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Abstract This paper builds on recent developments of a unified asymptotic approach to meteorological
modelling (Klein (2000), Klein (2003)), which was used successfully in the development of “Systematic
multiscale models for the tropics” in (Majda & Klein (2003), Majda & Biello (2004), Biello & Majda
(2005)). Here we account for typical bulk microphysics parameterizations of moist processes within
this framework. The key steps are careful nondimensionalization of the bulk microphysics equations
and the choice of appropriate distinguished limits for the various nondimensional small parameters
that appear.

We are then in the position to study scale interactions in the atmosphere involving moist physics. We
demonstrate this by developing two systematic multiscale models that are motivated by our interest in
mesoscale organized convection. The emphasis here is on multiple length, but common time scales. The
first of these models describes the short time evolution of slender, deep convective “hot towers” with
horizontal scale ∼ 1 km interacting with the linearized momentum balance on length and time scales
of (10 km / 3 min). We expect this model to describe how convective inhibition may be overcome near
the surface, how the onset of deep convection triggers convective scale gravity waves, and that it will
also yield new insight into how such local convective events may conspire to create larger scale strong
storms. The second model addresses the next larger range of length and time scales (10 km, 100 km,
and 20min) and exhibits mathematical features that are strongly reminiscent of mesoscale organized
convection. In both cases, the asymptotic analysis reveals how the stiffness of condensation/evaporation
processes induces highly nonlinear dynamics.

Besides providing new theoretical insights, the derived models may also serve as a theoretical devices
for analyzing and interpreting the results of complex moist process model simulations, and they may
stimulate the development of new, theoretically grounded subgrid scale parameterizations.
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1 Introduction

The accurate model-based prediction of moist atmospheric flows remains one of the most demanding
challenges in theoretical meteorology. A clear indication is the fact that over the past decades the score
of successcul predictions for fluid dynamical variables, such as pressure, temperature, and mesoscale
wind fields, has remained systematically higher than the prediction score for precipitation. Since water
vapor is also by far the most active green house gas, and since clouds affect the radiation balance in
addition through albedo effects, the understanding of moist atmospheric flows is also crucial for longer
term predictions from seasons to climate time scales.

There is, in particular, a large number of flow phenomena in the near-tropical atmosphere that
involve multiscale interactions of (small scale) moist processes with larger scale mean flows. Here is a
citation from [11] that supports this point: “The essence of tropical dynamics is the intricate balance
between large-scale processes —such as radiative transfer, large-scale waves, monsoons, Hadley and
Walker circulations—and the convective dynamics.”

Given the success of the authors’ recent development of systematic multiscale models for the tropics,
[17], in providing promising new hypotheses regarding the origins of the “Madden-Julian oscillation”,
[18,2], an extension of the multiple scales asymptotic approach from [13–15] to explicitly include the
effects of moist physics appears promising. We procede in this direction in the present paper. In doing
so, our goal is to assess the feasibility of such an endeavor rather than to build a fully comprehensive
reduced model w.r.t. the complexities of multiphase moist flows. Thus we restrict ourselves to a rel-
atively simple description of the physics of moist flows called a “bulk microphysics closure scheme.”
Such schemes are employed in theoretical meteorology to describe the development of clouds and pre-
cipitation on and above length and time scales of about one hundred meters and a few minutes. The
simple closure scheme considered here involves merely three transport equations for the mass fractions
of water vapor, cloud water (microscopic aerosol droplets), and precipitation (large droplets). We leave
descriptions of non-trivial droplet size distributions, the ice phase, etc. for future work.

Section 2 provides a detailed summary of the governing equations to be analyzed in this paper.
These are the three-dimensional compressible flow equations with gravity and rotation, and they include
a version of bulk microphysics parameterizations as proposed, e.g., in [12,8]. Such a model provides a
suitable basis for studying processes on length and time scales of (1 km, 3 min) and above.

Section 3 presents “moist atmospheric processes from an asymptotic perspective”. Here we nondi-
mensionalize the governing equations and identify various nondimensional parameters—particularly
those which characterize the moist processes. These include large Damköhler numbers indicating rapid
transitions between the various moisture species, and a large activation energy parameter in Bolton’s
Arrhenius-type approximation to the Clausius-Clapeyron relation, (see [6]). Being faced with a system
of equations involving a considerable number of small or large parameters, we follow [14] and introduce
a series of distinguished limits tying each of these variables to the single small parameter, ε � 1, from
[14,17] which then serves as the starting point for subsequent asymptotic expansions.

We move on to describe two distinct multiscale regimes for deep convective moist flows which
are likely to play central roles in the dynamics of mesoscale convective systems: The smaller scale
regime addresses the short time dynamics of narrow deep convective columns, the “building blocks”
of intermediate scale convective storms. The second regime describes the interaction of such strong
convective events with mesoscale gravity waves and mean flows. The choice of these two regimes is
strongly motivated by studies of organized convection in [21,19,20] on one hand, and of column model
parameterizations of deep convection in, e.g., [7], on the other hand. Thus, we consider organized
mesoscale convection as a three-scale process, and the two simplified asymptotic multiscale models
presented in this paper address pairwise interactions between the three participating spacial scales.

Section 4 provides our first multiscale model for moist processes. We consider the short time evolu-
tion over several minutes of narrow, deep convective columns with characteristic horizontal dimension
of ∼ 1 km, embedded within a convective scale (∼ 10 km) environment. A summary of the key results
of the derivations is given in section 4.1 below. (See also [3,4] for an earlier analysis of diabatically
driven columnar flow of dry air.) We expect this model to describe how convective inhibition may be
overcome near the surface, how the onset of deep convection triggers convective scale gravity waves,
and that it will also yield new insight into how such local convective events may conspire to create
larger scale strong storms.
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Section 5 considers the next larger range of length and time scales involving convective scales of
∼ 10 km/20 min and their coupling to linearized mesoscale motions with characteristic horizontal scales
of ∼ 100 km. Again, we provide a summary of the key results in the separate section 5.1 below. This
model addresses the scale ranges relevant to phenomena of organized mesoscale convection as discussed,
e.g., in [21,19,20].

These simplified asymptotic models may serve as guidelines in the analysis and interpretation
of complex moist atmospheric flow simulations. They may also be used in defining specific tests for
complex flow models in such a way that the models’ capabilities of representing subtle scale interactions
can be assessed. Finally, our simplified asymptotic multiscale models may be useful as a new basis for
the development of subgrid scale parameterizations, such as the column models for deep convection
considered, e.g., in [7].

Section 6 draws some conclusions.

1.1 Notation

Preliminary remarks:

1. Plain symbols denote nondimensional quantities.

2. ε � 1 is a generic asymptotic expansion parameter, see section 3.1.

3. (t, x, z) with x = (x, y) are the time, and the horizontal and vertical space coordinates, nondimen-
sionalized by tref = hscale/uref and `ref = hscale, where hscale ≈ 10 km is the atmospheric pressure
scale height, and uref ≈ 10 m/s is a typical air flow velocity.

In addition, we adhere to the following notational conventions:

U ′ dimensional version of physical quantity U

U (i) ith scaled term in an asymptotic expansion U =
n∑

i=0

εi U (i) + o(εn)

C∗, q∗, . . . dimensionless constants, generally functions of ε

C∗∗, q∗∗, . . . dimensionless constants, scaled so that C∗∗, q∗∗ = O(1) as ε → 0

H≥,H>, ... Heaviside-type step functions

S̃θ diabatic potential temperature source unrelated to latent heat release

Sq
θ diabatic potential temperature source due to latent heat release

v⊥,v‖ projections: v⊥ = v · k, v‖ = (1− k ◦ k) v with k the vertical unit vector

2 Governing Equations

In this paper, we analyze the equations for compressible, moist atmospheric flows on scales of 1 km
and above in two asymptotic scaling regimes. Here we summarize the balance equations for mass, mo-
mentum, and energy (potential temperature or entropy), as well as bulk microphysics representations
of moist processes that are valid for spacio-temporal scales larger or equal to 1 km and 150 s as used
in this paper. These representations are modelled after the scheme in [8] with some modifications that
we will explain as we go along.
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2.1 Governing Equations

We work with nondimensional expressions as far as possible. The nondimensionalization uses standard
reference values for pressure, density, and velocity, i.e.,

pref = 105 Pa , ρref = 1.25 kg/m3 , uref = 10 m/s , (1)

and the “deep convective scales” for scaling the space and time co-ordinates,

`ref = hscale =
pref

g ρref

≈ 10 km , tref =
hscale

uref

≈ 20 min ∼ 1000 s . (2)

Here g denotes the acceleration of gravity, and hscale is the pressure scale height. Except for these
reference quantities we will mark dimensional variables by a prime superscript from here on.

Mass, momentum, energy balances

ρt + ∇|| · (ρu) + (ρw)z = 0

ut + u · ∇||u + wuz +
1

RoB

(Ω × v)|| +
1

M2

1
ρ
∇||p = Du

wt + u · ∇||w + wwz +
1

RoB

(Ω × v)⊥ +
1

M2

1
ρ

pz = Dw − 1

Fr
2

θt + u · ∇||θ + wθz = Dθ + Sθ .

(3)

Here ρ,u, w, θ are the density, horizontal and vertical flow velocities, and the potential temperature,
respectively, and the pressure p is related to ρ, θ through the thermodynamic equation of state

p = (ρθ)γ (4)

with γ the (constant) isentropic exponent. Ω is the vector of Earth rotation, and the subscripts ⊥, ‖
indicate projections onto the vertical direction and the horizontal tangent plane, respectively.

