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ABSTRACT

Identification and analysis of temporal trends and low-frequency variability in

discrete time series is an important practical topic in understanding and predic-

tion of many atmospheric processes, for example, in analysis of climate change.

Widely used numerical techniques of trend identification (like local Gaussian ker-

nel smoothing) impose some strong mathematical assumptions on the analyzed

data and are not robust to model sensitivity. The latter becomes crucial when

analyzing historical observation data with a short record. Two global robust nu-

merical methods for the trend estimation in discrete non-stationary Markovian

data based on different sets of implicit mathematical assumptions are introduced

and compared here. The methods are first compared on a simple model exam-

ple, the importance of mathematical assumptions on the data is explained and

numerical problems of local Gaussian kernel smoothing are demonstrated. Pre-

sented methods are applied to analysis of the historical sequence of atmospheric

circulation patterns over UK between 1946-2007. It is demonstrated that the

influence of the seasonal pattern variability on transition processes is dominated

by the long-term effects revealed by the introduced methods. Despite of the dif-

ferences in the mathematical assumptions implied by both presented methods,

almost identical symmetrical changes of the cyclonic and anticyclonic pattern

probabilities are identified in the analyzed data, with the confidence intervals

being smaller then in the case of the local Gaussian kernel smoothing algorithm.

Analysis results are investigated with respect to model sensitivity and compared

to standard analysis technique based on a local Gaussian kernel smoothing. Fi-
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nally, the implications of the discussed strategies on long-range predictability of

the data-fitted Markovian models are discussed.
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Introduction

Many real life processes can be described as simplified discrete models switching between

a finite number of states or regimes. Such processes can be found in biophysics (tran-

sitions between different conformations in biomolecules) (Schütte and Huisinga 2003), in

computational finance (transitions between different market phases) (Hamilton 1989) and

in weather/climate research (transitions between different atmospheric circulation regimes)

(Majda et al. 2006; Horenko 2008c; Horenko et al. 2008b,a).

However, most of the available time series data from such process share the two following

properties: (i) the data has only a short record (since observations are usually available only

on some relatively short time intervals), (ii) the underlying dynamics usually has a temporal

trend and can not be assumed stationary (i. e., in the Markovian case, the transition matrix

can not a priori be assumed time-independent). Moreover, two important practical problems

frequently arise when analyzing non-stationary data: (i) comparison of different trend models

and trend hypothesis tests, (ii) influence of the mathematical assumptions associated with

the choice of the model on the analysis results (robustness).

One of the most frequently used techniques for analysis of non-stationary observation

time series is the local Gaussian kernel smoothing approach (Loader 1996, 1999; Zhao and

Wei 2003). The main idea of this approach is based on the locally stationary approximation

of estimated quantities (like observable averages) or some estimated model parameters inside

of the Gaussian window of a certain width, typically characterized by the respective variance

parameter σ2 (for geophysical applications of the method see, for example, (Anderson 2002;

Xiong et al. 2006; Dakos et al. 2008)). The window width parameter σ2 is typically chosen a
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priori to characterize some slow intrinsic time scale of interest. However, the main difficulty

of this approach lies in its locality, e. g., the information used to estimate the quantities of

interest at certain time point is acquired only locally from the inner part of the Gaussian

window around this point.

This paper considers a problem of trend estimation for the dynamical processes with

discrete finite state space based on the given observation data. In context of atmospheric

applications, such processes can describe the transitions between certain predefined circu-

lation regimes or patterns (like the Lamb circulation index (Lamb 1972) or blocked and

unblocked situations in atmosphere (Majda et al. 2006)). The considered processes are as-

sumed to fulfill the Markov-property, e. g., the probability of transition to any other available

state at any time is only dependent on the current state and is independent from the previous

transition history.

Presented paper introduces two global approaches to trend identification in discrete

Markov time series and compares them to the local Gaussian kernel smoothing technique

adapted here for Markov chain series estimation. The one of the presented methods is a para-

metric approach, allowing to test the simple trend models of different types and compare

them with each other in Bayesian sense. The second technique is of the non-parametrical

form, it allows to estimate the low-frequent trends by solving a metastable clustering problem

with a fixed number of cluster states. It is explained how the optimal number of clusters

can be identified dependent on the single external scalar regularization parameter ǫ2. The

connection between regularization parameter, the persistence of the resulting decomposition

and the Gaussian window width parameter σ2 is discussed. It is shown that in context of

Markovian processes, the presented non-parametric method can be viewed as an adaptive
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extension of the local Gaussian kernel smoothing technique. Numerical examples demon-

strate that in contrast to the non-parametric local Gaussian kernel smoothing technique

(Loader 1996, 1999; Zhao and Wei 2003), both of the presented methods allow for a more

robust estimation and comparison of different non-stationary Markov models.

It is shown that the introduced methods can be helpful in analysis of practical appli-

cations, e. g., the presented algorithms are applied to analysis of the historical sequence

of atmospheric circulation patterns over UK between 1946-2007. The long term effects in

transitions between different patterns are systematically investigated and compared.

