . , g(xT , θi)] ∈ RT+1,

γi = [γi(0), . . . , γi(T )] ∈ RT+1 (20)
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Then the problem (8) transforms to

L =
K∑

i=1

γig
†
i (θi) → min

Γ(t),Θ
, (21)

where † denotes the transposition operation. The above problem (21) is subject to

the constraints

‖Dγ†i ‖1 ≤ C ∀i, (22)
K∑

i=1

γi(t) = 1 ∀t, (23)

γi(t) ≥ 0 ∀t, i. (24)

The direct numerical optimization of the problem (21-24) is hampered by the fact

that the persistency constrain (22) makes the overall problem non-differentiable.

In the following, an adequate transformation of the above problem to the differ-

entiable formulation will be introduce . This will allow us to use the standard nu-

merical optimization methods in the context of (21-24). We define vi := DγT
i and

split this into non-positive and non-negative parts (following the theorem about

the unique representation of the BV -functions, cf. Moreau (1988))

vi = v+
i − v−i , v+

i = max(vi, 0), v−i = max(−vi, 0). (25)
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Moreover let D−1 be the discrete integration operator, e. g.

D−1vi =




0 0 . . . 0

1 0 . . . 0

. . . . . . . . . . . .

1 . . . 1 1




︸ ︷︷ ︸
=:D−1

vi + γi
00 (26)

for some variable γi
00 (defining the initial value for the cluster affiliation i at time

0). Now we can express γT
i as

γT
i = D−1(v+

i − v−i )

= D−1(v+
i − v−i ) + γi

001. (27)

Defining

x̃i =




v+
i

v−i

γi
00




, x̃ = [x̃1, . . . , x̃K ], ci (θi) =




(gi (θi)D−1)T

−(gi (θi)D−1)T

gi (θi) 1




(28)

we can express the original non-differentiable optimization problem (21-24) as the
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following differentiable optimization problem, (for more details see the Appendix)

min
x̃,Θ

cT (Θ) x̃, subject to Aeqx̃ = beq, Aneqx̃ ≥ bneq, (29)

in the vector space of the higher dimensionality (since by construction, the di-

mension of variable x̃i defined in (28) is almost twice as high as the dimension

of the original variable γi). The solution of the above minimization problem

can be approached via the subspace iteration procedure, e. g., via the solution

of the restrained optimization problems in parameter subspaces x̃ and θ subse-

quently. Completely analogously to the Tykhonov-regularized FEM-clustering

case (Horenko 2009b,c), it can be demonstrated that this subspace iteration proce-

dure converges towards the (local) minimum of the problem (29) if some appropri-

ate assumptions (convexity and differentiability) of the model distance functional

(3) are fulfilled.

However, since the dimensionality of the variable x̃ is growing as K (2T + 1)

with the length of the analyzed time series, the numerical solution of the restrained

problem (29) for a fixed value of Θ can become increasingly expensive for long

time series. In the following the Finite Element Method (FEM) will be deployed

to reduce the dimensionality of the above problem.
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e. FEM-discretization

Let {0 = τ0, τ1, τ2, . . . , τN−1, τN , τN+1 = T} be a finite subset of the interval

[0, T ] with uniform time steps δt. We can define a set of N ¿ (T + 1) time-

discrete functions with bounded variation {f1(t), f2(t), . . . , fN(t)} defined at T +

1 time points of the observation series x, where each function fi(t) shall take

positive values at the observation time instances of x in time interval (τi−1, τi+1)

and be zero at the time instances outside this interval2. Now we represent the v’s

from (25) by these functions, thus

v+
i (t) =

N∑

k=1

ṽ+
ikfk(t) + χ+

N

v−i (t) =
N∑

k=1

ṽ−ikfk(t) + χ−N (30)

where χ+
N and χ−N are discrete discretization errors. As δt goes to 1, the discretiza-

tion errors become zero. This develops into a reduced discrete representation of

2For practical examples of standard finite element function sets fi(t) (like linear finite elements)
in discrete time see Horenko (2009b) and Braess (2007)
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the discrete problem (29) by using

v+
i =




f1(0) . . . fN(0)

... . . . ...

f1(T ) . . . fN(T )




︸ ︷︷ ︸
=:WN




ṽ+
i1

...

ṽ+
iN




︸ ︷︷ ︸
=:ṽ+

i

+χ+
N1, (31)

where WN ∈ R(T+1)×N is a FEM-basis matrix and ṽ−i is defined analogously.