As nondimensional characteristic numbers appear the Mach (M), barotropic Froude (Fr), and the
bulk microscale Rossby (RoB) numbers,

M =
uref√

pref/ρref

= Fr =
uref√
g hscale

∼ 1
30

, and RoB ∼ 10 , (5)

respectively.
The terms Du, Dw, Dθ represent the effects of turbulent and molecular transport, for which we will

assume standard gradient transport closures where needed. On the length and time scales considered,
here we may safely assume that these terms are not dominant or singular (see the turbulent boundary
layer analysis in [15]). The potential temperature source term

Sθ =
γ − 1

γ

θ

p
Sρe (6)

is directly proportional to the source of internal and kinetic energy, Sρe, which by itself is a superposition
of radiative sources, sources from latent heat conversion, etc.. As we concentrate on the effects of latent
heat conversion in this paper, we will express the related contributions to Sθ in terms of the bulk
microphysics models for moist processes in (9) below.

To describe these moist processes, we adopt a somewhat modified version of the bulk microphysics
parameterization from [8]. Let the “mixing ratio” of some species y be defined as the density ratio
ρy/ρd, i.e., as the ratio of the species’ density versus that of dry air. Then we introduce scaled mixing
ratios qv, qc, qr of water vapor, cloud water aerosol, and precipitating water, respectively, via

qy =
1

q∗vs

ρy

ρd
with y ∈ {v, c, r} and q∗vs =

(
ρv,sat

ρd

)
ref

. (7)
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Here q∗vs is the saturation value for the unscaled water vapor mixing ratio at reference conditions,
pref , ρref . The reason for introducing this scaling is that (i) q∗vs ∼ 2 · 10−2 is quite small, and (ii) it
sets the order of magnitude for all the water variables, because water vapor provides the main water
reservoir. As a consequence of the scaling, we may expect qv, qr, qc as defined in (7) to be roughly of
order unity in nearly saturated, cloud forming, precipitating air. With these definitions, we have the

Moisture balances

qv,t + u · ∇||qv + wqv,z = (Cev − Cd) + Dqv

qc,t + u · ∇||qc + wqc,z = (Cd − Cac − Ccr) + Dqc

qr,t + u · ∇||qr + wqr,z + 1
ρ (ρqrVT)z = (Cac + Ccr − Cev) + Dqr .

(8)

Here again Dqv , Dqc , Dqr describe (turbulent) transport, whereas Cev, Cd, Cac, Ccr are the rates of evap-
oration of rain water, the condensation of water vapor to cloud water (and the inverse evaporation
process), the autoconversion of cloud water into rainwater by accumulation of microscopic droplets,
and the collection of cloud water by the falling rain, respectively.

2.2 Explicit representations of the source terms

As above in (7), a (·)∗-superscript will indicate scalar constants as they appear directly from nondi-
mensionalization in the sequel. In the later asymptotic analyses, these quantities may still be functions
of our generic expansion parameter ε. We will make this more explicit where needed by employing a
double star, (·)∗∗, to denote rescaled constants that are O(1) as ε → 0.

The conversion processes of gaseous water vapor to liquid water and vice versa are associated with
the release and/or absorption of latent heat. Accordingly, we separate the moisture related contribution
from other diabatic effects by decomposing the source term, Sθ, in the potential temperature evolution
equation as follows,

Sθ = S̃θ + Sq
θ where Sq

θ =
γ − 1

γ

θ

p
L∗q∗vs (Cd − Cev) . (9)

Here L∗ = L/(pref/ρref), and L is the latent heat per unit mass of water vapor which we assume to be
constant for simplicity from here on.

In defining condensation/evaporation of cloud water, it is often assumed in cloud microphysics
parameterizations that the vapor-to-cloud water conversion is instantaneous, i.e., that either the air
is saturated, such that the water vapor content matches its saturation value, qv = qvs(θ, p), and cloud
water droplets can exist with qc ≥ 0, or the air is undersaturated, i.e., qv < qvs, in which case qc ≡ 0.
Rather than assuming this limiting behavior from the outset, we will demonstrate here how it may
be derived in a consistent asymptotic framework given large but finite condensation rates. This is the
main deviation of the present bulk microphysics description from the scheme in [8].

Bulk microphysics closure

Cd = C∗
d (qv − qvs) H◦(qc, qv, qvs)(qc + q∗cn)

Cev = −C∗
ev

p

ρ
(qv − qvs) H>(qr)q1/2+δ∗

r

Ccr = C∗
cr qcq

(1+α∗)
r

Cac = C∗
ac max (0, qc − q∗c )

(10)

Here C∗
d , C∗

ev, C
∗
cr, C

∗
ac are dimensionless rate constants, i.e., Damköhler numbers, δ∗, α∗ are exponents

close to unity, q∗cn represents the likelihood of onset of condensation as determined by the available
amount of condensation nuclei, and q∗c is a threshold value for the cloud water mixing ratio beyond
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which autoconversion of cloud water into precipitation becomes active. Using the “biased” Heaviside
step functions

H≥(q) =
{

1 (q ≥ 0)
0 otherwise , H>(q) =

{
1 (q > 0)
0 otherwise , (11)

we define the switching function H◦(·, ·, ·) via

H◦(qc, qv, qvs) = H≥(qv − qvs)H≥(qc) + H>(qvs − qv)H>(qc) . (12)

With this switch we achieve the desired behavior in cloudless air (qc = 0): There will be positive
condensation rates in oversaturated air, (qv > qvs), but evaporation ceases in undersaturated air
(qv < qvs) in this case.

The saturation vapor mixing ratio, qvs, is given by, [6],

qvs(θ, p) =
1

q∗vs

Ees(θ, p)
p− es(θ, p)

(13)

with the ratio of the dry air and water vapor gas constants,

E = Rd/Rv , (14)

and the saturation vapor pressure according to Bolton’s formula

es(θ, p) = e∗s exp
(

A∗ T (θ, p)− T ∗0
T ∗1 + (T (θ, p)− T ∗0 )

)
. (15)

Here, the temperature, T , obeys
T (θ, p) = θ p

γ−1
γ . (16)

Notice that, by our definition in (7), q∗vs is determined via qvs(1, 1) = 1, i.e.,

q∗vs =
Ee∗s

1− e∗s
. (17)

The rain water balance, (8)3, involves the precipitation flux ρqrVT with the terminal, quasisteady
relative falling velocity of rain drops in the surrounding air,

VT = V ∗
T

(ρqr)1+β∗

ρ1/2
. (18)

with β∗ a small constant.
This completes the description of the governing equations for the present paper, except for estimates

of the various parameterization constants. This, together with asymptotic scaling arguments, will be
the theme of section 3.

3 Moist Aero-Thermodynamics from an Asymptotic Perspective

3.1 Preliminaries

It is argued in [14,15,17] that the most general approach to analysing a system with multiple small
(or large) parameters involves exploring families of distinguished limits. In a distinguished limit, one
asymptotic expansion parameter, say ε � 1, is introduced, and all other small or large parameters of the
system are considered functions of it in the limit as ε → 0. In combination with techniques of multiple
scales asymptotics, it has been shown in the cited references that a large number of well-established
simplified fluid dynamical models of theoretical meteorology may be recovered in a mathematically
unified way on the basis of a single such distinguished limit for the Mach, barotropic Froude, and bulk
microscale Rossby numbers from (5), that is,

M ∼ Fr ∼ ε2 , RoB ∼ ε−1 as ε → 0 . (19)
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This approach has proven to be particularly useful in the development of systematic multi-scale models
for the tropics in [17] (see also [18,2] for spectacular further developments). Typical values of ε in actual
meteorological applications are, [14,17],

ε ∼ 1
8

. . .
1
6

. (20)

Thus far, moist processes have not been modelled explicitly in these analyses. Instead, effective
distributions of the induced energy and buoyancy source terms have been assumed, leaving a description
of the feedback between moist thermodynamics and fluid mechanics for future work. Here we procede in
this direction by including the additional nondimensional parameters arising in the moisture transport
equations from the last section in the distinguished limit.

A key step in making the analysis tractable will be the so-called “Newtonian limit” for the isentropic
exponent which we borrow from combustion theory, [22], (however, see also Bannon’s discussion in [1]
of the Lipps and Hemler anelastic model, [16]),

γ − 1
γ

= Γ ∗∗ε with Γ ∗∗ = O(1) as ε → 0 . (21)

As we shall see below, this limit will allow us to considerably simplify the asymptotic treatment of
the stratification of saturated air. With the typical values for ε from (20), and γ ≈ 1.4, we have
(γ − 1)/γ ≈ 2/7 ∼ 2ε and the Newtonian limit is compatible with the actual numbers.

For the subsequent analysis, we need plausible asymptotic scalings of the various free parameters
in the bulk microphysics model described in the previous section as ε → 0. For the saturation va-
por pressure and saturation mixing ratio we use the data suggested by Emanuel, [6]. For the rate
coefficients—except for C∗

d—and other free parameters in (10)3,4 we extracted estimates from various
publications on bulk microphysics parameterizations, [8–10,12,25].

The condensation rate coefficient C∗
d will be assumed to be sufficiently large to allow for an asymp-

totic derivation of the classical separation of closure schemes into the regimes of saturated and under-
saturated air. Besides this split of regimes, the analysis will yield explicit expressions for the (small)
super- and subsaturation in nearly saturated air, and it will reveal some interesting analogies with
combustion theory.

In the sequel, a (·)∗∗-superscript denotes scalar constants that are of order O(1) as ε → 0.

3.2 Distinguished limits for moist Aero-Thermodynamics

In this section, we introduce explicit asymptotic coupled limits for all the constant parameters in
the bulk microphysics closure scheme. The chosen limits reflect the essence of our literature search
for typical orders of magnitude of these parameters. We are quite sure that our choice is compatible
with many closure schemes used in practice. However, we do not exclude the possibility that different
choices for the coupled limits are also compatible, and that they may lead to different limit regimes.
An exploration of the related degrees of freedom is beyond the scope of the present study.