The paper begins with a short description of the non-parametric local Gaussian kernel

smoothing in context of Markov chains, followed by the description of both global methods.

Special emphasis is done on the intrinsic mathematical assumptions in each of the methods.

The final sections deals with application of the presented techniques to the analysis of illus-

trative model data and atmospheric data series, interpretation of the obtained results and

comparison of different methods with respect to their robustness.

Methods and Approach

In the following we will consider the data series that is discrete in time and space, i. e.,

{Xt}t=1,...,T takes values from some fixed set of m distinct quantities s1, . . . , sm. These

quantities, for example, can denote the states or configurations of the observed system along

the dynamics. The process underlying the observations is called Markovian if the probability

P of any current state of the process at time t depends only upon the previous state at time

t − 1 and does not depend on any other previous state. Mathematically this property can
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be expressed as P [Xt = sj|X1, X2, . . . , Xt−1 = si] = P [Xt = sj|Xt−1 = si] = Pij(t), where

Pij(t) denotes the probability of transition from state si to state sj in one step at time t.

These probabilities can be put together into an m × m stochastic transition matrix P (t),

i. e.,
∑m

j=1 Pij(t) = 1 for any t and i. In order to be able to estimate the a priori unknown

transition probabilities Pij(t) based on the observation data Xt, we first need to introduce

the concept of the observation probability or likelihood. For example, consider a simple

discrete Markov process with three possible states s1 = 1, s2 = 2 and s3 = 3 available in the

form of the following observed time series:

{Xt}t=1,...,12 = {1, 1, 2, 1, 3, 2, 3, 1, 3, 3, 2, 2}. (1)

Applying the Markov property, it is easy to demonstrate that the probability of observing

this time series can be expressed as a probability of starting in one, then staying in one at

t = 2, then jumping from state one to state two at t = 3, etc. That is:

P [X1 = 1, X2 = 1, . . . , X12 = 2] = P [X1 = 1] P [X2 = 1|X1 = 1] . . . P [X12 = 2|X11 = 2] . (2)

For any given Markovian series {X1, . . . , XT}, the corresponding observation probability (or

likelihood) can be compactly written as P [X1, . . . , XT ] = P [X1]
∏m

i,j=1

∏

t∈{tij}
Pij(t), where

{tij} is the set of all time instances when the transitions between si and sj are observed1.

This means that if the transition matrix is unknown, it can be found by maximization of

the above likelihood function for a fixed observation sequence {X1, . . . , XT} ,e. g., solving

1It is assumed that {tij} is not empty ∀i, j. If it is not true for a certain pair (i, j), it means that no

direct transitions between the states si and sj were observed in the time series and the respective matrix

elements Pij(t) can be assumed to be equal zero for all t.
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the following maximization problem:

P0(t) = arg max
P (t)

P [X1, . . . , XT ] . (3)

From the numerical point of view, instead of solving the above maximization problem,

it is much more convenient to maximize the logarithm of the above expression, i. e., the

log-likelihood of the Markovian process:

L (P (t)) = log P [X1, . . . , XT ]

= log P [X1] +
m

∑

i

Li (Pi1(t), . . . , Pim(t))

→ max
P (t)

, (4)

where

Li (Pi1(t), . . . , Pim(t)) =
m

∑

j=1

∑

t∈{tij}

log Pij(t) (5)

is the partial log-likelihood of the state i. To preserve the stochasticity of the resulting

matrix P (t), the minimization problem (4) is subjected to the following constraints

m
∑

j=1

Pij(t) = 1, for all t, i

Pij(t) ≥ 0, for all t, i, j (6)

The main difficulty arising from the formulation (4-6) is that it is not a well-posed problem.

If the transition matrix is allowed to be completely time-dependent, than the number of

unknowns to be estimated in this case is equal m2T , whereas the number of observed tran-

sitions and equality constraints is m(T + 1)− 1. Optimizer of the problem (4-6) at time t in

such a case will be PXtXt+1(t) = 1 and PXtk(t) = 0 for all other elements k = 1, . . . ,m from

the same row Xt of the transition matrix P (t). All other elements of the matrix can be set
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to any arbitrarily values (satisfying the constraints), resulting in a meaningless estimation.

Since the problem (4-6) is ill-posed, one needs to incorporate some additional information

into the formulation of the problem (or, in mathematical language, to regularize the prob-

lem) in order to make it well-posed. The simplest form of regularization is an additional

assumption about the global stationary of the Markov proces, e. g., the transition matrix

P (t) is assumed being time independent2

One of the straightforward possibilities to relax the aforementioned global stationarity

assumption is based on the application of local Gaussian kernel smoothing idea (Loader

1996, 1999; Zhao and Wei 2003) in context of optimization problem (4-6). Assuming a local

stationarity of the underlying transition process at time t0 inside of the window of a certain

width σ2, one can introduce a normalized Gaussian weight function γ(t, t0) = 1
c
exp(− (t−t0)

2

σ2 )

(where c is the normalization constant). Approximating L (P (t)) as

L (P (t0)) ≈ log P [X1] +
m

∑

i,j=1

∑

t∈{tij}

γ(t, t0) log Pij(t0)

→ max
P (t)

, (7)

and applying the method of Lagrange multipliers we get

Pij(t0) =

∑

t∈{tij}
γ(t, t0)

∑

t∈{ti}
γ(t, t0)

, (8)

where {ti} is the set of all time instances when the state si was visited.