Then the previously defined x̃i can be approximated as

x̃i =




WN 0 0

0 WN 0

0 0 Id




︸ ︷︷ ︸
=:ω̂




ṽ+
i

ṽ−i

γi
00




︸ ︷︷ ︸
=:x̄i

. (32)

Defining

ω =




ω̂ 0 . . . 0

0 ω̂
. . . ...

... . . . . . . 0

0 . . . 0 ω̂








(K times), (33)
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results in the FEM discretized problem in BV sense:

min
x̄,Θ

L0 = min
x̄,Θ

cT (Θ) ωx̄, subject to Aeqωx̄ = beq, Aneqωx̄ ≥ bneq. (34)

Note that x̄ has a dimensionality of K (2N + 1) (which is much less then the di-

mension K (2T + 1) of the original variable x̃ if N ¿ T ). Analogously to the

Tykhonov-regularized FEM-clustering problem described in (Horenko 2009c),

adaptive FEM techniques can be deployed to find the optimal set of time inter-

vals δt for a given total discretization error δ̃3.

For a fixed Θ the above minimization problem is a linear minimization wrt.

x̄ with linear equality and inequality constraints. This problem can be solved by

means of some standard numerical methods of linear programming like simplex

method or interior point methods. For the fixed parameter x̄, the above problem

is an unconstrained minimization problem that can be solved analytically if the

model distance functional g is convex wrt. θ and the problem ∂g(xt,θ)
θ

= 0 has a

unique analytical solution wrt. θ (as would be demonstrated in the following, it is

the case for the VARX models). The iterations can be repeated until the change of

the functional value doesn’t exceed some predefined threshold for the change of

3This can be done in a standard way, controlling the norm of the disretization errors χ+
N , χ−N

locally and applying the multigrid approach to guarantee that ‖χ±N‖ ≤ δ̃ (Braess 2007)
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the functional value.

Algorithm:

choose an arbitrary x̄0

set s=1

while not converged repeat

step 1: solve (34) wrt. Θ for a fixed x̄s−1

analytically and identify Θs

step 2: solve (34) wrt. x̄ for a fixed Θs numerically

(via linear programming) and identify x̄s

set s=s+1

Compared to the Tykhonov-regularized FEM-clustering problem as described

in Horenko (2009b,c), the above problem (34) has two major numerical advan-

tages: (i) while for the Tykhonov-regularized FEM-clustering problem the persis-

tence could be influenced only indirectly through the choice of the regularization

parameter ε2, in context of (34) it is directly controllable via the persistency thresh-

old C and (ii) sparse linear programming problem is solved in each iteration of

the above algorithm (compared to the more numerically expensive quadratic pro-

gramming in the case of the Tykhonov-regularized FEM-clustering problem).

In the next section it will be demonstrated how the above numerical procedure
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can be formulated for the parameter identification of nonstationary VARX models

(11).

2. FEM-VARX Clustering: parameter estimation and

determination of optimal values for number of states

and persistency threshold

a. Derivation of the estimator formulas

In every iteration s of the subspace iteration algorithm described above, the un-

constrained minimization problem

Θs = arg min
Θ

L0

(
Θ, x̃(s−1)

)
(35)

is solved for a fixed value of x̃(s−1) (step 2 of the above algorithm). If the dynam-

ics of the analyzed time series is assumed to be governed by the VARX process

(11) with memory m, the model distance functional in the clustering problem for-

mulation will take the form (14). Let ABi = (µi,Ai,Bi) ∈ Rn×(1+d+k) (where

d is the dimensionality of the output of function φ1 (·)) and Γs−1 (t) be the cluster
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affiliations reconstructed from the current values x̃s−1 via the subsequent applica-

tion of the formulas (32) and (30). After inserting the Γs−1 (t) into the function

gi (θi) , i = 1, . . . , K and taking the derivative of the functional L0 (34) wrt. the

new variables ABi we get the optimal estimators for ABi
s in the iteration s as the

solution of the following system of linear equations4

XsABi
s = Ys,

Xs =




1 . . . 1

√
γs−1

i (m + 1)φm+2
1 . . .

√
γs−1

i (T )φT−1
1

√
γs−1

i (m + 2)φm+3
2 . . .