3.2.1 Scalings for the saturation mixing ratio

We employ Bolton’s formula, (15), for the saturation vapor pressure, which we repeat here for conven-
cience in its dimensional form as given by K. Emanuel, [6],

e′s = e∗s
′ exp

(
A∗

0

T ′ − T ′0
T ′1 + (T ′ − T ′0)

)
. (22)

Here, primes denote dimensional variables, and

e∗s
′ = 611 Pa , T ′0 = 273.16 K , T ′1 = 243.5 K , A∗

0 = 17.67 . (23)

By choice of the reference temperature T ′0, this formula is gauged to be used relative to typical mid-
latitude situations. For the tropics, a more realistic choice of a reference temperature would be T ′′0 =
300 K, and we use the following identity to provide a rescaled version of the formula in (22),

T ′ − T ′0
T ′1 + (T ′ − T ′0)

=
T ′′0 − T ′0

T ′′1
+

T ′1
T ′′1

T ′ − T ′′0
T ′′1 + (T ′ − T ′′0 )

, (24)
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where
T ′′1 = T ′1 + (T ′′0 − T ′0) . (25)

With these relations, we may rewrite Bolton’s formula with modified coefficients, whereby the first
term on the r.h.s. in (24) will yield a rescaled value for the pre-exponential, e∗s, and the first factor of
the second term will produce a rescaled value for the exponential sensitivity, A∗. In fact, we find

e′s = e∗s
′′ exp

(
A∗ T ′ − T ′′0

T ′′1 + (T ′ − T ′′0 )

)
, (26)

where now
e∗s
′′ = 3500 Pa , T ′′0 = 300 K , T ′′1 = 270K , A∗ = 16 . (27)

Using the definition of the saturation mixing ratio from (13), we have, in nondimensional terms
using Tref = T ′′0 ,

qvs(θ, p) =
1
p

exp
(

A∗ T (θ, p)− 1
T ∗1 + (T (θ, p)− 1)

)
. (28)

Next, we adopt distinguished limits for the three parameters q∗vs, from (17), and A∗, T ∗1 in terms of the
expansion parameter ε. With typical values for ε ∼ 1/8 . . . 1/6, the following choices appear justified

q∗vs = 0.021 ∼ ε2 q∗∗vs , A∗ = 16 ∼ ε−1 A∗∗ , T ∗1 = 0.9 ∼ 1− ε T ∗∗1
(1) . (29)

Here and below, superscripts (i) indicate the ith term in an asymptotic expansion in terms of powers
of ε, see also Section 1.1. The choices in (29) yield the final formulation of the saturation mixing ratio
appropriate for the purposes of asymptotic analysis,

qvs(θ, p) =
1
p

exp

A∗∗

ε

T (θ, p)− 1

1 +
(
T (θ, p)− 1− εT ∗∗1

(1)
)
 . (30)

Notice that we have taken the liberty to simplify the expression for qvs slightly by neglecting the
term −es in the denominator of (13). This induces an error of order O(ε2) according to the above
distinguished limits and could be easily acounted for if needed, but the correction will not change the
leading order results to be derived below.

3.2.2 Scalings of mixing ratios and moisture conversion rates

From (30) we conclude that the saturation mixing ratio, in absolute terms, scales as

q∗vs = O(ε2) as ε → 0 . (31)

Typical water vapor, cloud water, and precipitation mixing ratios cannot be larger than the water
vapor saturation level, because the latter represents the limiting water supply, and the atmosphere
cannot store large amounts of liquid water. As a consequence, we have let

qvref = qcref = qrref = qvsref = q∗vs = ε2q∗∗vs (32)

in scaling the moisture variables in (7). Using these scalings, we have estimated plausible distinguished
limits for the rate coefficients in (10) for autoconversion of cloud water to precipitation, C∗

ac, for the
collection of cloud water by the falling precipitation, C∗

cr, and for evaporation, C∗
ev, from [9,8,25]. The

resulting asymptotic scalings are

C∗
ac ≡ C∗∗

ac , C∗
cr qcref =

1
ε

C∗∗
cr , C∗

ev qr
1/2
ref = C∗∗

ev . (33)

Below we will derive the asymptotic consequences of very rapid condensation / evaporation of cloud
water. To this end, we require the condensation source term for characteristic values of qv, qc to be
very large when nondimensionalized by our reference time scale tref ∼ 1 000 s. This implies

C∗
d qcref � 1 , (34)
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and accordingly we let

C∗
dq∗vs =

1
εn

C∗∗
d with n � 1 . (35)

The closure scheme for autoconversion of cloud water to precipitation involves a lower autocon-
version threshold, q∗c ≈ 5 · 10−4, for the cloud water mixing ratio. This is compatible with a scaled
threshold value

q∗c = ε3 q∗∗c . (36)

Cloud resolving simulations generally show characteristic values of cloud water content to be an order
of magnitude smaller than that of water vapor and precipitation. This would justify an O(ε3) scaling
of cloud water content right from the outset, instead of adopting a common reference value for all
water components as in (32). However, such a scaling will be the result of our analysis, rather than
being assumed.

For the nucleation constant, q∗cn, we assume the same scaling as for q∗c , i.e.,

q∗cn = ε3 q∗∗cn . (37)

As pointed out to the authors by B. Stevens, it is quite likely that the asymptotic scalings for q∗c
and q∗cn in (36) and (37), respectively, are not uniformly valid. For example, considerably different
values for these parameters may be expected for maritime and continental clouds. Exploration of these
degrees of freedom may shed some systematic light various interesting microphysical effects in bulk
cloud dynamics.

3.2.3 Scalings for latent heat and its effect on potential temperature

The dimensionless latent heat per unit mass of water vapor, L∗, from (9) may be estimated by L∗ ≈ 30.
Compatible scalings would read L∗ ∼ ε−1 or L∗ ∼ ε−2. However, there is a constraint from thermo-
dynamics: The Clausius-Clapeyron relation for the saturation vapor pressure states that T

es

des

dT = L
RT .

Bolton’s formula, used above in (26), is a close approximation to the integral of the Clausius-Clapeyron
equation and it follows that L∗ = L

(RT )ref
∼ A∗. Thus, consistency with both Clausius-Clapeyron and

the earlier scaling A∗ = ε−1A∗∗ implies

L∗ =
1
ε
L∗∗ . (38)

To assess the order of magnitude of latent heat-induced variations of potential temperature we
combine (9), (8)1, and (32) to obtain

δθ ∼
(

γ − 1
γ

) (
1
ε
L∗∗
) (

ε2q∗∗vs δqv

)
. (39)

Depending on whether or not we employ the Newtonian limit from (21), we find different scalings for
the variation of potential temperature, namely

δθ =


O(ε) for

γ − 1
γ

= O(1)

O(ε2) for
γ − 1

γ
= ε Γ ∗∗ , Γ ∗∗ = O(1)

 as ε → 0 . (40)

We do adopt the Newtonian Limit here, i.e., the second option, and conclude from (9) that the latent
heat induced potential temperature source term should scale as

Sq
θ = ε2 Γ ∗∗L∗∗q∗∗vs

θ

p
(Cd − Cev) . (41)
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3.3 Asymptotically Scaled Governing Equations

Here we summarize the nondimensional governing equations as they appear when the distinguished
limits from the last section are introduced.

Mass, momentum, energy

ρt + ∇|| · (ρu) + (ρw)z = 0

ut + u · ∇||u + wuz + ε f (Ω × v)|| +
1
ε4
∇||p = Du

wt + u · ∇||w + wwz + ε f (Ω × v)⊥ +
1
ε4

pz = Dw − 1
ε4

θt + u · ∇||θ + wθz = Dθ + ε2
(
S̃ε

θ + Sq,ε
θ

)
(42)

where

Sq,ε
θ = Γ ∗∗L∗∗ q∗∗vs

θ

p

[
1
εn

Ĉd − Ĉev

]
. (43)

The scaled condensation and evaporation terms, Ĉd, Ĉev will be defined shortly, while we leave the
non-moisture related diabatic term, S̃ε

θ , as an externally given source term here and below. The only
assumption, to be explained later, will be the order-of-magnitude estimate S̃ε

θ = O(ε) as ε → 0.
For the scaled moisture balances we recall from (8)

qv ,t + u · ∇||qv + w qv ,z = − 1
εn

Ĉd + Ĉev + Dqv

qc ,t + u · ∇||qc + w qc ,z =
1
εn

Ĉd −
1
ε

Ĉcr − Ĉac + Dqc

qr ,t + u · ∇||qr + w qr ,z + 1
ρ (V ∗∗

T ρqr)z =
1
ε

Ĉcr − Ĉev + Ĉac + Dqr ,

(44)

with the source terms defined by

Ĉd = C∗∗
d (qv − qvs)H◦(qc, qv, qvs)(qc + εq∗∗cn)

Ĉev = −C∗∗
ev (qv − qvs) H>(qr)q

1
2
r

Ĉcr = C∗∗
cr qcqr

Ĉac = C∗∗
ac max (0, qc − ε q∗∗c ) .

(45)

The scaled saturation vapor mixing ratio reads

qvs(θ, p) =
1
p

exp

A∗∗

ε

T (θ, p)− 1

1 +
(
T (θ, p)− 1− εT ∗∗1

(1)
)
 , with T (θ, p) = θ pεΓ∗∗

. (46)

Finally, the scaled rain flux for both regimes becomes

VT = V ∗∗
T ρ1/2qr . (47)

In (42)–(47) all depencies of the equations on ε are explicit, i.e., any term that does not exhibit a
dependence on ε is of order O(1) asymptotically as ε → 0. Also, for simplicity of exposition, we have
neglected small deviations of various exponents from integer values or rational numbers, assuming
α∗, β∗, δ∗ = 0 in (10), (18).