2If P (t) is assumed to be time-independent, optimization problem (4-6) can be solved analytically applying

the method of Lagrange multipliers with Pij = |{tij}|/
∑

k |{tik}|, where |{tij}| denotes the number of

observed transitions between the states si and sj and
∑

k |{tik}| 6= 0.
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Trend models of discrete Markov chains

Two main disadvantages of the local Gaussian kernel smoothing procedure described

above are: (i) assumption about the local stationarity of the transition process and (ii)

arbitrariness in the choice of the window width parameter σ. Besides that, this procedure

doesn’t give a direct possibility to acquire a constructive functional form of the trend in the

analyzed data. This means that in order to make predictions based on available time series

information, one has to extrapolate the identified transition process P (t) in future. To do

that, the identified process P (t) has to be approximated with a time-dependent function of

a certain class φ(t). Instead of that, one can impose the functional form φ(t) a priori and

incorporate it in to the maximization of the log-likelihood in the form of the trend model.

Single trend models have a general form

P (t) = P (0) + P (1)φ (t) , φ : [1, T ] → (−∞, +∞) , (9)

where φ = φ (t) is some predefined bounded trend function. Inserting (9) to (4) and (6),

after some obvious transformations for any i = 1, . . . ,m we get:

m
∑

j=1

∑

t∈{tij}

log
(

P
(0)
ij + P

(1)
ij φ (t)

)

→ max
P (0),P (1)

, (10)

m
∑

j=1

P
(0)
ij = 1, (11)

m
∑

j=1

P
(1)
ij = 0, (12)

P
(0)
ij + P

(1)
ij sup

t∈[1,T ]

φ(t) ≥ 0, for all j, (13)

P
(0)
ij + P

(1)
ij inf

t∈[1,T ]
φ(t) ≥ 0, for all j. (14)
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Problem (10) for a fixed observation sequence {X1, . . . , XT} and some given trend function

φ is a 2m-dimensional concave maximization problem with respect to the elements of the ith

row of matrices P (0) and P (1). The maximization is performed on a convex domain defined

by the linear equality and inequality constraints (11-14). Therefore, the problem (10-14)

has a solution that can be found numerically applying any available nonlinear maximization

algorithm with linear constraints, e. g., a Nelder-Mead optimization algorithm (Nelder and

Mead 1964). Note that for the multiple trend model P (t) = P (0) +
∑

i P
(i)φi (t), analogs

of the inequality constraints (13-14) will become non-linear. This will make the numerical

procedure much more costly, moreover, the convexity of the domain defined by the constraints

will not be guaranteed. Therefore, due to these numerical reasons, in the following we will

stick to the single trend model defined by (9). We will do that even despite of the fact that

the multiple trend models have more skill in describing the non-trivial scenarios.

Trend identification with hidden states: adaptive FEM-Clustering

Instead of looking for the trend in a certain class of parametric functions (like, e. g., in

log-likelihood maximization with a single trend model, see equation (9)) or assuming the

local stationarity of the transition process as in the case of the non-parametric Gaussian

kernel smoothing, one can assume that the element-wise logarithm of Markovian transition

matrix (4) at any time t can be represented as a convex linear combination of K time-

independent logarithms log P i with some unknown time-dependent coefficients γi (t) (where

K is some predefined number). In other words, in the space of the observed transitions xt,

one can look for K clusters (or hidden states, since they are a priori unknown) characterized
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by K distinct sets of a priori unknown constant transition probability matrices P i ∈ Rm×m

with the cluster distance functional of the form

g(xt, P
i) = − log P i

XtXt+1
, t = 1, . . . , T − 1. (15)

This cluster distance functional describes the quality of explaining the observed transition

xt : Xt → Xt+1 at time t with the help of the transition matrix P i. For a given cluster

distance functional (15), under data clustering we will understand the problem

L =
K

∑

i=1

T−1
∑

1

γi(t)g(xt, P
i) → min

γi(t),P i
, (16)

subject to the constraints on γi(t):

K
∑

i=1

γi(t) = 1, ∀t ∈ [1, T − 1] , (17)

γi(t) ≥ 0, ∀t ∈ [1, T − 1] , i = 1, . . . ,K, (18)

and on P 1, . . . , PK (6). As was demonstrated in (Horenko 2008a,b), in order to get persistent

(or metastable clusters) from this minimization procedure, it is enough to impose some

metastability assumptions in the space of functions γi(·) ) and then apply a finite Galerkin

projection of this finite-dimensional Hilbert space. For example, one can restrain the weak

discrete differentiability of functions γi, i. e.:

|γi|h1(1,T−1) = ‖
γi(t + 1) − γi(t)