√
γs−1

i (T )φT
2




,

Ys =

[ √
γs−1

i (m + 2)xm+2

√
γs−1

i (m + 3)xm+3 . . .
√

γs−1
i (T )xT

]
,

(36)

where φt
1 = φ1 (xt−τ , . . . , xt−mτ ) and φt

2 = φ2 (u(t)). If the matrix (X∗
sXs)

is invertible then the solution of the above system exists, is unique and can be

expressed as

ABi
s = (X∗

sXs)
−1 X∗

sYs, (37)

4We get use of the convexity of the functional g (xt, θ(t)) = ‖xt − µi −
A (t) φ1 (xt−τ , . . . , xt−mτ )−Biφ2 (u(t)) ‖Pi wrt. parameters ABi and the necessary minimum
condition for convex functionals.
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where ∗ denotes the matrix conjugate (Golub and Loan 1989). The optimal es-

timates of the noise parameters Ci are straightforwardly calculated from the co-

variance matrices of the model residuals in the cluster state i

resi
t =

√
γs−1

i (t)
(
xt − µi −A (t) φ1 (xt−τ , . . . , xt−mτ )−Biφ2 (u(t))

)
,

Covi
s =

∑T
t=(m+2) (resi

t)
T resi

t∑T
t=(m+2)

√
γs−1

i (t)
, (38)

Ci
s =

[
Covi

s

]0.5
.

Formulas (37) and (38) give explicit estimator expressions that are used in the

step 2 of the subspace iteration algorithm.

As can be seen from the above estimator formulas, from the view point of the

inverse numerical problem there is no difference between linear (12) and nonlin-

ear (11) factor models: both result in solution of a linear least-squares problem

(36). This is explained by the fact that in both cases the right-hand sides of mod-

els are linear functions of model parameters. However, as will be demonstrated in

the following, linear autoregressive models can in some situations provide more

insight allowing to use the available tools of linear data analysis and can be suc-

cessfully applied to analyze the realistic (nonlinear) data.
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b. FEM-VARX model oder selection for fixed K and C

In order to select a proper model order m and the optimal functional form φ2 (u) =

(
φ1

2 (u(t)) , . . . , φk
2 (u(t))

)
for the external factors, standard tools of information

theory like Akaike information criterion (AIC) or Bayesian information criterion

(BIC) (McQuarrie and Tsai 1998) developed for the linear stationary VARX mod-

els can be applied a posteriori to the locally stationary VARX models identified

via the FEM-VARX procedure. In terms of the information criteria, various mod-

els are compared wrt. the special functional consistent of the model log-likelihood

with added regularization term penalizing the total number of parameters involved

in the model (to avoid the overfitting). For example, the BIC functional (being in

general more robust then AIC, cf. McQuarrie and Tsai (1998) ) for the cluster

state i will have a form

BIC (i) = −2 logLi + Ni log

(
T∑

t=0

γi(t)

)
, (39)

where Li = γig
†
i (θi) and Ni is the number of the model parameters in the clus-

ter state i. Given any two estimated cluster models (e. g., models with different

memory depth and/or different functions φ2 (u)), the model with the lower value

of BIC (i) is the one to be preferred. In the following it will be demonstrated how
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the criterion (39) can be applied in the praxis to make a decision about the optimal

functional form of the local VARX models and to test the significance of different

external factors u for the dynamical process explaining the analyzed time series

data.

c. Choosing the optimal number of local models K

The upper bound for the number of statistically distinguishable cluster states for

each value of the persistency threshold C can be algorithmically estimated in the

following way: starting with some a priori chosen (big) K one solves the opti-

mization problem (34) for different fixed value of C and calculates the confidence

intervals of the resulting local parameter matrices Θi, i = 1, . . . , K (this can be

done applying the standard bootstrap sampling procedures, see (Chernik 1999)).

If two of the estimated parameter sets for two of the identified cluster states have

the confidence intervals that are overlapping in all components, this means that re-

spective clusters are statistically indistinguishable and the whole procedure must

be repeated for K = K−1. If at a certain point all of the matrices are statistically

distinguishable the procedure is stopped and Kmax(C) = K.

Another possibility to estimate the optimal number of clusters can be used, if

the identified transition process Γ (t) is shown to be Markovian for given K, C.
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Markovianity can be verified applying some standard tests, e. g., one can check

the generator structure of the hidden process, see (Metzner et al. 2007)5. In such a

case the hidden transition matrix can be calculated and its spectrum can be exam-

ined for a presence of the spectral gap (a gap separating the fast and the slow time

scales in the Markov dynamics). If the spectral gap is present, then the number

of the dominant eigenvalues (i.e., eigenvalues between the spectral gap and 1.0)

gives the number of the metastable clusters in the system (Schütte and Huisinga

2003). Positive verification of the hidden process’ Markovianity has an additional

advantage: it allows to construct a reduced dynamical model of the analyzed pro-

cess and to estimate some dynamical characteristics of the analyzed process, e.g.,

one can calculate relative statistical weights, mean exit times and mean first pas-

sage times for the identified clusters (Horenko et al. 2008a).