In the remainder of this section we construct first asymptotic results from these asymptotically
scaled governing equations. In particular, we will consider the hydrostatic background state and the
asymptotics of the saturation mixing ratio in some detail.
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3.4 Background stratification in the Newtonian Limit

3.4.1 Leading order pressure and density distributions

Order-of-magnitude estimates in [17], based on typical buoyancy-frequencies, suggest that variations
of potential temperature, θ, throughout the troposphere are small. The actual numbers are a bit
ambiguous, so that either of the following two alternatives would be reasonable,

θ′ − T ′ref
T ′ref

= O(ε) or
θ′ − T ′ref

T ′ref
= O(ε2) as ε → 0 , (48)

where primes again denote dimensional quantities. Nondimensionally, we may therefore expand the
potential temperature θ = θ′/T ′ref as

θ = 1 + ε θ(1) + . . . or θ = 1 + ε2 θ(2) + . . . . (49)

These alternatives are also compatible with the estimates given in (40) for the effect of latent heat
release on potential temperature. We notice in passing that in the Newtonian Limit a first order
potential temperature perturbation, εθ(1), cannot be associated with the direct effects of latent heat
release (which is of order O(ε2)). Rather, it would have to be the result, e.g., of the longer term
radiative balance, which is indirectly affected by the moisture distribution. We restrict here to the
analysis of the direct effects of latent heating.

Combining (49) with the Newtonian expansion of the temperature definition in (16),

T (θ, p) = θ
(
1 + ε Γ ∗∗ ln(p) + O(ε2)

)
, (50)

we find

T (θ, p) = 1 + ε
(
θ(1) + Γ ∗∗ ln(p)

)
+ O(ε2) or T (θ, p) = 1 + ε Γ ∗∗ ln(p) + O(ε2) . (51)

As usual in meteorological theories, we will pursue asymptotic expansions about a hydrostatic
background state below. Therefore, the leading order pressure p(0) ≡ ph(z) will satisfy the hydrostatic
balance (in terms of nondimensional variables)

dph

dz
= −ρh = −

p
1/γ
h

θ
, (52)

with an appropriately averaged potential temperature stratification, θ(z). The exact solution (for
ph(0) = 1) is

ph(z) =

1− γ − 1
γ

z∫
0

θ
−1

(ζ) dζ


γ

γ−1

. (53)

Immediately we have, for the density and temperature of the background state,

ρh(z) =
1

θ(z)

1− γ − 1
γ

z∫
0

θ
−1

(ζ) dζ

 1
γ−1

, Th(z) = θ(z)

1− γ − 1
γ

z∫
0

θ
−1

(ζ) dζ

 . (54)

Next we consider in the first order expansion in ε of these expressions under the Newtonian limit from
(21) assuming no more than O(ε) overall variations of θ from (49), i.e.,

Th(z; ε) = 1 + εT (1)(z) + o(ε) = 1 + ε
(
θ
(1)

(z)− Γz
)

+ o(ε) , (55)

and
p
(0)
h (z) = lim

ε→0
(1− εΓz)

1
εΓ = exp(−z) , ρ

(0)
h (z) = exp(−z) . (56)

At first order, we find

p
(1)
h (z) = Γ ∗∗

(
−1

2
z2

)
p
(0)
h (z) , ρ

(1)
h (z) = Γ ∗∗

(
z − 1

2
z2

)
ρ
(0)
h (z) . (57)

Explicit expressions for higher order pressures and densities will be worked out below where needed.
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3.4.2 Asymptotics of the saturation vapor mixing ratio

Here we demonstrate how the Newtonian Limit and the small perturbation assumption for potential
temperature discussed in the last section alleviate the following technical “multilayer-difficulty” that
arises in the analysis of deep atmospheric flows with vertical extent comparable to the pressure scale
height. By definition, within such a flow the thermodynamic pressure varies by order O(1), and so does
the temperature in general, according to (16). Following (30), which exhibits explicitly the exponential
“large activation energy” sensitivity of the saturation vapor content with respect to temperature, we
must conclude that qvs will vary by many order of magnitude in ε as one passes through the atmospheric
layer in the vertical direction. Asymptotic expansions in terms of powers of ε will then essentially have
to distinguish many vertical layers, separated from each other by a drop of the saturation mixing ratio
by factors of powers of ε.

While doable in principle, such multilayer expansions would be extremely tedious and they do not
seem to be necessary, considering that the main distinguishable layers—at least in terms of moisture
physics—are the planetary boundary layer, the bulk troposphere, a layer around the tropopause, and
then the essentially dry stratosphere. In mathematical terms we can avoid this issue by inserting the
temperature expansion (51) in the asymptotic representation of the saturation mixing ratio in (46),

qvs = exp
(
A∗∗θ(1) − [A∗∗Γ ∗∗ − 1] z

)
(1 + O(ε)) . (58)

This asymptotic representation removes the exponential sensitivity of qvs on ε. Notice that (58) yields
an explicit expression for the non-dimensional moisture scale height

hq
scale = [A∗∗Γ ∗∗ − 1]−1

. (59)

In the sequel we will adopt the potential temperature scaling from [17], i.e., θ = 1+ ε2θ(2) +O(ε2),
so that (58) simplifies to

qvs = q(0)
vs (z) + εq(1)

vs (z) + o(ε) (60)

where

q(0)
vs (z) = exp (− [A∗∗Γ ∗∗ − 1] z)

q(1)
vs (z) = q(0)

vs (z)
[(

A∗∗Θ2(z)− 1
2

A∗∗Γ ∗∗2 z2

)
+ exp(−z) (A∗∗Γ ∗∗ − 1) p

(1)
h (z)

]
,

(61)

with p
(1)
h from (57). As one plausibility check for the formula defining q

(0)
vs , let us assume ε = 1/7 for

the moment, so that A∗∗ ≈ 2.3, Γ ∗∗ = 2, and A∗∗Γ ∗∗ − 1 ≈ 3.6. Then the saturation vapor content
will appropriately vanish as z →∞.

3.4.3 Brunt-Väisälä, CAPE, and the background stratification

With the scalings for potential temperature in (49), which are based on typical values of the Brunt-
Väisälä frequency, we have seen that the leading order solutions for pressure and density are those of a
neutrally stratified atmosphere. Stratification enters at higher order only. At this stage it is undecided
whether we should assume the stronger stratification involving Θ1(z) as implied by (49)1, or the weaker
version with Θ1 ≡ 0 and θ = 1 + ε2Θ2(z) + . . . as implied by (49)2. The latter scaling was assumed in
our earlier study in [17].

Here we procede one step further by comparing the background stratification with a moist adia-
batic one: According to Emanuel, [6], typical values of the convectively available potential energy are
CAPE′ ∼ 25 . . . 400 m2/s2. In nondimensional terms this means

CAPE =
CAPE′

pref/ρref

= 6 · 10−4 . . . 5 · 10−3 . (62)

With ε = 1/8 . . . 1/6 the best match of these values to powers of ε in the sense of a distinguished limit
reads

CAPE = O(ε4) . . . O(ε3) as ε → 0 . (63)
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In the context of (40) we have shown that if we adopt the Newtonian Limit for the isentropic
exponent, and we assume that the background stratification of potential temperature is affected non-
trivially by moist processes, then we are forced to assume the weaker stratification for θ in (49)2. Thus,
variations of potential temperature are of the order δθ = O(ε2) as ε → 0. The estimates for typical
values of CAPE in (63) imply furthermore that deviations of the background stratification from a
moist adiabat must be at least another order of magnitude smaller, so that Θ2(z) must satisfy the
moist adiabatic equation

dΘ2

dz
= −Γ ∗∗L∗∗q∗∗vs

p0(z)
dq

(0)
vs

dz
= Γ ∗∗L∗∗q∗∗vs [A∗∗Γ ∗∗ − 1] exp (− [A∗∗Γ ∗∗ − 2] z) . (64)

The reader may confer (40) to verify the scalings in terms of powers of ε. The last equality follows
from the explicit representation of the saturation water content in (60).

Equation (64) will hold within the vertical layer within which moist convection can occur. If there
is a more rapid increase of Θ2 above some height z∗ then this shuts off convection above this level, and
limits further accumulation of CAPE. Here we are interested in deep convection processes and assume
that (64) holds throughout the troposphere and the exact, explicit solution for Θ2(z) then reads

Θ2(z) = Θ2(0) + Γ ∗∗L∗∗q∗∗vs

A∗∗Γ ∗∗ − 1
A∗∗Γ ∗∗ − 2

(1− exp (− [A∗∗Γ ∗∗ − 2] z)) . (65)

Thus we have determined the background stratification up to order O(ε2) explicitly in terms of moist
thermodynamics, except for the base value Θ2(0). This last degree of freedom allows us to adjust the
thermodynamic conditions at sea level if these do not match with the chosen reference state, pref , ρref ,
in an actual application.

This completes the preparatory scaling analysis of the compressible flow equations with bulk micro-
physics closure. We have identified small or large nondimensional parameters and introduced suitable
distinguished limits to couple them to an asymptotic expansion parameter, ε � 1. In the next two
sections we move on to derive two multiscale models—more precisely two single time / multiple space
scale models—via systematic asymptotic multiple scales expansions.

4 Short time evolution of bulk microscale Hot Towers in a convective scale environment

4.1 Scalings, asymptotic ansatz, and key results

In the present section we summarize the main results of the asymptotic analysis to provide a compact
overview. Details of the derivations are given in subsequent sections.

Here we consider the unsteady evolution of deep convective “hot towers” with characteristic horizon-
tal scale `µ ∼ 1 km embedded in a convective scale environment with characteristic length comparable
to the pressure scale height, `ref = hscale ∼ 10 km. We restrict to a simplified setting involving a verti-
cally sheared horizontal flow with embedded small scale vertical towers. The latter may be interpreted
as “columns” in the sense of typical column model parameterizations of deep convection (see, e.g., [7]).

