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Abstract

Thermoacoustic instabilities are a serious problem for lean premixed combustion systems. Due to dif-
ferent time and length scales associated with the flow field, combustion, and acoustics, numerical compu-
tations of thermoacoustic phenomena are conceptually challenging. This work presents a coupled method
for the simulation of thermoacoustic instabilities in low Mach number reacting flows. The acoustics are
represented by a reduced order model that can be obtained from network techniques or finite element com-
putations. A detailed chemistry finite-difference zero Mach number solver is used for the small scale flame
dynamics. Under the assumption that the pressure is continuous across the flame, the acoustic model can
be reduced to a time-domain relation mapping the velocity perturbation downstream of the flame to that
upstream. Closure is obtained by the flame code, which delivers the jump in velocity across the combustion
zone. The method is applied to an experimental laminar premixed burner-stabilized flat flame Rijke tube,
that exhibits strong thermoacoustic oscillations associated with the 5k=4 mode of the geometrical set-up. In
addition to the fundamental oscillation, a significant subharmonic response of the flame is observed.
Results from the coupled simulation are compared to the experimental data. Good qualitative and quan-
titative agreement is found.
� 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Keywords: Thermoacoustic instability; Two-way coupling; Flat flame; Subharmonic response

1. Introduction

One of the main issues for the design of low-
emission aero-engines, stationary gas turbines,

industrial boilers and furnaces, and household
burners is the noise associated with enclosed
flames [1,2]. Fluctuating heat release interacts
with resonant acoustic modes of the combustion
chamber and may lead to exceptionally high pres-
sure oscillations. If certain phase relationships
between the acoustic waves and the unsteady heat
release prevail, the thermoacoustic system exhibits
unstable modes, which grow in amplitude until
limited by nonlinear mechanisms.

Computational modeling of thermoacoustic
processes in combustion chambers in order to pre-
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dict unstable operating regimes and to develop
and test control methods is, therefore, highly
desirable. As shown recently, fully compressible
reacting flow computations based on large-eddy
simulations manage to accurately capture the
essential thermoacoustic interaction mechanisms
in realistic configurations and bear quantitative
comparison with experimental data [3]. The com-
putational effort is, however, still exceedingly
high. Also, it is far from trivial to impose the
proper acoustic boundary conditions, represented
by frequency dependent impedances or reflection
coefficients, in a compressible CFD simulation.

Various modeling approaches of lower com-
plexity (and, therefore, less computational
demand) have been proposed in the literature.
So-called network models divide the thermoacou-
stic system under investigation in several elements,
each being represented by acoustic frequency
response functions for plane wave (and possibly
azimuthal) modes [2]. Coupling of the acoustic
field with the flame is incorporated by means of
a flame transfer function/matrix. Such models
have been shown to agree reasonably well with
measured instability regimes and oscillation fre-
quencies [2]. The major weakness of the network
approach is that the flame dynamics still need to
be determined by experiment or by CFD (see,
e.g., [4,5]). Also, taking into account nonlineari-
ties in the thermoacoustic flame response is not
straightforward. Accordingly, the prediction of
the oscillation amplitude under unstable condi-
tions or capturing inherently nonlinear phenom-
ena as, e.g., hysteretic dependencies of the
pulsation amplitude on system parameters (see
Lieuwen [6]), is difficult.

Dowling [7] used a G-equation model of a pre-
mixed flame combined with a wave-based repre-
sentation of the plane mode acoustics for the
computation of self-excited thermoacoustic oscil-
lations. Fluctuations in heat release were obtained
from the kinematic evolution of the flame surface
area, while assuming a constant burning velocity.

A coupled model based on separate representa-
tions for the combustion zone and the acoustics
was proposed by Tyagi et al. [8]. They considered
a generic configuration with a ducted nonpre-
mixed flame described by a global one-step reac-
tion as well as infinite rate chemistry. A
Galerkin method was used to model the one-
dimensional acoustic field. Only fully reflecting
boundary conditions were considered, which fail
to account for the loss of acoustic energy across
the system boundaries. In the computations, no
stable limit cycle oscillation was obtained.