Verification of the Markov-assumption also allows to construct predictive Mar-

kovian models of the persistent dynamical process Γ (t) switching between the

cluster states (Horenko et al. 2008a; Horenko 2009c). As it will be demonstrated

for the numerical examples in the following, the respective K×K Markovian tran-

sition matrix together with the parameter estimates (37) and (38) of the locally-

5Note that all of the numerical criteria for verification of the Markov assumption known in the
literature imply the stationarity (or homogeneity) of the underlying transition matrix and are in
general not applicable if the analyzed process is known to be strongly nonstationary.
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stationary cluster states can help to construct the dynamical ensemble prediction

models. It is important to mention that without this a posteriori Markov verifi-

cation, the minimum of the functional (34) can not be directly used to generate

the data-based predictions since the identified cluster affiliation function Γ is just

an abstract BV function with some predefined persistency C and has no intrinsic

representation in terms of the underlying dynamical process.

d. Selection of the optimal persistency threshold C for a given number of states

K

Linearity of the functional (34) wrt. x̃ for fixed values of model distance param-

eters θi can help to apply the standard instruments from the theory of ill-posed

linear problems, like L-curve approach (Calvetti et al. 2000) to identify the opti-

mal value of the persistency threshold C for a fixed number of clusters K. For

example, optimal value of C can be determined as the edge-point (or the point of

maximal curvature) on the two-dimensional plot. This plot depicts a dependence

of the residuum-norm of the solution from C (Horenko 2009c). Alternatively,

as would be demonstrated in the numerical examples, decreasing C up to some

point (meaning the increasing regularity of the optimal solutions of (34) in the BV

sense) results in decreasing of the respective values L0 of the clustering functional
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in the solution point (meaning the increasing quality of the resulting clustering).

The point with the minimal value of L0 in such a case indicates the optimal per-

sistency threshold guaranteeing the best clustering quality.

3. Postprocessing of the FEM-VARX clustering re-

sults

Application of the FEM-VARX numerical scheme with fixed values of K and C

results in the identification of K optimal locally-stationary VARX models and

the persistent BV (0, T ) function Γ (t) switching between them. As was ex-

plained above, the a posteriori verification of the Markovian hypothesis for Γ (t)

allows to construct the reduced representation of the overall dynamics in the mul-

tiscale sense, e. g., as some slow persistent Markovian process switching between

K locally stationary VARX parameter sets. Postprocessing of the derived lo-

cal VARX models can give some additional insight into the analyzed time se-

ries. For example, expectation values of mean dynamical equilibrium positions

E(i) (u(t)) = Ei [xt|u(t)] of the analyzed dynamical process in the cluster state i

can be calculated as functions of the external forcing ut. In the case of the linear

autoregressive VARX models (12), this is done via the solution of the following
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system of linear equations6

E(i) (u(t)) = µi +
m∑

q=1

Ai
qE(i) (u(t)) + Biφ2 (u(t)) (40)

Note that if Ai
q = 0,∀q then the above result is equivalent to the multivariate trend

estimate in context of the recently introduced FEM-K-Trends clustering algorithm

(Horenko 2009b).

The local linearity of the identified VARX models also allows to apply various

techniques of model reduction known in the literature, e. g., proper orthogonal

decomposition or balanced truncation (Moore 1981) allowing for construction of

the energy preserving low-rank approximations to the identified VARX models.