We are interested in the short time evolution of such convective columns including their onset
and/or decay and their deformation by the vertically sheared horizontal motions. To this end we
consider typical time scales associated with horizontal advection across a characteristic diameter of
the columns. Focusing on deep convection, we assume vertical variation on scales comparable to the
pressure scale height. These considerations induce the multiple scales asymptotic ansatz,

U(x, z, t; ε) =
∑

i

εiU(i) (η,x, z, τ) , where η = x/ε , τ = t/ε . (66)

Here U represents the tuple of dependent variables.
To reflect the assumed simplified structure of the velocity field with a convective scale horizontal

background flow, but smallscale columnar vertical motion, we let

u = u(0)(x, z, τ) + O(ε) but w = w(0)(η,x, z, τ) + O(ε) . (67)
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At the same time we adopt the scaling for the background potential temperature stratification as
employed in [17] and discussed above, i.e.,

θ = 1 + ε2 Θ2(z) + ε3 θ(3)(η,x, z, τ) + O(ε4) . (68)

The horizontally homogeneous stratification from (68), via hydrostatic balance at the second order,
will imply the pressure and density expansions

(p, ρ) = (p0, ρ0)(z) + ε (P1, R1)(z) + ε2 (P2, R2)(z) + ε3 (p(3), ρ(3))(η,x, z, τ) + O(ε4) . (69)

We have used here the Newtonian Limit for the isentropic exponent, (γ − 1)/γ = ε Γ ∗∗, assumed
the latent heat per unit mass and the Arrhenius’ activation energy for the saturation vapor pressure
to be large, so that L/(pref/ρref) = L∗∗/ε, and A∗ = A∗∗/ε, and took into account that the reference
value, q∗vs = ε2q∗∗vs , for the water vapor, cloud water, and precipitation mixing ratios is small of order
O(ε2). The mixing ratios scaled by this reference value are expanded as

(qv, qr) =
(
q(0)
v , q(0)

c , q(0)
r

)
(η,x, z, τ) + ε

(
q(1)
v , q(1)

c , q(1)
r

)
(η,x, z, τ) + o(ε2) . (70)

Multiple scales analysis (see next section) then yields the following leading order system of coupled
equations for the evolution of the convective scale background and the bulk microscale columns.

Linearized convective scale momentum balance

u(0)
τ +∇xπ(3) = 0

w(0)
τ + π(3)

z = θ(3)

θ(3)
τ + w(0)

dΘ2

dz
=

Γ ∗∗L∗∗

p0
C(0)

ρ0∇xu(0) +
(
ρ0w(0)

)
z

= 0 ,

(71)

where π(3) = p(3)/ρ0, an overbar denotes averaging over the fast spacial coordinate, η, and C(0) will
be defined shortly. On the small scale we find the

Bulk microscale column dynamics (
∂τ + u(0) · ∇η

)
w̃(0) = θ̃(3)

(
∂τ + u(0) · ∇η

)
θ̃(3) + w̃(0)

dΘ2

dz
=

Γ ∗∗L∗∗

p0
C̃(0) .

(72)

where, for any variable φ we let φ̃ = φ− φ.
Through the vertical velocity, w(0), and the condensation–evaporation source term, C(0), these

equations couple with the moisture transport equations. For C(0) we must distinguish the two regimes
of saturated and undersaturated air. In saturated air, only condensation–evaporation of cloud water
is possible, i.e., C(0) = C

(0)
d , whereas in undersaturated air we have only evaporation of precipitation,

i.e., C(0) = C
(0)
ev . The water vapor content acts as an indicator distinguishing the two regimes, so that

C(0) = HqvC
(0)
d + [1−Hqv ] C(0)

ev where Hqv = H≥(q(0)
v − q(0)

vs ) (73)

with H≥(·) from (11). The partial source terms C
(0)
d and C

(0)
ev are defined through the

Moisture transport equations for saturated air (Hqv = 1)

C
(0)
d = C∗∗

d δq(n∗)
v (q(1)

c + q∗∗cn) = −

[(
w̃(0) + w(0)

) dq
(0)
vs

dz
−D(0)

qv

]
(
∂τ + u(0) · ∇η

)
q(1)
c = H≥(q(1)

c )C
(0)
d − C∗∗

cr q(0)
r q(1)

c(
∂τ + u(0) · ∇η

)
q(0)
r = 0

(74)
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and the

Moisture transport equations for undersaturated air (Hqv = 0)

C(0)
ev = C∗∗

ev

(
q(0)
vs (z)− q(0)

v

)
q(0)
r

1/2

(
∂τ + u(0) · ∇η

)
q(0)
v = 0(

∂τ + u(0) · ∇η

)
q(0)
r = 0

(75)

respectively.
In both the saturated and undersaturated air regimes we find the leading order water vapor and

precipitation mixing ratios, q
(0)
v , q

(0)
r , to be frozen on the considered time scale while being advected

by the background flow. In undersaturated air, there is persistent evaporative cooling which will, for
any θ(3) initial data, ultimately induce vertical downdrafts through the small scale momentum balance
in (72)1. At the same time, this persistent cooling will, by contributing to the average source term
C(0), also reduce the mesoscale mean potential temperature as seen in (71), thereby inducing mesoscale
mean downdrafts.

Interestingly, changes of the small scale potential temperature fluctuation, θ̃(3), are driven by the
fluctuation, C̃(0) = C(0) − C(0), of the condensation–evaporation source term. As a consequence, even
if there was no latent heat release from condensation at all, we would still see a positive source term
for θ̃(3) in regions of saturated air, and these would tend to induce smallscale updrafts via (72)2. Of
course, through (74) such updrafts can ultimately produce latent heat release, and thus provide a
positive feedback, thereby amplifying themselves.

The condensation source term in (74) has an interesting structure. The only moisture variable it
involves explicitly is the given background stratification of the saturation vapor mixing ratio, q

(0)
vs (z).

Thus, wherever H≥(q(1)
c ) is positive, the flow dynamics governing w(0) entirely controls the direct

condensation rate through the first term in the square bracket. Notice, however, the (horizontal)
turbulent transport term, D(0)

qv
, i.e., the second term in the bracket. The entire square bracket is

the effective condensation rate, rather than only the obvious first term! This is referred to in the
literature as the implicit definition of condensation, [8], and here it is a direct result of the asymptotic
analysis. Due to the columnar structure of the flow fields considered here, turbulent transport will
be dominantly horizontal, with a typical closure reading D(0)

qv
= ∇η · (K∇ηq

(0)
v ). Within regions of

saturated air, q
(0)
v ≡ q

(0)
vs (z) and the transport term will vanish. At the edges of saturated regions,

there will, however, be an abrupt change with possible jumps in the gradient of q
(0)
v , leading to very

strong horizontal transport. This is a situation familiar from thin premixed flames in combustion, (see,
e.g., [24]), which are defined by a local quasistationary advection-reaction-diffusion-balance. A detailed
exploration of the structure of these saturation-undersaturation boundaries is, however, beyond the
scope of the present paper.

4.2 Key steps of the derivations

Here we collect those first few leading terms from each of the governing equations that are relevant for
deriving the simplified asymptotic equations announced in the previous section.

Horizontal momentum:

∇ηp(3) = 0

ρ0u
(0)
τ +∇ηp(4) +∇xp(3) = ρ0 D(−1)

u

(76)
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Vertical momentum:
dp0

dz
= −ρ0

dP1

dz
= −R1

dP2

dz
= −R2

ρ0
D(0)

Dτ
w(0) + p(3)

z = −ρ(3) + ρ0 D(−1)
w

(77)

where
D(0)

Dτ
=
(
∂τ + u(0) · ∇η

)
. (78)

Mass:
ρ0

(
∇η · u(1) +∇x · u(0)

)
+
(
ρ0w

(0)
)

z
= 0 (79)

Potential temperature:

D(0)

Dτ
θ(3) + w(0) dΘ2

dz
=

Γ ∗∗L∗∗q∗∗vs

p0

(
C

(0)
d − C(0)

ev

)
+ D

(2)
θ . (80)

The evaporation and condensation source terms C
(0)
ev , C

(0)
d will be specified below for the two separate

situations of nearly saturated and undersaturated air, respectively.

4.2.1 The dry air and saturated air regimes

In the water vapor and cloud water transport equations from (44) the condensation–evaporation term
dominates. According to (10)1, (35) the condensation rate reads Cd = ε−nC∗∗

d (qv−qvs)H◦(. . .)(qc+q∗c n).
We expand it as

Cd =
1
εn

C
(−n)
d +

1
εn−1

C
(−n+1)
d + . . . . (81)

Then the leading terms in the expansion of (44)1 yield

C
(i)
d = 0 for i = −n, . . . ,−1 . (82)

Denoting the distance from saturation by δqv, such that,

qv − qvs = δqv = δq(0)
v + ε δq(1)

v + . . . (83)

we may rewrite the first result in (82) as

C
(−n)
d = C∗∗

d δq(0)
v H◦(qc, qv, qvs)q(0)

c = 0 . (84)

This and analogous expansions for the higher order terms in (82) lead to the following alternatives,

Nearly saturated air
δq(i)

v = 0 for i = 0, . . . , n− 1 , (85)

and

Undersaturated air
H>(qc) = 0 i.e. qc ≡ 0 . (86)

To verify the last statement, we recall that undersaturation means qv < qvs and take into account
the definition of H◦ in (12). The transition regions between subdomains in which either of the two
alternatives holds would have to be studied by boundary layer type matched asymptotic expansions.
This is beyond the scope of the present paper.
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4.2.2 Moisture transport in nearly saturated air

In this regime we know that δqv ≡ 0, i.e., that q
(0)
v ≡ q

(0)
vs . From the asymptotics of the mixing ratio

in (60) we know that q
(0)
vs is a function of z only. Therefore, we find from the water vapor transport

equation at order O(ε) that (
∂τ + u(0) · ∇η

)
q(0)
v ≡ 0 . (87)

Anticipating that turbulent transport will not become important at this order of the perturbation
analysis, we conclude that condensation–evaporation of cloud water occurs at an even higher order,

C
(0)
d = 0 or δq(n)

v ≡ 0 . (88)

In the sequel we let
n∗ = n + 1 (89)

to abbreviate the notation.
Furthermore, from (44)2 at order O(ε−1), and knowing from the above estimates that ε−nCd =

O(1), we conclude that
C(−1)

cr = C∗∗
cr q(0)

c q(0)
r ≡ 0 . (90)

This implies that either q
(0)
c ≡ 0 or q

(0)
r ≡ 0. We focus here on the former case, which is valid for

precipitating clouds, and let
q(0)
c ≡ 0 (91)

from here on so that the cloud water content is systematically small. The second alternative needs to
be studied in more detail for non-precipitating clouds and for the upper cloud top, where the total
amount of precipitation, qr, is necessarily small. The construction of a related multi-layer model will
be addressed in future work.