The linear flame dynamics, represented by a
flame transfer function, which relates perturba-
tions in heat release to those in velocity, has been
studied extensively for the type of burner-stabi-
lized premixed flame considered in the present
work. Experimental investigations were made by

Schreel et al. [9] and analytical and numerical
studies by Rook et al. [10].

In this work, we apply a two-way coupling
strategy for the simulation of a laminar burner-
stabilized flat flame Rijke tube. The methodology
was proposed and applied to a generic model con-
figuration in [11]. Here, we extend the approach to
a realistic case and compare the simulation results
with experimental data. The configuration shows
strong thermoacoustic oscillations at a frequency
of approximately 430 Hz, corresponding to the
5k=4 mode of the geometry.

2. Experimental set-up

A schematic view of the experimental arrange-
ment is shown in Fig. 1. Natural gas and air are
mixed upstream of the plenum duct in feed line
tubes of 4.7 mm diameter. The water-cooled ple-
num duct has a diameter of Dus ¼ 105 mm, a
length of Lus ¼ 725 mm and is made of steel. A
perforated brass plate of 2 mm thickness,
mounted between the upstream and the down-
stream duct, is used to stabilize a planar flame.
The holes of the perforation have a diameter of
0.5 mm with a pitch of 0.7 mm and are assembled
in a hexagonal pattern. The downstream duct has
a diameter of Dds ¼ 51 mm, a length of
Lds ¼ 505 mm and is made of aluminum; the base
is air-cooled.
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Fig. 1. Experimental set-up. The air/natural gas mixture
enters the plenum duct from the bottom. A laminar flat
flame stabilizes downstream of the perforated plate in a
duct of smaller diameter. The acoustic field in the
plenum duct can be accessed with four microphones.
Chemiluminescent light emission from OH-radicals is
monitored with a photomultiplier.
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Four 1/4 in. condenser microphones (G.R.A.S.
40BP) are mounted in the upstream part, three in
the upper half, at x ¼ �168:5;�257:5;�346:5 mm,
and one close to the bottom at x ¼ �648 mm. A
photomultiplier (Hamamatsu H5784-04),
equipped with a UV-filter (Edmund Optics U-
340, pass-band 295–385 nm) and a collimator
(Glen Spectra LC-4U), is set up to detect the
chemiluminescent light emission from OH-radi-
cals. A 0.3 mm thermocouple is attached inside
one of the holes of the perforation. Air and gas
mass flows are monitored with Coriolis flow
meters (Endress & Hauser Promass 80).

3. Coupled model based on separate representations
for combustion and acoustics

In the low Mach number, long wavelength
case, which is encountered in most of the thermo-
acoustically problematic configurations, acoustic
perturbations act on a scale much larger than
the axial extent of burner and flame. In fact, for
a laminar planar flame, stabilized on a perforated
plate, the longitudinal dimension of burner and
flame is of the order of a few millimeters, whereas
the acoustic wavelengths in the present configura-
tion are of the order of one meter. Therefore, the
effect of an acoustic wave on the burner flow
reduces to a global acceleration of a quasi-incom-
pressible medium in the limit of vanishing Mach
number [12]. Conversely, the large scale acoustic
field is driven by the unsteady heat release of the
flame, which acts as a compact source inducing
a jump in the velocity fluctuation. Our general
strategy is to couple separate computational rep-
resentations for the small scale hydrodynamic
and the large scale acoustic domain. Coupling of
a zero Mach flow solver with long wave acoustics
was earlier proposed by Worlikar et al. [13] in the
simulation of a thermoacoustic refrigerator.