∆t
(·) ‖l2(1,T−1)=

T−1
∑

t=1

(γi (t + 1) − γi (t))
2

∆t

≤ Ci
ǫ < +∞, i = 1, . . . ,K. (19)

For a given observation time series, the above constraint limits a total number of tran-

sitions between the clusters and is connected to the metastability of the hidden process

γi(t), i = 1, . . . ,K (Horenko 2008a).
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One of the possibilities to incorporate the constraint (19) into the minimization of (16)

is to introduce the Lagrange-multiplier ǫ2

Lǫ = L + ǫ2

K
∑

i=1

T−1
∑

t=1

(γi (t + 1) − γi (t))
2

∆t

→ min
γi(t),P i

. (20)

This form of penalized regularization was first introduced by A. Tikhonov for solution of ill-

posed linear least-squares problems (Tikhonov 1943) and was frequently used for non-linear

regression analysis in context of statistics (Hoerl 1962) and multivariate spline interpolation

(Wahba 1990). In contrast to the aforementioned application of Tikhonov-type regularization

to interpolation problems (where the regularization is controlling the smoothness of some

non-linear functional approximation of the given data), presented form of the regularized

averaged clustering functional (20) has a completely different mathematical structure due to

the form of the functional (16). This specific formulation of the optimization problem with

constrains allows one to control the metastability of the assignment Γ(t) of the analyzed

data to K distinct a priori unknown clusters (Horenko 2008a).

Let {1 = t1, t2, . . . , tN−1, tN = T −1} be a finite subdivision of the time interval [1, T − 1]

with uniform time step δt. We can define a set of continuous functions {v1(t), v2(t), . . . , vN(t)}

called hat functions or linear finite elements with compact support (i. e., such that each

function vi(t) is taking positive values in the time interval (ti−1, ti+1) and is zero outside)

(Braess 2007). Assuming that γi ∈ h1 (1, T − 1) (i. e., functions with the first discrete

derivative being square integrable functions in discrete sense, cf. (Braess 2007)) we can
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write

γi = γ̃i + χN

=
N

∑

k=1

γ̃ikvk + χN , (21)

where γ̃ik =
∑T−1

t=1 γi (t) vk (t) and χN is a discretization error (it becomes zero if δt =

∆t). Optimal N can be chosen adaptively to guarantee that χN doesn’t exceed a certain

discretization error threshold. Inserting (21) into functional (20) and constraints (17,18) we

get

L̃ǫ =
K

∑

i=1

[

a(P i)Tγ̃i + ǫ2γ̃T

i Hγ̃i

]

→ min
γ̃i,P i

, (22)

K
∑

i=1

γ̃ik = 1, ∀k = 1, . . . , N, (23)

γ̃ik ≥ 0, ∀k = 1, . . . , N, i = 1, . . . ,K, (24)

m
∑

j=1

P l
ij(t) = 1, for all l, i (25)

P l
ij(t) ≥ 0, for all l, i, j (26)

where γ̃i = (γ̃11, . . . , γ̃iN) is the vector of discretized affiliations to cluster i, and

a(P i) =





t2
∑

t=t1

v1(t)g(xt, P
i)δt∆t, . . . ,

tN−1
∑

tN−2

vN(t)g(xt, P
i)δt∆t



 ,

(27)

is a vector of discretized cluster distances and H is the symmetric tridiagonal stiffness-matrix

of the linear finite element set with 2/tδt on the main diagonal, −1/δt on both secondary

diagonals and zero elsewhere. (22-26) is a non-linear minimization problem with linear

equality and inequality constraints, imposed on both γ̃i and P i, i = 1, . . . ,K.
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If ǫ2 = 0, then the above minimization problem (22-24), can be solved analytically wrt.

γ̃
(L)
i for a fixed set of transition matrices P 1, . . . , PK (where L denotes the index of current

iteration) resulting in

γ
(L)
i (tj) =



















1 i = arg min aj (P i) ,

0 otherwise,

(28)

If ǫ2 > 0, for a fixed set of transition matrices P 1, . . . , PK, the minimization problem

(22-24), reduces to a sparse quadratic optimization problem with linear constraints which

can be solved by standard tools of sparse quadratic programming (sQP) with computational

cost scaling as O (N log (N)) (Gill et al. 1987).

The minimization problem (22) with transition matrix constraints (25-26) can be solved

analytically wrt. the parameters P 1, . . . , PK for a fixed set of discretized cluster affiliations

γ̃i. Applying the method of Lagrange multipliers results in the following expression for the

transition matrices:

P l
ij =

∑

t∈{tij}
γl(t)

∑

t∈{ti}
γl(t)

, (29)

where {tij} ⊂ [1, T − 1] are the time instances when the transitions between the states si

and sj are observed and {ti} is a set of all time instances when the state si is visited.