After these preliminiaries we find a set of simplified asymptotic equations for δq
(n∗)
v , q

(1)
c , q

(0)
r ,

w(0) dq
(0)
vs

dz
= −C

(0)
d + D(0)

qv(
∂τ + u(0) · ∇η

)
q(1)
c = C

(0)
d − C(0)

cr(
∂τ + u(0) · ∇η

)
q(0)
r = 0

(92)

where
C

(0)
d = C∗∗

d δq(n∗)
v (q(1)

c + q∗∗cn) H≥(q(1)
c ) ,

C(0)
cr = C∗∗

cr q(1)
c q(0)

r .
(93)

In the potential temperature equation (80) we need to evaluate the leading order rain evaporation rate,
C

(0)
ev . However, according to (93) the water vapor mixing ratio deviates from its saturation value only

at order εn∗ , so that C
(i)
ev = 0 for i ∈ {0, . . . , n∗ − 1}.

Whereas we found evolution equations for q
(1)
c and q

(0)
r , the water vapor transport equations pro-

vided an implicit definition of the condensation rate,

C
(0)
d = −

[
w(0) dq

(0)
vs

dz
−D(0)

qv

]
. (94)

Through (93) this determines, in turn, the local small deviation from exact saturation, δq
(n∗)
v . We notice

in passing, that C
(0)
d may have positive or negative sign indicating condensation and evaporation of

cloud water, respectively. Of course, a negative sign makes sense only as long as long as q
(1)
c > 0, and

this is accounted for by the Heaviside switch, H≥(q(1)
c ).

Notice also that C
(0)
d is not only determined by vertical motion and the associated change of

the saturation water content, but also by (horizontal) turbulent diffusion of water vapor. When this
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mechanism, near the edge of a region of saturated air, removes water vapor by redistributing it into
the neighboring unsaturated region, then the air will become locally undersaturated, and any available
cloud water will evaporate. As noted in [8], this mechanism can also be invoked by numerical diffusion
in cloud resolving models, leading to artificial effects near cloud boundaries.

4.2.3 Undersaturated air

In undersaturated air qc = 0, and the condensation–evaporation source term for the vapor-to-cloud
water transition, C

(0)
d , vanishes. In this regime we do have a nonzero evaporation of precipitation,

C
(0)
ev = C∗∗

ev

(
q
(0)
vs (z)− q

(0)
v

)
q
(0)
r

1
2 6= 0, and a non-trivial source term for potential temperature remains

in (80). However, with the present scalings evaporation is too weak to affect precipitation and water
vapor content at leading order, and we obtain, besides q

(1)
c ≡ 0, the two homogeneous transport

equations, (
∂τ + u(0) · ∇η

)
q(0)
v =

(
∂τ + u(0) · ∇η

)
q(0)
r = 0 . (95)

This completes the derivation of the simplified asymptotic equations for the present asymptotic
regime except for the separation of the convective scale and bulk microscale contributions of the
various equations, and a discussion of the turbulent transport terms.

Separation of long wave and short wave components is achieved in a standard fashion by imposing
sublinear growth conditions. Consider, e.g., the horizontal momentum equation in (76). Since u(0), p(3)

do not depend on η, and since we may assume D(−1)
u to be a horizontal divergence, e.g., D(−1)

u =
∇η · (Kt∇ηu), integration in η over a large domain Ω yields

ρ0 uτ +∇xp(3) = − 1
|Ω|

∮
∂Ω

(
p(4)1−Kt∇ηu

)
· n dσ , (96)

where 1 is the two-dimensional unit tensor. Using the standard argument of sublinear growth of the
perturbation functions in the integrand with respect to |η| we conclude that the integral cannot grow
as fast as |Ω| for increasing size of the domain (vanishing surface-to-volume-ratio). In the limit we find
ρ0 uτ +∇xp(3) = 0, which is equivalent to the mesoscale horizontal momentum equation in (71)1. For
the potential temperature equation we proceed analogously.

A detailed discussion of how to incorporate the turbulent transport terms in the present asymptotic
framework is beyond the scope of the present paper. To obtain an idea of how one may want to proceed
the reader may consult ref. [15]. In this paper, Ekman boundary layer theory, which prominently
includes the effects of turbulence, is reconsidered via multiple scales asymptotics.

5 Gravity wave generation by moist convective processes

5.1 Scalings, asymptotic ansatz, and key results

In the present section we summarize the main results of the asymptotic analysis to provide a compact
overview. Details of the derivations are given in subsequent sections.

Here we describe how 10 km convective-scale anelastic flows may interact with 70 . . . 100 km mesoscale
gravity waves on time scales of about 20min. The latter corresponds to the time scale of advection on
the smaller scale, given characteristic flow velocities of 10 m/s. At the same time, it is the characteristic
time scale for longer wave length internal gravity waves, given a typical buoyancy frequency. Thus we
consider a single time, multiple space scale asymptotic ansatz,

U(x, z, t; ε) =
∑

i

εi U(i)(x, ξ, z, t) , (97)

where
ξ = εx (98)
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is the horizontal coordinate that resolves the mesoscales.
The large scale dynamics is governed by a set of linearized internal wave equations with non-trivial

driving terms for momentum and potential temperature.

Mesoscale wave dynamics with upscale momentum transport

ut +∇ξ π(3) = −∂z (wu) ,

Θ
(3)
t + w(1)

dΘ2

dz
= S

(3)
θ ,

∂zπ
(3) = Θ(3) ,

ρ0∇ξ · u + ∂z

(
ρ0w(1)

)
= 0 .

(99)

Here, with the decomposition into latent heat and external diabatic effects, the third order potential
temperature source term reads

S
(3)
θ = S̃

(3)
θ +

Γ ∗∗L∗∗q∗∗vs

p0

(
C

(1)
d − C(1)

ev

)
. (100)

In addition, the leading order vertical velocity must satisfy the

Constraint of organized convection
(w)(0) = 0 . (101)

This constraint can be satisfied in two ways. Either, w 6= 0 only within small horizontal subdomains
so that the vertical mass flux merely accumulates to a higher order mean flux, or – in the case of what
one may call “organized convection” – the regions with leading order vertical motions are densely
packed, but the vertical motions from up and downdrafts cancel on average. We keep track of these
two different regimes, which differ in terms of their moisture content in under-saturated air, and discuss
them in the context of eqs. (104)–(105) below.

We notice that the equations (99) allow for steady vertically sheared horizontal flows with u =

u(ξ, z), ∇ξ · u ≡ 0, and w(1) ≡ 0, when both driving terms, (wu)z and S
(3)
θ in the first two equations

vanish. Thus, besides unsteady internal waves, the range of solutions of these equations also includes
large scale organized quasi-steady flow patterns whose structure is governed by non-zero but quasi-
steady source terms (see also [19–21]).

The mesoscale waves interact with convective scale anelastic dynamics involving a fully nonlinear
horizontal momentum balance,

Convective scale horizontal dynamics

ut + u · ∇xu + wuz +∇xπ(4) = −∇ξπ
(3) + Du .

∇x · (ρ0u) + (ρ0w)z = 0 ,
(102)

and a nonlinear control of the vertical motions by moist processes. In the context of (64) we have
argued that typical atmospheric stratifications are neutrally stable at least up to second order in ε.
Working from the general assumption that the third order θ distribution–accounting for latent heat
release–is stable, i.e.,

θ(3)
z +

Γ ∗∗L∗∗q∗∗vs

p0

dq
(1)
vs

dz
≥ 0 , (103)

we have the following

Moisture transport and nonlinear control of vertical motions

Strongly undersaturated air: (q(0)
vs − q

(0)
v > 0)
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q(0)
v t + u(0) · ∇xq(0)

v + w(0)q(0)
v z = C

(0)
ev

q(0)
r t + u(0) · ∇xq(0)

r + w(0)q(0)
r z +

V ∗∗
T

ρ0

(
ρ0q

(0)
r

)
z

= −C(0)
ev

w(0) = − Γ ∗∗L∗∗q∗∗vs

(p0dΘ2/dz)(z)
C(0)

ev

C(0)
ev = C∗∗

ev

(
q(0)
vs (z)− q(0)

v

)
q(0)
r

1
2

(104)

This is the interesting regime, in which strong organized convection is possible. Here, we have w(0) ≡ 0,
but may have nonzero leading order vertical velocities everywhere with downdrafts from evaporative
cooling balancing updrafts of saturated, condensating, and strongly precipitating air. These strong
vertical flows will induce the convection-related effective source term in the mesoscale horizontal mo-
mentum equation, and this is one of the interesting and important effects revealed here.

Unfortunately, the present multiple scales theory is not closed for this regime: To determine the
effective averaged source term for the third order meso-scale potential temperature distribution in (99)
we need explicit expressions for the first order condensation and evaporation source terms C

(1)
d and

C
(1)
ev according to (100). The condensation term is readily available from (108) below.

However, the first order evaporation term involves a term C∗∗
ev

(
q
(1)
vs (z)− q

(1)
v

)
q
(0)
r

1
2 , and its deter-

mination would require the solution of the equation for q
(1)
v in the strongly undersaturated air region.

It is easily seen from (104)2 that the next order equation would involve the first order perturbation
velocity u(1), etc., rendering the hierarchy of equations unclosed.

We leave a resolution of this issue for future work and consider here the somewhat simpler regime
of weakly undersaturated air.