3.1. Combustion zone

In the combustion zone, we solve the variable
density zero Mach number equations in one spa-
tial dimension on a uniform grid. The flame is rep-
resented by a detailed reaction mechanism with 16
species and 36 reactions [14]. The balance equa-
tions for species mass fractions and temperature
are

q
oY s

ot
þ qu

oY s

ox
¼ � ojs

ox
þMs _xs; ð1Þ

qcp
oT
ot
þ qucp

oT
ox
¼ � oq

ox
�
X

s

js

ohs

ox
�
X

s

hsMs _xs;

with s ¼ 1; . . . ; ns. Here, q is the density, u the
velocity, js the species diffusive flux, Ms the molec-
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which determines the velocity field for a pre-
scribed inflow velocity via simple integration in
space.

The first 2 mm in the numerical model for the
combustion zone represent the burner. We assume
the burner has a constant temperature (infinite
heat capacity [15]) and that there is perfect heat
transfer to the fluid. The plate temperature was
set to 500 K, close to the temperature measured
at the plate in the experimental set-up. At the
inflow boundary, the velocity is set equal to the
mean velocity plus a fluctuation. The latter is
obtained from the acoustic model in the coupled
simulation. The total length of the combustion
domain is 7 mm.

Integrating Eq. (2) over the whole combustion
domain yields the velocity outflow condition. The
difference of the velocity at the outflow and the
inflow, Du, is the jump in velocity over the com-
bustion zone. The fluctuation of this quantity
drives the acoustic field in the coupled case.

The zero Mach number equations are solved
numerically using a standard second-order finite-
difference discretization. The time integration of
the stiff set of equations is performed using the
DAE solver IDA of the SUNDIALS package
[16]. Thermodynamic and transport properties as
well as reaction rates are calculated using the
C++ interface of the CANTERA software pack-
age [17]. Diffusion velocities are computed using
a mixture-based formulation with variable Lewis
numbers for all species. A conservative multi-
dimensional finite-volume scheme for zero Mach
number reacting flows is discussed in Schmidt
et al. [18].

3.2. Reduced order acoustic model and coupling

Although the pulsations associated with ther-
moacoustic instabilities may have significant
amplitudes, the pressure variation compared to
the mean pressure is still small. A linear descrip-
tion of the acoustic field is therefore sufficient
[19]. Due to the small diameter of the downstream
duct, in which the flame stabilizes, only the plane
acoustic mode has to be considered. The cut-on
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frequency for the first higher order mode is larger
than 4 kHz.

A schematic representation of the coupling
procedure is shown in Fig. 2. The acoustic velocity
on the cold side, uc, is related to that on the hot
side, uh, through a time-domain realization of a
linear time-invariant map representing the system
acoustics. If the pressure is assumed to be contin-
uous across the flame, this relation can be written
symbolically in terms of the impedance Z and the
admittance A of the downstream and the
upstream parts, uc ¼ ðZAÞuh. The inlet condition
for the flame code is modulated by uc, resulting
in a perturbation of the jump in velocity, ðDuÞ0,
that is obtained by integrating the divergence con-
straint (2) over the whole combustion domain. In
essence, the acoustic model gives a (linear) map-
ping from uh to uc, and the combustion zone
model provides a (nonlinear) relation which
allows to compute ðDuÞ0 from uc. Using
uh ¼ uc þ ðDuÞ0 closes the system. It is important
to note that, in this way, all combustion effects
that cause unsteady expansion, such as, e.g., fluc-
tuations in the burning velocity or nonisomolar
reactions, are automatically included.

The objective of the acoustic model is to deli-
ver time-domain relations for the impedance
downstream of the flame, Z, and the admittance
upstream of the flame, A. In principle, frequency-
and time-domain representations for the admit-
tance and impedance can be obtained by using
network techniques for plane wave propagation,
as described in [11]. For the set-up considered in
this work, however, we chose to use a finite ele-
ment computation based on the Helmholtz
equation:

r � 1

q0

rp̂
� �

þ x2

c2q0

p̂ ¼ 0; ð3Þ

to derive a reduced order acoustic model. In Eq.
(3), x is the angular frequency and q0 and c de-
note fields of mean density and speed of sound,
respectively. Here, as in the following, a hat de-
notes the Fourier transform of a variable. The

mean flow is neglected in the acoustic model, the
Mach number being of order 10�3.