Another kind of insight into the underlying multidimensional dynamics can

be gained via the analysis of the Fourier transforms of the identified models, e. g.,

via the analysis of the transfer function matrices and directed transfer functions

(Pereda et al. 2005). This kind of analysis can help to quantify the causal influence

of different data dimensions on each other.
6Formula (40) is derived under the assumptions that the analyzed data x are locally weakly

stationary (e. g., in this case, that the expectation value of x is (locally) time-independent) and the
external noise process εt is i.i.d. and has a zero expectation.
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4. Numerical examples

In the following we will illustrate the proposed FEM-VARX clustering strategy on

two practical examples: (a.) on data from Lorenz’96 model (Lorenz 1996) with

external periodical forcing switching between the deterministic and the chaotic

regime behavior, (c.) a set of averaged daily ERA40 500 hPa geopotential data

between 1958 and 2003 on a 16 × 9 spatial grid covering Europe and part of the

north Atlantic.

a. Subgrid scale modeling for Lorenz’96 system with forcing

The Lorenz’96 model of type II (Lorenz 1996; Orrell 2003) is a two-scale sim-

plified ODE describing advection, damping and forcing of some (slow) resolved

atmospheric variable x̃i being coupled to some (fast) subscale variables yi,j

˙̃xi = x̃i−1 (x̃i+1 − x̃i−2)− x̃i + F (t)− hc

b
Fy

i (t) , Fy
i (t) =

M∑
j=1

yi,j

x̃i−N = x̃i+N = x̃i,

ẏi,j = cbyi,j+1 (yi,j−1 − yi,j+2)− cyi,j +
hc

b
x̃i,

yi+N ,j = yi,j, yi,j−M = yi−1,j, (41)
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with all of the model parameters (N = 8,M = 4, h = 1, b = c = 10) set to be the

same as in the paper of Orrell (2003). In contrast to the paper of Orrell (2003), we

choose the external forcing to be explicitly time dependent function of the form

F (t) = 10 sin
(

2π
80

t
)

resulting in the switching between the ”deterministic” and

the ”chaotic” regime behavior (Orrell and Smith 2003) on the time scale of forcing

(e. g., producing a system with three different time scales).

We generate one realization of (41) in the time interval [0, T ] with an adaptive

Runge-Kutta method of the fourth order (MATLAB command ode45) resulting

in the 40 dimensional time series with 4000 instances (time step τ = 0.1). We

further aim at parameterization of the subgrid scale influences xi
t = Fy

i (t) in the

nonstationary VARX form (11) with external factors defined by the resolved vari-

ables (φ2 (u(t)) = (x̃1(t), . . . , x̃8(t))). Fig. 1 demonstrates the application of the

FEM-VARX to the time series of xt and φ2 (u(t)) defined in such a way for K = 2

(number of clusters), q = 1 (memory depth) and with N = 200 (number of finite

elements) for various numbers of persistency threshold parameter. The minimum

is achieved for C = 6, that corresponds to the number of transitions through the

bifurcation point of (41). As can be seen from Fig. 2, the FEM-VARX cluster-

ing procedure for K = 2 and C = 6 identifies both dynamical regimes of the

model (41), whereas the minimization of (34) without the persistency constraint

34



(or, equivalently, C = 2N = 400) results in a much worse clustering result (in

terms of the optimal value of L0) and is due to the trapping in the local minimum

of the clustering functional. Inspection of the confidence intervals of the estimated

local stationary VARX model parameters in Fig. 3 reveals that whereas the matri-

ces A are statistically indistinguishable (e. g., the ”own dynamics” of the subgrid

scale process is basically the same in both states), there are statistically significant

differences in B (in this case it governs the coupling from the resolved degrees

of freedom x̃ to subgrid scale d.o.f.). Also the noise intensities C are different

in both cases (in the identified chaotic regime the noise intensity is significantly

higher).

Finally, we verify the Markov assumption for the identified affiliation function

Γ (t), generate the ensemble predictions (with 10000 ensemble members) based

on the estimated 8-dimensional FEM-VARX parameterization (based on the first

90% of the data), calculate the expectation values of the relative prediction er-

rors (in 2-norm, based on the last 10% of the data, black solid line in Fig. 4)

and compare them with predictions obtained by other data-driven models (see

Fig. 4): (i) stationary constant (grey dotted line) and regressive (black dash-dotted

line) subgrid scale models (Orrell 2003); (ii) stationary linear stochastic model

(black dashed line) (Wilks 2005); and (iii) one-dimensional FEM-VARX model,
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estimated under the assumption that different subgrid scale processes in different

dimensions does not interact, e.g., the matrices A are diagonal (grey solid line).