Weakly undersaturated air: (q(0)
vs − q

(0)
v = 0, S̃

(3)
θ − θ

(3)
t < 0)

q(1)
v t + u(0) · ∇xq(1)

v + w(1) dq
(0)
vs

dz
= C

(1)
ev

q(0)
r t + u(0) · ∇xq(0)

r +
V ∗∗

T

ρ0

(
ρ0q

(0)
r

)
z

= 0

w(1) =
(
−Γ ∗∗L∗∗q∗∗vs

(p0)(z)
C(1)

ev +
(
S̃

(3)
θ − θ

(3)
t

)) (dΘ2

dz

)−1

C(1)
ev = C∗∗

ev

(
q(1)
vs (z)− q(1)

v

)
q(0)
r

1
2

(105)

This regime is intriguing in a different way than that for strongly undersaturated air. Here, leading
order vertical downdrafts are suppressed, whereas in saturated air, leading order vertical motions may
occur but must be directed upwards. As a consequence, the sublinear growth constraint w(0) ≡ 0
from (101) can only be satisfied if either there are no vertical leading order motions at all (this would
be the conclusion in classical multiple scales analyses), or if the occurance of strong precipitating
updrafts is restricted to a total horizontal area of relative size of order O(ε) as ε → 0. Such a regime
is non-classical in the context of multiple scales asymptotics and it will require the combination of
multiscale asymptotics with concepts from stochastic modelling to obtain a meaningful closed model.
In the latter case, the first order mean vertical velocity, w(1), will be composed of two non-trivial
contributions, namely the classical average of the first order perturbation velocity, and the resulting
first order mean from sparsely distributed columns with leading order updrafts.

Saturated air: (q(0)
vs − q

(0)
v = 0)
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q(0)
r t + u(0) · ∇xq(0)

r + w(0)q(0)
r z +

1
ρ0

(
ρ0VT q(0)

r

)
z

= −w(0) dq
(0)
vs

dz
. (106)

w(0) =


(
S̃

(3)
θ − θ

(3)
t

)(
∂θ(3)/∂z + Γ ∗∗L∗∗q∗∗vs ∂q(1)

vs /∂z
)−1

for S̃
(3)
θ − θ

(3)
t > 0

0 for S̃
(3)
θ − θ

(3)
t ≤ 0 .

(107)

where S̃
(3)
θ denotes all third order diabatic effects except for latent heat conversion which is captured

through the vertical derivative of q
(1)
vs . Here we observe how external diabatic source terms, S̃

(3)
θ , drive

upward motions in weakly moist stable air.
For completeness we note that the relevant contribution from the first order condensation term

C
(1)
d in (100) reads

Γ ∗∗L∗∗q∗∗vs

p0
w(0) dq

(1)
vs

dz
. (108)

In contrast, the term (Γ ∗∗L∗∗q∗∗vs /p0) w(1)dq
(0)
vs /dz cancels with the third order vertical advection term

for potential temperature, w(1)dΘ2/dz in the evolution equation for θ(3).

5.2 Key steps of the derivations

Here are the leading few “raw” equations resulting from inserting the expansion scheme in (97) into
the governing equations from section 3.3, collecting like powers of ε, and anticipating that the leading
order pressure and density are time independent.

Mass:
∇x · (ρu)(0) + (ρw)(0)z = 0

∇x · (ρu)(1) + (ρw)(1)z = −∇ξ · (ρu)(0)
(109)

Horizontal momentum:

∇xp(0) = 0

∇xp(j+1) +∇ξp
(j) = 0 (j ∈ {0, 1, 2})

(ρu)(0)t +∇x · (ρu ◦ u)(0) + (ρwu)(0)z +∇xp(4) +∇ξp
(3) = D(0)

ρu .

(110)

Vertical momentum:

∂zp
(j) = −ρ(j) (j ∈ {0, 1, 2, 3}) (111)

Potential temperature:

S
(0)
θ = 0 ,

S
(1)
θ = 0 ,

w(0) dΘ2

dz
= S

(2)
θ ,

θ
(3)
t + w(0)θ(3)

z + w(1) dΘ2

dz
= S

(3)
θ ,

(112)



22 Rupert Klein, Andrew J. Majda

In these equations (ab)(1) = a(1)b(0) + a(0)b(1). In deriving the equations in (112) we have anticipated
the expansion scheme for potential temperature

θ = 1 + ε2Θ2(z) + ε3θ(3)(ξ, z, t) + ε3θ(4)(x, ξ, z, t) . . . . (113)

Its validity may be verified by combining the leading vertical and horizontal momentum balances
and the expansion of the equation of state, p = (ρθ)γ , with sublinear growth conditions for p(i) for
(i ∈ {0, 1, 2}) in terms of the short scale horizontal coordinate, x. In this process, the expansion of the
equation of state will be analogous to that of the temperature definition in (50) and (51).

Water vapor:

C
(i)
d = 0 for (i ∈ {−n, ...,−1}) ,

q(0)
v t + u(0) · ∇xq(0)

v + w(0)q(0)
v z = −C

(0)
d + C

(0)
ev .

q(1)
v t + u(0) · ∇xq(1)

v + u(1) · ∇xq(0)
v + w(0)q(1)

v z + w(1)q(0)
v z = −C

(1)
d + C

(1)
ev .

(114)

Cloud water:

C(−1)
cr = 0 ,

q(0)
c t + u(0) · ∇xq(0)

c + w(0)q(0)
c z = C

(0)
d − C

(0)
cr .

(115)

Rain water:

q(0)
r t + u(0) · ∇xq(0)

r + w(0)q(0)
r z +

1
ρ0

(
ρ0VT q(0)

r

)
z

= C
(0)
cr − C

(0)
ev . (116)

5.2.1 Nonlinear control of vertical motions

Equation (112)3 states that, in a stably stratified atmosphere, the vertical velocity is directly propor-
tional to the rate of diabatic heating. However, in the present context such a statement captures only
part of the essence of the prevailing balances:

The strongest source term for potential temperature is caused by latent heat conversion. Its strength
is of order O(ε2), so that it induces the source term S

(2)
θ in (112)3. This order of magnitude estimate

may be verified by combining (40) with estimates of the characteristic time scales of latent heat
conversion: Condensation in vertical updrafts occurs on convective time scales, i.e., on time scales of
order O(1) nondimensionally. The nondimensional rate of evaporation of precipitation, Cev in (44)1,3,
was also assessed to be of order O(1) as ε → 0.

All other source terms for θ that we have analyzed, such as the effects of radiation and turbulent
transport (details not shown due to a lack of space), are one or two orders of magnitude smaller,
and we subsume these in the third order term S

(3)
θ in (112)4. We conclude that the source term S

(2)
θ

in (112)3 involves only the effects of latent heat conversion due to condensation and evaporation of
precipitation, so that

S
(2)
θ =

Γ ∗∗L∗∗q∗∗vs

p0(z)

(
−H≥(qv − qvs)w(0) dq

(0)
vs

dz
+ H>(qvs − qv) C(0)

ev

)
,

S
(3)
θ =

Γ ∗∗L∗∗q∗∗vs

p0(z)

(
−H≥(qv − qvs)

(
w(0) dq

(1)
vs

dz
+ w(1) dq

(0)
vs

dz

)
+ H>(qvs − qv) C(1)

ev

)
+ S̃

(3)
θ .

(117)

The terms involving H≥ become relevant in saturated air, and they are a consequence of (114). In
saturated air, we have qv = qvs up to very high order in ε, see (74). From (60), q

(0)
vs is a function of z



Systematic Multiscale Models for Deep Convection on Mesoscales 23

only, and this is true also for the next-order term, q
(1)
vs (z). As a consequence, in deriving (117) from

(114), the horizontal advection terms dropped out.
We analyze the consequences of these formulations when inserted in (112)3,4 and have to distinguish

the three regimes of (i) saturated air with qv ≥ qvs, (ii) strongly undersaturated air with q
(0)
vs (z) > q

(0)
v ,

and (iii) weakly undersaturated air with q
(0)
v = q

(0)
vs (z) but q

(1)
vs (z) > q

(1)
v .

Strongly undersaturated Air In undersaturated air, with H≥(·) = 0 and H>(·) = 1, and with second
order deviations from saturation, i.e., q

(0)
vs − q

(0)
v > 0, equation (112)3 directly determines the vertical

velocity in the sense of the WTG-approximation

w(0) = −Γ ∗∗L∗∗q∗∗vs C∗∗
ev

(p0dΘ2/dz)(z)

(
q(0)
vs (z)− q(0)

v

)
q(0)
r

1
2 for q(0)

v < q(0)
vs (z) . (118)

WTG-approximations assume weak horizontal gradients of (potential) temperature on meso- and larger
scales, these being enforced by the dominance of gravity and rapid equilibration due to internal gravity
waves. If horizontal gradients of temperature are bound to be small, however, then local heating, e.g.,
due to latent heat release or radiation with tend to disturb this balance. It can then be maintained
only by moving the affected air parcel vertically towards the very level where its temperature again
matches that of its environment. Thus, the vertical velocity of a parcel of air is determined by its
diabatic heating rate.

In particular, we have an explicit description of downdrafts induced by evaporative cooling, and we
conclude that leading order vertical motions are suppressed entirely in the absence of precipitation.

Weakly undersaturated Air In the regime of weakly undersaturated air, in which q
(0)
v = q

(0)
vs (z) but

q
(1)
vs (z)− q

(1)
v > 0, we have, from (112)3,4,

w(0) = 0

w(1) =
(
−Γ ∗∗L∗∗q∗∗vs C∗∗

ev

p0

(
q(1)
vs (z)− q(1)

v

)
q(0)
r

1
2 +

(
S̃

(3)
θ − θ

(3)
t

))(dΘ2

dz

)−1

.
(119)

Here S̃
(3)
θ collects all third order potential temperature source terms except for the effects of latent

heat conversion.