The reason for not using network techniques is
twofold: (i) the perforated plate is located immedi-
ately downstream of an area contraction (see
Fig. 1); the acoustic near-fields of the two ele-
ments thus interfere, which is difficult to account
for in a network model; (ii) the temperature distri-
bution in the downstream tube is far from being
homogeneous, in axial as well as in radial direc-
tion, due to heat losses to the duct walls.

The finite element model was set up as follows.
The geometry of the Rijke tube, as described in
Section 2, was represented in an axisymmetric
manner. The perforated plate was modeled as a
sequence of rings with the same integral porosity
as that of the original perforation. In general,
there will be some dissipation inside the holes of
the perforation associated with the acoustic
boundary layer [20]. Since the plate thickness
was only 2 mm, we neglected this effect, however.
The temperature distribution in the duct down-
stream of the flame was calculated by assuming
laminar flow inside the tube and natural convec-
tion and radiation to the ambient outside of the
tube. The acoustic boundary condition at the tube
exit was specified according to the long wave
approximation of Levine & Schwinger [21] for
an unflanged pipe. The upstream acoustic bound-
ary condition was determined experimentally with
the Multi-Microphone-Method [22] to account for
resonance effects associated with the mixture feed
line. The measured reflection coefficient was then
used as a (frequency dependent) boundary condi-
tion for the upstream end in the finite element
model.

The lumped impedance/admittance shown in
Fig. 2 contains all components affecting the
plane wave response downstream/upstream of
the flame. They can be obtained from the finite
element model by cutting the geometry in two
halves (at the flame location) and computing
the response for the individual parts. In other
words, to compute the downstream impedance,
only the upper half of the geometry is consid-
ered. At the flame location, a velocity boundary
condition v̂h � n ¼ 1 (n denoting the unit normal
vector pointing outside) is applied at all frequen-
cies of interest. The impedance is then calculated
from the solution as Z ¼ p̂h, where p̂h is the
pressure at the boundary. An analogous proce-
dure applied to the upstream part gives the
admittance A.

The transfer function ðZAÞðixÞ is only avail-
able at discrete real frequencies. To use the rela-
tion between uh and uc in a time-domain
simulation, a frequency-domain system identifica-
tion tool [23] is applied to obtain a finite-dimen-
sional state-space realization in standard form:

_x ¼ Aaxþ Bauh; uc ¼ Caxþ Dauh: ð4Þ

ph

pc

uc

uh uc Δu

uc

uh

p c
p h

Fig. 2. Schematic representation of the coupling
approach.
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In Eq. (4), Aa is a time-invariant N � N matrix,
Ba and Ca are column and row vectors of length
N, respectively, Da is a scalar constant, and x is
the N-dimensional state vector. To cover a fre-
quency range of 0–1200 Hz, N ¼ 24 was found
to be sufficient. The absolute error of the transfer
function obtained from the finite element model
and that of the identified state-space realization
was smaller than 10�4 in the frequency range men-
tioned above.

4. Results and discussion

4.1. Flame response to fluctuations in velocity at the
5k=4 mode frequency

Results for an open-loop forcing of the flame
(without acoustic feedback) are shown in Fig. 3.
In the experiment, the duct downstream of the
flame was removed, and an additional forcing seg-
ment with two compression drivers was installed
in the upstream part. With this set-up, no self-
excited oscillations were observed and the flame
response to fluctuations in velocity could be visu-
alized. The top frame in Fig. 3 is a mean image of
the side-view of the flame. The horizontal extent
corresponds to roughly the half of the burner
plate. Based on the maximum intensity along
every image column, the flame can be considered

as flat. The intensity has a larger vertical extent
in the middle resulting from the circular shape
of the flame. The two middle frames represent
phase-averaged intensity distributions for a forc-
ing frequency of 431 Hz and a velocity fluctuation
amplitude of 0.5 m/s. Corresponding numerical
results in terms of the H-radical mass fraction dis-
tributions over the forcing cycle are shown in the
bottom frame.