Fig. 4 shows that fully-interactive 8-dimensional persistent FEM-VARX model

has a much better predictive skill for the considered nonstationary model series.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

b. Analysis of ERA40 geopotential data in Europe (1958-2003)

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]
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Using the FEM-VARX method introduced above, we analyze daily mean values

of the 500 hPa air temperature field from the ERA 40 reanalysis data (Simmons

and Gibson 2000)7. We consider a region with the coordinates: 27.5° W – 47.5°

E and 32.5° N – 75.0° N , which includes Europe and a part of the Eastern North

Atlantic. The resolution of the data is 5° which implies a grid with 16 points in

the zonal and 9 in the meridional direction. For the analysis we have considered

temperature values only for the period 01-12-1958 till 31-07-2003, thus we end

with a 144-dimensional time series of 16314 days. In order to remove the seasonal

trend we apply a standard procedure, where from each value in the time series we

subtract a mean build over all values corresponding to the same day and month

e.g., from the data on 01.01.1959 we subtract the mean value over all days which

are first of January and so on. The resulting deviations ∆H(t) of the geopotential

heights from their seasonal mean values are the subject of the data analysis in the

following.

Since the overall dimensionality 144 of the analyzed data series will induce

too high uncertainties for the given time span of 16314 days, the scope of the

data analysis in the following is reduced to the projections on 20 dominant EOFs

(describing approx. 99% of the total data variance).

7The author thanks the Potsdam Institute for Climate Impact Research (PIK) for the possibility
to use the ERA 40 data.
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Three different external influence factors ut are tested on their significance

for the change of the EOF projection data xt in the setting of the VARX mod-

els (11): (i) atmospheric CO2 values u1
t from the Mauna Loa observatory (data

is available online at http://cdiac.ornl.gov/ftp/trends/co2/maunaloa.co2), (ii) sea-

sonal trend factor in the form u2
t = sin

(
2π

365.4
t
)

and (iii) the sunspot cycle data u3
t

(data is available online at http://solarscience.msfc.nasa.gov/SunspotCycle.html).

We start the data analysis parameterizing the globally stationary VARX model

for 20 dominant EOFs with different sets of external factors described above for

various values of the memory parameter q, applying the BIC test to verify the

statistical significance of the factors and testing the i.i.d. assumptions for the

model residuals with the AR(1)-test (Brockwell and Davis 2002) (to check the

validity of the underlying estimator assumptions). It shows up that the optimal

globally stationary VARX model for the analyzed data is the one with q = 2 and

no external factors, e. g., in the globally stationary framework all of the external

factors are found to be statistically nonsignificant.

Application of the nonstationary FEM-VARX framework according to the K-

selection procedure described above results in determining K = 4 as the maximal

number of statistically distinguishable local VARX states (valid for a wide range

of parameters C, N, q). For a fixed value of K = 4 we further determine the opti-
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mal value of the persistency threshold C (in the same manner as was demonstrated

in Fig. 1), determine the optimal value of memory q = 2 via BIC-test (e. g., the

same as for the globally stationary VARX model) and test the i.i.d. assumptions

for the model residuals with the AR(1)-test (Brockwell and Davis 2002). Next,

we repeat the verification of external factors in the same way as it was described

above for the globally stationary VARX model. As shown in Fig. 5, the BIC-

test confirms the hypothesis that the optimal FEM-VARX model is the one with

the two external factors u1
t (atmospheric CO2 values) and u2

t (seasonal factor),

whereas the influence of the the sunspot cycle data u3
t is found to be statistically

negligible. Therefore, all of the further tests are conducted only with factors u1
t

and u2
t .

Inspection of the respective cluster affiliation functions γi (t) (see Fig. 6) to-

gether with the mean equilibrium positions in the cluster states (40) reveals (see

Fig. 7 and Fig. 8) that two of the identified cluster states, namely the states 3 and

4, are describing the blocking situation in the upper troposphere. Fig. 6 shows

the comparison of the sum of cluster affiliations γ3 (t) + γ4 (t) for the part of the

time series with the scaled zonally averaged Lejenas-Okland blocking index. It

indicates the appearance of a blocking anticyclone and the duration of the event.

We have a blocking if the geopotential height difference at 500 hP between 40° N
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and 60° N is negative over a region with 20° zonal extent. The exact formula is

given in (Lupo et al. 1997), for the purpose of representation we have computed a

zonally averaged value of the index, rescaled it and reversed its sign.