Saturated Air In saturated air, with H≥(·) = 1 and H>(·) = 0 in (117), the situation is entirely
different. Here, (112)3 in combination with (94) for the condensation rate yields

w(0) dΘ2

dz
= −w(0) Γ ∗∗L∗∗q∗∗vs

p0(z)
dq

(0)
vs

dz
. (120)

Notice that we have dropped the turbulent transport term from (94). Estimates in [15] show that
turbulent transport becomes effective at much smaller scales only. Clearly, (120) can be satisfied if we
either have a moist adiabatic stratification so that

dΘ2

dz
= −Γ ∗∗L∗∗q∗∗vs

p0

dq
(0)
vs

dz
or w(0) ≡ 0 . (121)

As argued in section 3.4.3 we do assume moist adiabatic stratification to the order in ε considered
here, so that the former alternative holds. As a consequence, w(0) cancels from (120), and in saturated
air the WTG-type equation in (112)3 does not determine the leading order vertical velocity. Instead it
is determined by higher order potential temperature equations. We will discuss situations with O(ε3)-
deviations from moist adiabatic stratification below. In this case, the third order equation in (112)4
determines the vertical motion as we will see shortly.

Whatever the results of the related derivations, they must observe additional constraints induced
by the singular structure of the cloud water and precipitation evolution equations. First we conclude
from the leading order cloud water equation in (115)1 and from the definition of Ĉcr in (45)3 that
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either q
(0)
c = 0 or q

(0)
r = 0. As we can see in (116), the second option would induce C

(0)
cr = 0 so that

q
(1)
r = 0, too. This regime corresponds to non-precipitating clouds (absence of rain), and will not be

considered further here. The alternative, q
(0)
c = 0, must hold in precipitating clouds. In this regime,

(115)2 yields a balance between condensation and the formation of precipitation, so that

C
(0)
d − C(0)

cr = −w(0) dq
(0)
vs

dz
− C∗∗

cr q(1)
c q(0)

r

1/2
= 0 or w(0) = −C∗∗

cr q
(1)
c q

(0)
r

1/2

dq
(0)
vs /dz

. (122)

For given w(0) ≥ 0 and q
(0)
r this determines the local amount of cloud water, q

(1)
c . However, as dq

(0)
vs /dz <

0 and q
(1)
c , q

(0)
r ≥ 0 we also have a nonlinear constraint on the vertical velocity,

w(0) ≥ 0 (123)

valid in saturated air in the presence of precipitation.
To make progress in determining the leading (and first) order vertical velocity in saturated air,

we consider the third order potential temperature equation in (112)4. We divide the source term into
contributions from latent heat conversion and another term that collects all other effects at that order.
Leaving aside the rain evaporation effect, because we consider saturated air, we have

S
(3)
θ =

Γ ∗∗L∗∗q∗∗vs

p0
C

(1)
d + S̃

(3)
θ . (124)

From the third order water vapor balance, and using the fact that deviations from saturation occur at
very high order only, so that q

(1)
v = q

(1)
vs (z), we conclude from (114)3

C
(1)
d = −w(1) dq

(0)
vs

dz
− w(0) dq

(1)
vs

dz
. (125)

Then the third order potential temperature balance, (112)4, reads

θ
(3)
t + w(0)θ(3)

z + w(1) dΘ2

dz
= −Γ ∗∗L∗∗q∗∗vs

p0

(
w(1) dq

(0)
vs

dz
+ w(0) dq

(1)
vs

dz

)
+ S̃

(3)
θ . (126)

As we consider here the regime of moist adiabatic stratification at order O(ε2) from (121)1 we find

θ
(3)
t + w(0)θ(3)

z = −Γ ∗∗L∗∗q∗∗vs

p0
w(0) dq

(1)
vs

dz
+ S̃

(3)
θ . (127)

Since θ(3) does not depend on the convective scale variable x (see (113)), it is clear that its time
derivative, θ

(3)
t , will have to be determined from sublinear growth conditions below. For given θ

(3)
t and

a moist stable stratification at the given order we obtain the determining equation for the leading order
vertical velocity,

w(0) =
(
S̃

(3)
θ − θ

(3)
t

)(
θ(3)

z +
Γ ∗∗L∗∗q∗∗vs

p0

dq
(1)
vs

dz

)−1

. (128)

There is a catch, however, as we have previously found the constraint of positivity for w(0) in (123).
Thus, this last equation holds only in saturated air when the right hand side is positive. Should the r.h.s.
become negative locally, the ensuing downward motion would immediately (relative to the considered
time scale) lead to evaporation of the local first order cloud water content, leaving us with weakly
undersaturated air and first order vertical velocities determined by (119).

5.2.2 Sublinear growth conditions

In (97) we have set up an expansion scheme that involves multiple horizontal scales. To determine
the dependence of the expansion functions U(i)(x, ξ, z, t) on the large scale spacial coordinate, ξ, we
employ sublinear growth conditions (see, e.g., [17] for an explanation in the context of meteorological
modelling).
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Mesoscale mass balance and the notion of “organized convection” Averaging (109)1,2 in the fast hori-
zontal coordinate x we find

(ρ0w(0))z = 0

ρ0∇ξ · u(0) + (ρ0w(1))z = 0 .

(129)

With the large scale bottom boundary condition w(0)
∣∣∣
z=0

= 0, the first equation immediately yields

w(0) = 0 . (130)

This is the “organized convection constraint” from (101)
Equation (129) is a standard anelastic constraint for the large scale averaged motion.

Mesoscale momentum balance and convection-induced mean forcing Averaging (110)1,2 in x we find

∇xp(i) = 0 for (i ∈ {0, 1, 2, 3}) and ∇ξp
(i) = 0 for (i ∈ {0, 1, 2}) . (131)

The mesoscale evolution of the velocity field is obtained analogously from (110)3,

u(0)
t + (wu)(0)z +∇ξp

(3) = 0 . (132)

Here we have assumed that the transport term Dρu has the form of a small scale divergence, so that
it cancels in the horizontal average due to a surface-to-volume ratio argument.

Notice, in particular, the appearance of the term (wu)(0)z which indicates the net vertical transport
of horizontal momentum at leading order. In standard scale analysis for the mesoscales one would have
assumed that |w|/|u| ∼ h/L = O(ε), where h, L denote characteristic vertical and horizontal scales,
respectively, and where we have used the present asymptotic scaling ξ = εx for the estimate in terms
of ε. As a consequence, in such an analysis w(0) ≡ 0, and w = εw(1) + o(ε). The mentioned transport
term would be absent in this case.

In contrast, following the discussion of the mesoscale mass balance, we have here two multiscale
regimes in which leading order vertical velocities can develop on the small scale. In the first regime
with sparse distribution of vertical convection sites we have wu = O(ε). However, in the regime of
“organized convection” wu = O(1) and there will be a non-trivial contribution to the horizontal
momentum balance.

From section 5.2.1 it is clear that vertical motions are controlled by an interplay of moisture
transport and other diabatic effects, so that there is a strong coupling between mesoscale horizontal
motions and the small-scale convective activity.

Mesoscale vertical momentum balance – hydrostatics Averaging (111) in x does not yield new infor-
mation. All pressure variables, p(i) for i ∈ {0, 1, 2, 3} are in hydrostatic balance.

Mesoscale potential temperature transport, organized convection, and internal waves Averaging (112)3
and using w(0) = 0 from (130) we obtain a constraint on the second order diabatic source term S

(2)
θ ,

S
(2)
θ =

Γ ∗∗L∗∗q∗∗vs

p0

H≥(δqv) w(0)
dq

(0)
vs

dz
+ H>(−δqv) C

(0)
ev

 = 0 . (133)

Using the determining equation for w(0) for saturated air in (128) we have

H≥(δqv)
S̃

(3)
θ − θ

(3)
t

θ
(3)
z + Γ∗∗L∗∗q∗∗vs

p0

dq
(1)
vs

dz

dq
(0)
vs

dz
+ H>(−δqv)C∗∗

ev (q(0)
vs − q

(0)
v )q(0)

r

1/2
= 0 . (134)

Again, such a constraint can be satisfied if leading order motions are sparsely distributed and the
average merely accumulates a higher order perturbation. The more interesting alternative is “orga-
nized convection”, in which vertical motions do occur over an order O(1) fraction of the domain, but
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the driving diabatic sources and sinks are organized spacially such that cancellation of updrafts and
downdrafts occurs in the mean.

At the next order the sublinear growth condition for (112) yields the mesoscale potential temper-
ature evolution equation,

θ
(3)
t + w(1)

dΘ2

dz
= S

(3)
θ . (135)

This completes the derivation of the simplified meso-convective multiscale equations from (99)–
(107).

6 Conclusions

In this paper we have demonstrated how typical bulk microphysics closure schemes for moist processes
can be incorporated systematically in the multi-scale modelling framework for atmosperic flows from
[14,17]. The key steps were careful nondimensionalization, and appropriate choices of distinguished
limits between various powerlaw exponents, Damköhler numbers, and activation energy parameters on
the one hand and the unified asymptotic expansion parameter identified in [14] on the other hand.

Two new multi-scale models have been derived in sections 4 and 5, which describe the short time
evolution of slender “hot towers” embedded in a convective scale environment, and organized con-
vection in mesoscale flows, respectively. The first model reveals an interaction of linearized, anelastic,
convective-scale motions with bulk microscale columnar flow through nonlinear averages of the mois-
ture source terms. The second model exhibits a similar interaction between mesoscale internal gravity
waves and nonlinear, anelastic, moist flow on the convective scales. An important feature of the convec-
tive scale motions is the highly nonlinear control of vertical velocity through interactions of buoyancy
effects with latent heat release. The second class of models has raised some open issues regarding
closedness of the obtained equation systems. In the regime of “organized convection” with leading
order vertical upward and downward motions, higher order perturbations would be needed to close
the model hierarchy. In contrast, in the regime of sparsely distributed updrafts, techniques foreign to
classical multiple scales analyses will have to be invoked in addition to define a closed model for the
spatial distribution of the “hot towers”.

We leave detailed discussions of these issues, (numerical) solutions of the new model equations, and
applications in the context of innovative computational modelling strategies for future publications.
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