Note the obvious similarity between the expression (29) and the local transition matrix

estimator (8) in context of Gausian kernel smoothing. Despite of this similarity and the

fact that both of the methods rely on some form of stationarity assumption, statistical

weights γ(t, t0) are fixed and localized by the choice of the Gaussian curve of the certain

width, whereas hidden probabilities γi(t) are defined adaptively, dependent on the whole set

of available data and not just on the part of it from inside the window. In another words,
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expression (29) gets use of the global information contained in the cluster affiliation functions

γi(t) (later on in the text it is explained how predefined discretization error threshold and

regularization parameter ǫ2 influence these values). Globality of the adaptive FEM-clustering

procedure gives an advantage when analyzing the data with a short time record (since it

allows to tighten the confidence intervals around the estimated parameters and can help to

obtain more robust numerical results).

Similarly to the algorithms described in (Horenko 2008a,b), minimization of the func-

tional (22) can be implemented as an iterative numerical scheme. The iterations can be

repeated until the change of the functional value doesn’t exceed some predefined threshold

for the change of the functional value (22).

Estimation of optimal K dependent on ǫ2:

The upper bound for the number of statistically distinguishable cluster states for each

value of ǫ2 can be algorithmically estimated in the following way: starting with some a

priori chosen (big) K one solves the optimization problem (22-26) for a fixed value of ǫ2 and

calculates the confidence intervals of the resulting local transition matrices P i, i = 1, . . . ,K

(this can be done applying the standard sampling procedures, see Noe (2008)). If two of the

estimated matrices have the confidence intervals that are overlapping in all components, this

means that respective clusters are statistically indistinguishable and the whole procedure

must be repeated for K = K − 1. If at a certain point all of the matrices are statistically

distinguishable the procedure is stopped and Kmax(ǫ
2) = K.
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Robustness Estimation

It is intuitively clear that the quality of the resulting reduced model is very much depen-

dent on the original data, especially on the length of the available time series. The shorter

the observation sequence, the bigger the uncertainty of the resulting parameters. There-

fore global methods presented above, like single trend model and FEM-clustering should be

more robust then local methods, like Gaussian kernel smoothing, as the analyzed time series

become longer. That is, for a short time series, everything is local, but as the time series

becomes long (in the sense that T >> σ, with σ defining the width of a Gaussian moving

window) the global methods then have the advantage of assimilating more information.

Let P ∗ = PM
{Xt}

(t) be the Markovian transition matrix, estimated with one of the methods

M described above from a given observation sequence {Xt}t=1,...,T . As {XM
t (P (t), ω)}t=1,...,T

we denote a single realization of the Markov process P (t) with the model M . To compare the

robustness of different models for a given data, we introduce the following estimate deviation

process RM
{Xt}

(f, ω) for a given function f

RM
{Xt}(f, ω) = f (P ∗) − f

(

PM
{XM

t (P ∗,ω)}(t)
)

, (30)

The Gaussian assumption for the stochastic process RM
{Xt}

(f, ω) gives an opportunity to

estimate its confidence intervals for some given function f straightforwardly. This can be

done in a standard way by using multivariate statistical analysis, i. e., by the Monte Carlo

sampling from the respective distribution and calculating expectation values wrt. ω (Mardia

et al. 1979). The confidence intervals calculated for the variable RM
{Xt}

(f, ω) give a possibility

to estimate the intrinsic robustness of the chosen model M for a give observation {Xt}t=1,...,T .
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Application I: Instructive Model Example

To illustrate an application of the methods described above, it is instructive to inves-

tigate the following simplified model scenario: consider a process Xt with three directly

observed possible states {1, 2, 3} and transition probabilities taking values from one of the

two following transition matrices

A1 =

















0.82 0.12 0.06

0.08 0.87 0.05

0.07 0.09 0.84

















, A2 =

















0.16 0.70 0.14

0.52 0.37 0.11

0.30 0.27 0.43

















. (31)

The choice of the transition matrix, taken to calculate a probability of the next transition at

time t, depends on another discrete hidden process Yt with two possible states {1, 2}. If the

hidden process Yt takes the value 1, then matrix A1 is chosen to calculate transition prob-

abilities of the observed process X at time t, otherwise transition matrix A2 is taken. An

example of the observation series Xt resulting from this computation procedure is demon-

strated in the right panel of Figure 1. Hidden process Yt used in this calculation is shown

in the left panel of Figure 1. The log-likelihood of the generated time series in terms of the

switching Markov model (31) is Lreal = −708.67.

Next, generated Markov time series from Figure 1 is taken to compare three presented

methods wrt. the identification of the non-stationary trend of the Markov transition proba-

bilities (driven by the hidden variable Yt). We start with the local Gaussian kernel smoothing

procedure (8), repeat the estimation with different values of the Gaussian window width pa-

rameter σ2 and keep the parameter value with the highest log-likelihood (which in this case

turns out to be σ2
opt = 1296, that corresponds to effective window width of approx. 70 time
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units). The log-likelihood of the analyzed time series in terms of the local Gaussian kernel

smoothing model with σ2
opt = 1296 turns out to be LGauss = −717.34 (this is just 0.58% less

then the log-likelihood of the original switching Markov model). Estimation of the single

trend model (9) with φ(t) = tα as expected results in almost stationary transition matrix

estimates. This is simply explained by the fact that models with polynomial trend is a bad

choice for approximating non-stationary processes where the change of the transition prob-

ability matrices is described by the hidden process like the one from Figure 1. Finally, we

apply the adaptive FEM-Clustering procedure with different values of regularization para-

meter ǫ2. The tolerance threshold χN (21) is chosen to be 0.0001 in all cases.