The phase averaged images (middle frames in
Fig. 3) show that the flame acquires its maximum
intensity while moving upstream to the burner. At
the minimum stand-off distance, the intensity
drops and remains on a low level while moving
back downstream. The same characteristic is
reflected in the H-radical mass fraction distribu-
tions for one forcing cycle from the numerical
computation (bottom frame in Fig. 3). The abso-
lute movement of the Y H� -maximum is about
0.4 mm and agrees reasonably well with a move-
ment of the image intensity maximum of 0.3 mm
in the experiment.

4.2. Summary of the stability characteristics of the
Rijke tube

Self-excited oscillations were observed in the
experiment for equivalence ratios ranging from
0.65–0.75 (depending on mass flow) up to 1.2–
1.3. Thermoacoustic stabilization, as the equiva-
lence ratio was made leaner, was accompanied
by the onset of a cellular flame front instability
[24]. A general trend was that increasing the
equivalence ratio from the lean stability border
resulted in higher oscillation amplitudes. The
instability was always associated with the 5k=4
mode of the geometry. With shorter downstream
tube (Lds ¼ 300 mm), unstable 3k=4 and 7k=4
modes were also observed.

4.3. Comparison of coupled simulation and
experiment

The results of the coupled simulation are com-
pared to those from the experiment at an
equivalence ratio of 0.85 and a total mass flow
of 0.61 g/s, corresponding to a thermal power of
1.36 kW. These operating conditions were chosen
based on the following considerations. Close to
the stability border, multi-dimensional effects
were expected to be significant, due to the onset
of a cellular flame front instability (see above).
In the coupled model, the combustion zone was
treated only one-dimensional, however, so that
the equivalence ratio had to be chosen sufficiently
far away from the stability border. Then, before
running simulations with the coupled model, a
linear stability analysis (see below) was used to
check if the experimentally observed oscillation
mode was indeed linearly unstable in the coupled
model.
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Fig. 3. Top: mean image of the flame. The black solid
line represents the maximum intensity along the vertical
direction. The dashed white line marks the location of
the perforated plate. The vertical scale is in mm (true
aspect ratio). Middle: phase averaged images of the
center part of the flame submitted to harmonic forcing.
The black dotted lines denote the vertical location of the
maximum intensity integrated along the horizontal
direction. Bottom: H-radical mass fraction distributions
from the numerical computation for the same forcing
conditions. The dashed line marks the location of the
maxima, the arrow the direction of orientation within
the forcing cycle.
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4.3.1. Linear stability
The linear stability analysis was based on the

acoustic model mapping uh to uc (Eq. (4)), com-
bined with a numerically determined flame trans-
fer function. The latter was obtained from
impulse response computations of the flame. Sub-
sequent system identification then gave a linear
model for the flame response in time-domain
form, viz.

_y ¼ Af y þ Bf uc; uh ¼ Cf y þ Df uc; ð5Þ
where y is an auxiliary state vector analogous to x
in Eq. (4). Combining now Eqs. (4) and (5) results
in a homogeneous linear system of the form
_z ¼ Acz. Here, Ac is the dynamics matrix of the
coupled system, which, using standard results
from state-space algebra [25], can be written in
terms of the acoustic and flame subsystems as

Ac ¼
Aa BaCf

0 Af

� �
þ 1

1� DaDf

BaDf

Bf

� �
Ca DaCf½ �:

ð6Þ
The spectrum of Ac determines stability for the

combined system. If Ac has at least one eigenvalue
in the right half-plane, the linearized system is
unstable and will exhibit exponential growth.
The dominant eigenvalues of Ac are plotted in
Fig. 4. For a better comparison with the acoustic
convention � eixt, the eigenvalues have been mul-
tiplied by �i, so that the lower half-plane corre-
sponds to instability.