Next we aim at demonstrating how the postprocessing methods described in

section 3 can help to gain the additional insight into the data to understand the

impact of the external factors. Figs. 7 and 8 show the EOF-backprojection to the

original 144-dim. space of the mean dynamical equilibrium positions in cluster

3 and 4 calculated at different times with the respective values of the factors u1
t

and u2
t . As can be seen from the graphics, impact of the seasonal factor u2

t results

in significant weakening of the blocking states in summer, this finding is consis-

tent to the observations reported in the literature. The impact of the increasing

CO2 concentration also results in the weakening of the blocking situation in both

states 3 and 4, less pronounced but still statistically significant (see the respective

confidence intervals in Figs. 7 and 8)

Finally, in the same manner as in the previous nostationary Lorenz’96 exam-

ple, we construct an ensemble prediction model (with 10000 ensemble members)

based on the FEM-VARX clustering results and compare the resulting predictions

with the ones obtained by other methods. At first, we verify the Markov assump-

tion in the time-homogenous approximation for the identified affiliation function
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Γ (t), generate the ensemble predictions based on the estimated 20-dimensional

FEM-VARX parameterization (based on the first 90% of the data) and calculate

the expectation values of the relative prediction errors (in 2-norm, based on the last

10% of the data). As can be seen from Fig. 9, FEM-VARX ensemble predictions

produces much better predictions then the constant model (where the prediction

is always the expectation value over the whole history) and the ”same as today

model” (where the prediction for the next day is just the state of the system now).

Compared with the globally stationary VARX model (where the ensemble pre-

diction is calculated from 10000 ensemble members of the global VARX model),

FEM-VARX produces only slightly better predictions (approx. 2% better). This

observation could be explained by the low overall persistence of the process Γ (t)

compared, for example, to the previous Lorenz’96 example where the hidden pro-

cess was very persistent. This issue needs a deeper understanding and is a matter

of future research.

5. Conclusion and discussion

A numerical FEM-VARX scheme for a data-driven parameterization of nonsta-

tionary multiscale dynamical processes was introduced. As demonstrated in the
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present paper, the application of the FEM-VARX method allows for the good de-

scription of the analyzed nonlinear and nonstationary data (in terms of recovering

the nonlinear effects associated with the regime-switching and in terms of the

good prediction quality of the resulting reduced representation). Besides that,

a wide range of data-analysis techniques, e. g., from information theory (like

Bayesian information criterion, cf. McQuarrie and Tsai (1998)), model reduction

approaches (like balanced truncation, cf. Moore (1981)) and adaptive Finite Ele-

ment Methods become available and can be applied in the FEM-VARX context to

postprocess the obtained results and to get an additional insight into the analyzed

data. In contrast to other multiscale approaches known from the literature (Majda

et al. 2003; Fatkullin and Vanden-Eijnden 2004), presented numerical scheme is

not a systematic strategy based on the knowledge of some ”first principles” but

is purely data-driven and results in an approximation of the analyzed process by

means of a sequence of ”simple” linear factor models. From this perspective, it

is important to put further efforts into development of mixed numerical schemes,

combining some features of systematic ”first principles” approaches (and with this

some a priory knowledge about the analyzed dynamics) with some aspects of the

purely data driven approaches (like the one presented in this paper).

One of the main accents in the present paper was on implicit mathematical
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assumptions being done on different stages of the derivation of the numerical

method and postprocessing of the obtained results. In context of the meteoro-

logical application it was shown how big is the impact of implicit stationarity

assumption on the analysis of climate factors influence: whereas in the case of

the globally stationary VARX model with constant coefficients, the impacts of the

seasonal trend and CO2 concentration were found to be statistically insignificant,

the nonstationary FEM-VARX clearly reveals the statistical significance of the

two factors (see Fig. 5). It is important to emphasize that the applicability of the

presented method as well as subsequent interpretation and postprocessing of the

obtained results are dependent on the fulfillment of the mathematical assumptions

involved. Conclusions that are drawn in every specific application case are reli-

able only modulo completion of those assumptions, it is one of the most important

issues to be kept in mind when applying the methods like the one presented in this

paper.
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Appendix

Inserting (25) and (27) into (21) we get

f(v+
i , v−i , γi

00) =
K∑

i=1

(
gi (θi)D−1(v+

i − v−i ) + γi
00gi (θi) 1

) → min
v+

i ,v−i ,γi
00,Θ

(42)

subject to

∑
t

v+
i (t) + v−i (t) ≤ C ∀i, (43)

K∑
i=1

D−1(v+
i (t)− v−i (t)) = 1−

K∑
i=1

γi
00 ∀t, (44)

D−1(v+
i (t)− v−i (t)) ≥ −γi

00 ∀t, i, (45)

v+
i (t) ≥ 0, v−i (t) ≥ 0 ∀i, t. (46)