Figure 2 demonstrates an influence of the regularization parameter ǫ2 on the identified

hidden process (described by the variables γi(t) resulting from the numerical solution of the

optimization problem (22-26) ). Whereas for ǫ2 = 0 (correspondent to the unregularized

optimization) we get an arbitrary hidden process, for ǫ2 = 0.2 the identified hidden process

almost exactly reproduces the original process Yt used in generation of the time series.

Hidden processes identified with bigger values of ǫ2 become more and more smooth until the

point where the regularization part of the functional (20) starts to dominate the optimization

producing constant hidden process with no switches.

Figure 3 shows a comparison of the original transition probability trends as functions of

time with the results obtained by the local Gaussian kernel smoothing model with σ2
opt = 1296

(dotted, the robustness intervals are in light grey) and the trends obtained by the adaptive

FEM-Clustering procedure with ǫ2 = 0.2 and K = 2 (dashed). The log-likelihood of the

analyzed time series in terms of the adaptive FEM-Clustering procedure turns out to be

LFEM = −703.21 (this is 0.67% bigger then the log-likelihood of the original switching
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Markov model (31)). As it can be seen from Figure 3, trends resulting from the adaptive

FEM-Clustering procedure reproduce the original trends much better then the local Gaussian

kernel smoothing trends do. This is not a big surprise since the internal structure of the an-

alyzed time series is much better reproducible with the help of the adaptive FEM-Clustering

procedure. Figure 3 also demonstrates the effect of locality of the Gaussian smoothing

procedure: since the optimal Gaussian window turns up to become relatively narrow, only

a relatively small amount of information is getting incorporated in the trend estimation

at any point. This result in huge confidence intervals for the estimated matrix elements.

Comparison of log-likelihood values Lreal = −708.67,LGauss = −717.34,LFEM = −703.21

and inspection of the respective probability trends in the Figure 3 reveals, that very small

relative changes in the value of the log-likelihood can be induced by very significant changes

of trend. This means that the relative value of the log-likelihood function alone can not be

considered as a measure for the model quality.

Finally, the procedure of Kmax(ǫ
2) identification described above is exemplified for this

model data example. Figure 4 demonstrates that the maximal number of statistically

distinguishable clusters decreases with increasing value of ǫ2. Moreover, described proce-

dure allows a correct identification of hidden states Y in a wide range of regularization

parameters (0.2 ≤ ǫ2 ≤ 0.8). Note that due to the form of the regularized functional (20),

the absolute value of the regularization parameter ǫ2 necessary to achieve a desired persis-

tence of the hidden process γi(t), i = 1, . . . ,K will be different for different applications. This

value is influenced by the norm and the properties of the original cluster distance functional

(16) evaluated for a given time series, i. e., the magnitude of ǫ2 and numerical investigations

analogous to the one presented in Figure 4 should be performed in each data-analysis case.
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Application II: Analysis of Lamb Circulation Index Se-

ries for UK

a. Data Sources

Analyzed data (electronically retrievable at

http://www.cru.uea.ac.uk/ftpdata/lwtjenk.dat, provided by the Climatic Research Unit of

the University of East Anglia) represents a sequence of atmospheric circulation patterns

over UK. In the original time series, each of the days between 1.Jan.1880 and 31.Jul.2007

is assigned to one of the 28 basic patterns (cyclonic, anticyclonic, western, etc.) based on

the daily grid-point mean sea level pressure data. The assignment of the circulation regimes

in the considered time series is done according to the modified Lamb classification scheme

proposed by Jenkinson and Collison (Lamb 1972; Jenkinson and Collison 1977; Jones et al.

1993). In the following, the analysis is restricted to the part of the series after the second

world war, i. e., between the 1.Jan.1946 and 31.Jul.2007. To simplify the analysis and to

make the graphical representation of results more comprehensible, a total number of the

analyzed circulation patterns is reduced to three, i. e., the anticyclonic pattern is denoted

as state 1, the cyclonic pattern is denoted as state 3 and all other patterns are assigned to

the collective state 2.

b. Trend Discrimination with Maximum Likelihood Approach

Before demonstrating the applicability of the strategies described in this paper to the

resulting time series (switching between the discrete states 1, 2 and 3), it is necessary first
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to demonstrate the Markovian property of the respective transition process. For a pity,

there is no standard strategy to test the Markov-assumption in non–stationary case. In the

following we will use the test strategy applicable to stationary case and will assume that the

deviations from stationarity are not very significant for the analyzed data so the stationary

tests are still valid in some sence. Development of non-stationary Markov tests is a matter of

future research. For the stationary case (where the underlying transition matrix is assumed

to be time independent), the Markovian property can be verified applying some standard

tests, e. g., one can check the generator of the process, see (Crommelin and Vanden-Eijnden

2006; Metzner et al. 2007). Application of this test confirms the Markov hypothesis for the

analyzed data in stationary case and reveals that the underlying process can be represented

by a rapidly mixing Markov chain (i. e., the probabilities to stay in the same state are

comparable to the probabilities to change the state so the respective process does not get

stuck in the same state for a long time).