The family of k=4 modes can be clearly identi-
fied without combustion (squares). Since the
acoustic boundary conditions are partially
absorbing, all eigenvalues lie in the upper half-
plane. Through the interaction with the flame
(triangles), the 5k=4 and the 7k=4 modes are desta-
bilized significantly. The unstable 5k=4 mode,
which exhibits the larger growth rate, has a fre-
quency of 446 Hz. This is close to the oscillation
frequency observed in the experiment and in the
coupled simulation (see below).

4.3.2. Pressure time traces and spectra
Sample time traces of the pressure at micro-

phone positions 1, 3, and 4 (see Fig. 1) from the
coupled simulation and from the experiment are
shown in Fig. 5. The pressures at the microphone
positions are not explicit variables in the coupled
simulation. However, they can be recovered from
the velocity fluctuation uc in a post-processing
step. Based on the finite element model for the
combustor acoustics, transfer functions relating
ûc to the pressures at the microphone locations
can be determined. Time-domain realizations of
these transfer functions are then used to compute
the acoustic pressures corresponding to the veloc-
ity fluctuation uc that is obtained from the cou-
pled simulation.

The pressure time traces show strong oscilla-
tions at the 5k=4 mode frequency, as predicted
by the linear stability analysis (see Fig. 4). The
maximum sound pressure level was 137 dB. Sig-
nificant subharmonic components can be also
observed, most clearly at the location of micro-
phone 4 (see Fig. 1). The amplitude of micro-
phone 1 is smallest, since its location is close to
a pressure node of the 5k=4 mode. Although the
amplitude of the fundamental oscillation is
slightly larger in the experimental pressure signals,
good agreement is found compared to the compu-
tation. In particular, the amplitude and phase
relationships between the three signals are clearly
preserved in the simulation.

Pressure spectra corresponding to microphone
positions 1, 3, and 4 are presented in Fig. 6.
Results from the experiment and from the simula-
tion are shown. The highest spectral peak (d)
stems from the unstable 5k=4 mode. The main fre-
quencies of oscillation as obtained from the exper-
iment (427 Hz) and from the simulation (432 Hz)
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differ by less than 2%. Close agreement is also
found for the amplitudes. Both results reveal a
strong subharmonic component (b) of order 1=2.
As a result of the nonlinear interaction, spectral
peaks are also found at frequencies corresponding
to the sum of the fundamental frequency and its
subharmonic (e), the second harmonic of the fun-
damental frequency (g) and the sum of the second
harmonic and the subharmonic (i). The features
labeled a, c, f and h correspond to damped reso-
nances associated with the stable k=4, 3k=4, 9k=4
and 11k=4 modes (cf. Fig. 4), respectively.

Comparing numerical and experimental
results, good quantitative agreement is found for
the dominant features, i.e., the spectral peaks at
the fundamental frequency and at the subharmon-
ic. With respect to the minor spectral features,
there is qualitative correspondence between exper-
iment and simulation, but the associated ampli-
tudes are quite different. In essence, the peaks
belonging to the harmonics and nonlinear combi-
nations with the subharmonic are more distinct in
the experimental results. On the other hand, the
resonances associated with the stable acoustic
modes are more pronounced in the simulation,
in particular, the k=4 mode. Also, the noise floor
is higher in the numerical results. It should be
noted here, however, that the experimental spec-
tra were obtained from pressure time traces of
32 s in length, whereas the total simulation time
was only 0.2 s. To accelerate the growth to the
limit cycle amplitude in the coupled simulation,
the state vector for the representation of the
acoustic field (Eq. (4)) was initialized with uni-
formly distributed random numbers correspond-
ing to moderate amplitudes. Accordingly, all

modes are excited at the beginning of the simula-
tion. Due to relatively small damping rates
(Fig. 4), the stable modes might thus have had a
stronger contribution in the computation.