Note that the second above expression is the equivalent transformation of the orig-

inal equality condition (6), therefore we can not just set
∑K

i=1 γi
00 = 1 without los-
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ing the preservation of the equality constrain (6) in the transformed optimization

problem.8 By defining

Aeq = [A1
eq, . . . , AK

eq], Ai
eq = [D−1 −D−1 1], beq = 1 (47)

A1
neq = diag

([
A1

eq A2
eq . . . AK

eq

])
, b1

neq = 0 (48)

A2
neq =







Idn−1

Idn−1

0




. . . (K times)




, b2
neq = 0, (49)

A3
neq = diag ([−1 − 1 0]) , b3

neq = −C (50)

and using the definition (28) we can re-write (21-24) in the matrix form (29).

8One could take the condition
∑K

i=1 γi
00 = 1 as an additional explicit constrain ending up with

two equality constrains instead of one. This will obviously increase the overall numerical cost of
the method.
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Figure 1: Optimal value of the functional (34) for different values of persistence
threshold C as calculated for the time series of forced Lorenz’96 model (K =
2, N = 200, parameters of the Lorenz’96 model as specified in text, for each C
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Figure 3: Diagonal elements of the local VARX parameters (C = 6, N =
200, K = 2).



1 3 5 7 9 11 13 15 17 19
0

0.5

1

1.5

2

R
el

at
iv

e 
P

re
di

ct
io

n 
E

rr
or

Prediction Time (time steps)

 

 

FEM−VARX nd−model (K=2)
FEM−VARX 1d−model (K=2)
regressive model
constant model
linear stochastic model

Figure 4: Comparison of the mean relative prediction errors calculated for the last
10% of the time series based on the different models trained on the first 90% of
the data (see the description in text).



5 10 15 20
−20

−10

0

10

20

30

40

50

60

70

i (index of EOF)

∆ 
B

IC
(i)

 

 

Significance Level

globally−linear model
locally−linear state 1
locally−linear state 2
locally−linear state 3
locally−linear state 4

Figure 5: Differences between Bayesian Information Criterion (BIC) (39) as cal-
culated for different EOF dimensions of the VARX models with and without the
factors u1

t and u2
t (negative values indicate the EOF dimensions where the influ-

ence of both factors is statistically nonsignificant): for global stationary linear
VARX model (dashed) and for local stationary linear FEM-VARX factor models
(calculated with K = 4, N = 4000, C = 3000, q = 2) (solid lines). Dotted
zero-line marks the statistical significance level (components above this line are
significant in a sense of the BIC-criterion).



3400 3500 3600 3700 3800 3900
0

0.2

0.4

0.6

0.8

1

1.2

Winter Days

B
lo

ck
. I

nd
. v

s.
 (γ

3(t
)+

γ 4(t
))

 

 

scaled Lejenas−Okland index
γ
3
(t)+γ

4
(t)

Figure 6: Comparison of the negative Lejenas-Oakland blocking index (dashed
line) and the sum of cluster affiliations of locally-linear states 3 and 4 (solid line,
calculated with FEM-VARX for K = 4, N = 4000, C = 3000, q = 2).



−50
−5

0

−50

−50

−50

0

0

0
0

0

050

50

50

100

100

Mean ∆ H(3)(winter 1958/1959)

−
50

0

0

00

0

0

0

50

50

Mean ∆ H(3)(summer 1959)

−50−50

−5
0

−50

−5
0

0

0

0

0

0

50

50

50

100

100

Mean ∆ H(3)(winter 2002/2003)

0 0

0

0

0

0

50

50

Mean ∆ H(3)(summer 2003)

Figure 7: FEM-VARX cluster state 3 (blocking state): Mean dynamical equi-
librium positions E(3) (u1
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t ) (see formula (40)) for the deviations ∆H of the

geopotential heights (solid) and their confidence intervals (dashed) at different
times (revealing the influence of both external factors separately, see explanation
in text).
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Figure 8: FEM-VARX cluster state 4 (blocking state): Mean dynamical equi-
librium positions E(3) (u1

t , u
2
t ) (see formula (40)) for the deviations ∆H of the

geopotential heights (solid) and their confidence intervals (dashed) at different
times (revealing the influence of both external factors separately, see explanation
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Figure 9: Comparison of the mean relative prediction errors calculated for the last
10% of the time series based on the different models trained on the first 90% of
the data (see detailed description and discussion in text).