As was mentioned above, identification of multiple trend models, due to the non-convexness

of the respective inequality constraints, is a problem that is unfeasible from the numerical

point of view. To choose the most probable single trend model for a given time series of at-

mospheric circulation patterns, different trend function classes φ(t) can be parameterized by

numerical solution of the problem (10-14) and then compared with the help of the standard

Bayesian hypothesis test approach (Gelman et al. 2004).

One of the most intuitive single trend models in meteorological context is the seasonal

trend model of the form

P (t) = P (0) + P (1) sin(
2π

T
t + φ), (32)
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where T = 365.24 days is a seasonal period and φ ∈ [0, T ] is a phase factor. The maximiza-

tion problem (10-14) is independently solved for each of the rows of the transition matrix.

Optimization is repeated for various values of φ and for each matrix row the parameters

P (0), P (1), φ with the highest value of the partial log-likelihood are kept (see the dashed lines

in Figure 4). The same kind of procedure is performed for the single trend model of the

polynomial form

P (t) = P (0) + P (1)tα. (33)

Statistical hypothesis tests can be performed to decide, which of the single trend models

can better explain the observed data. The log-likelihood of the respective partial log-likelihood

maxima (see Figure 5) can be calculated and the a posteriori model probabilities can

then be acquired from the Bayes formula. It shows up that the polynomial trend model

P (t) = P (0) + P (1)tα and the non-stationary hidden states model (estimated with adaptive

FEM-clustering algorithm for 3 hidden states) have the highest probability to describe the

analyzed date. Moreover, different values of exponent α in the polynomial trend model are

optimal for different atmospheric circulation patterns (α = 0.8 for anticyclonic, α = 0.3 for

cyclonic and α = 0.5 for the combination of all other patterns). Inspection of the resulting

trend derivatives Ṗ (t) = αP (1)tα−1, shows that according to the analyzed data, the speed

of climate change visible in transition probability trends was higher at the beginning of the

analyzed period as compared to the current period of time (since for all of the identified

trends (α < 1)). This finding may represent a local effect and must be verified on the global

data. This is a matter of further research.

Figure 5 demonstrates that the maximal log-likelihood values for optimal polynomial
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trend and hidden states models are higher than the optimal values for the seasonal trend

model (dashed lines) and the local Gaussian kernel smoothing result (dash-dotted, with

effective Gaussian window width of 10 years, corresponds to the Gaussian window width

used in the original work (Jones et al. 1993) considering the analysis of the UK Lamb index

series). This finding means that the influence of seasonal pattern variability on transition

processes is dominated by the long-term effects induced by the single polynomial trend and

hidden states models. Moreover, the optimal hidden states model with K = 3 has a highest

probability in the case of states 1 and 2. In the case of the state 3 (describing the cyclonic

pattern), the single polynomial trend model Pij(t) = P
(0)
ij +P

(1)
ij t0.3 can explain the observed

data better then any other tested model. However, this finding should be handled with care

since the number of parameters used in the hidden state model for K = 3 is higher then the

number of parameters involved in the single polynomial trend model.

Comparison of Robustness and Predictability

In order to interpret the obtained results, estimated transition matrices P (t) and instantaneous

statistical weights πi (t) , i = 1, 2, 3

π (t) P (t) = π (t) , π (t) = (π1 (t) , . . . , πm (t)) (34)

can be compared, both wrt. their qualitative temporal behavior and robustness. Instan-

taneous statistical weights are the components of the steady state PDF of the stationary

Markov process, e. g., in non-stationary cases these quantities describe a time evolution of

an equilibrium PDF. Figure 6 demonstrates a good agreement of the resulting parameters for

the single polynomial trend model and the hidden states model. It can clearly be seen that
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in both cases the probability to stay in the anticyclonic pattern decreases, the probability

to go from the anticyclonic to the cyclonic pattern increases and the probability to go

from anticyclonic to any other circulation pattern stays almost constant. For the cyclonic

pattern transitions the situation is reversed: the probability to stay in the cyclonic pattern

increases, the probability to go from the cyclonic to the anticyclonic pattern decreases and

the probability to go from cyclonic to any other circulation pattern stays almost constant. As

can be seen from Figure 7, this tendency results in increasing instantaneous statistical weight

of the cyclonic pattern and in symmetric anticyclonic pattern weight decreasing. Moreover,

Figures 2 and 3 demonstrate the higher robustness of results obtained by the global methods

compared to the local Gaussian kernel smoothing method.