4.3.3. Subharmonic response of the flame
A striking characteristic in the pressure spectra

(Fig. 6) are the strong subharmonic components,
that were observed in the experimental and in
the numerical results. In fact, the OH spectrum
(not shown) exhibited higher amplitudes at the
subharmonic than at the fundamental frequency
of oscillation. To see whether this phenomenon
is a result of the interaction between the acoustic
field and the combustion zone, or solely a prop-
erty of the flame, simulations with an open-loop
excitation of the flame (no feedback through the
acoustic field) at high forcing amplitudes were
run. Figure 7 (top frame) displays the inflow
velocity perturbation (dashed line) and the fluctu-
ation of the OH-radical mass fraction normalized
with the mean. The excitation amplitude of the
upstream velocity was set to 1 m/s, which was
close to the self-excited case. The frequency was
set to 431 Hz, corresponding to the unstable
5k=4 mode. A strong subharmonic response with
respect to the excitation frequency can be clearly
identified. Hence, the spectral peaks at the subhar-
monic frequency of the fundamental oscillation in
the pressure spectra (Fig. 6) are not a result of the
acoustic feedback but rather a natural property of
the flame submitted to strong acoustic forcing
(see, e.g., [26]).

A sample time trace of the normalized fluctua-
tion of the OH-radical light emission intensity, as
acquired with the photomultiplier during
self-excited oscillations in the experiment, is
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shown in the lower frame of Fig. 7. There is good
qualitative correspondence between the two wave-
forms from the simulation and the experiment.
The normalized fluctuation amplitude is clearly
higher in the experimental results, but, in that
case, there is also additional driving through the
acoustic field directly at the subharmonic (cf.
Fig. 6).

H-radical mass fraction distributions for two
periods of the forcing cycle are plotted in Fig. 8.
The locus of the maxima is a closed curve with a
repetition rate of half the forcing frequency. Clear
differences in height and burner distance of the
concentration maximum can be observed between
two successive periods of the forcing cycle. This
subharmonic pattern was qualitatively similar
for most of the species in the reaction scheme.

5. Conclusions and outlook

We presented a hybrid method for the simula-
tion of thermoacoustic instabilities in a Rijke tube
with a laminar premixed burner-stabilized flat
flame. The approach was based on separate
descriptions for the combustion zone and the
acoustic field. A reduced order acoustic mapping
was obtained from a finite element model of the
set-up. The flame was represented by a one-
dimensional zero Mach solver with detailed chem-
istry. A comparison with experimental results
showed that the method is able to capture self-
excited thermoacoustic oscillations in a qualitative
and, to a certain extent, in a quantitative manner.

There is no principal difficulty to apply the
proposed coupling strategy to more complex con-
figurations, e.g., to investigate the thermoacoustic
characteristics of a swirl-stabilized combustor. We
currently exchange the one-dimensional laminar
flame model against an incompressible three-
dimensional turbulent flow solver that uses a
flame capturing/tracking scheme [27]. These kind
of schemes take into account the flame/flow cou-
pling in a modular fashion.

The presented flame-acoustic coupling is cer-
tainly not more accurate than an approach based

on fully compressible equations. However, it can
be expected to be more efficient for two reasons:
(i) detailed numerical resolution is only applied
where necessary (i.e., in the combustion zone);
(ii) computing costs are reduced by using a zero
Mach flow/combustion solver. Moreover, by
using reduced order acoustic models for the long
wave acoustics, it is straightforward to implement
accurate frequency dependent boundary condi-
tions – a component having an essential impact
on pulsation amplitudes and stability characteris-
tics of thermoacoustic systems. Due to the
reduced complexity, this modeling approach is
also suitable to develop and test control method-
ologies for the suppression of combustion
instabilities.

Whereas in the present study, the focus was on
a consistent coupling methodology, future work
will include an improved modeling of the burner
and a more detailed investigation of the high
amplitude dynamics of the flame, including sub-
harmonic resonance.
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