In order to make predictions based on available time series information, one has to

extrapolate the identified transition process P (t) to the future. As was mentioned above,

single trend models give a direct possibility to generate the long-term predictions since

the exact functional form (in some predefined class of functions, e. g., polynomials) of the

transition process P (t) is estimated explicitly from the observation data. For any given time

1 < τ < T , P [1,τ ](t) will denote the Markovian transition matrix estimated only from part

of the available time series X1, X2, . . . , Xτ . In order to quantify the prediction quality based

on this estimate, mean log-likelihood of prediction L̄∆t
τ can be used:

L̄∆t
τ =

1

∆t

m
∑

i=1,j=1

∑

t∈{t
[τ,τ+∆t]
ij }

log P
[1,τ ]
ij (t) (35)

where {t
[τ,τ+∆t]
ij } ⊂ [τ + 1, τ + ∆t] are the time instances between τ + 1 and τ + ∆t, when

the transitions between si and sj are observed. Figure 8 illustrates that predictions based

on single trend polynomial model are more probable then the predictions based on the
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stationary Markovian model without trend. This means that the long term effects explained

by the polynomial trend are significant and can be reliably identified even using a part of

the original data.

Concluding Discussion

Three numerical methods for analysis of non-stationary Markovian data have been pre-

sented and compared here. In contrast to the standard approach (being a local non-

parametric technique, i.e., getting use only of the local information inside of the moving

Gaussian window), two presented methods acquire the information globally, therefore, under

predefined mathematical assumptions, they allow a more reliable estimate of the underlying

model parameters. This feature is very important for analysis of a short record series. Both

presented global methods demonstrated a more reliable trend discrimination with more nar-

row robustness intervals compared with the results of the local Gaussian kernel smoothing.

It was exemplified how the new methods can help to perform a robust identification of tran-

sition probabilities and stationary weights in the analyzed circulation data. Both methods,

despite the difference in the mathematical assumptions implied on the data (the one being

parametric, the second being non-parametric), revealed the same robust weight increase of

the cyclonic circulation pattern (absolute increase of (6.3±0.5)%) and symmetrical decrease

of the anticyclonic pattern weight (absolute decrease of (5.5±0.5)%) over UK between 1945-

2007. Moreover, the results of the single trend model analysis indicated that the speed of

climate change identified from transition probability trends was higher at the beginning of

the analyzed period as compared to the current period of time.
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One of the most important practical issues in the area of time series analysis is construc-

tion of dynamical models able to predict the future. The single trend models have obvious

shortcomings predicting the situations where the functional and parametric form of the trend

function φ(t) is changed, e. g., in the case of the regime change. On the other hand, adaptive

FEM-clustering method has a potential to cope with this problem. However, in the current

setting of the algorithmic procedure, hidden state probabilities γi(t) are identified without

making any assumptions about their dynamics (in contrast to the widely used HMM-strategy

where these quantities are taken a priori to be Markov processes). It means that in order to

be able to predict the phase transitions in realistic applications, dynamics of hidden state

probabilities γi(t) has to be further investigated a posteriori. Moreover, robust statistical

techniques of change point analysis have to be developed. These problems are the matters

of further research.

For the analyzed practical application, it was demonstrated that the polynomial para-

meterization of the non-stationary Markov model enables a better quality of predictions

as compared to the stationary case. Further development of the presented data-analysis

techniques can help to acquire a better understanding of the low-frequency variability and

dynamics of processes switching between metastable weather and climate regimes.
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Fig. 1. Hidden process Yt switching between two different transition matrices (31) (left)

and an example of the resulting discrete Markovian series Xt (right).

35



0 100 200 300 400 500 600 700 800 900 1000

1

2

Time

H
id

en
 S

ta
te

 

 

ε2=0
original
ε2=0.2

ε2=0.5

Fig. 2. Comparison of the original hidden process from the left panel of Figure 1 (solid) with

the hidden processes identified from the respective observed sequence (see the right panel of

Figure 1) by adaptive FEM-Clustering (K = 2, with tolerance threshold χN = 0.0001). The

minimization is performed with different values of ǫ2.

36



0 500 1000
0

0.2

0.4

0.6

0.8

P
11

(t
)

Day
0 500 1000

0

0.2

0.4

0.6

0.8

P
12

(t
)

Day
0 500 1000

0

0.1

0.2

0.3

P
13

(t
)

Day

0 500 1000
0

0.1

0.2

0.3

0.4

0.5

P
21

(t
)

Day
0 500 1000

0

0.2

0.4

0.6

0.8

1

P
22

(t
)

Day
0 500 1000

0

0.1

0.2

0.3

P
23

(t
)

Day

0 500 1000
0

0.1

0.2

0.3

0.4

P
31

(t
)

Day
0 500 1000

−0.1

0

0.1

0.2

0.3

P
32

(t
)

Day
0 500 1000

0

0.2

0.4

0.6

0.8

1

P
33

(t
)

Day

Fig. 3. Comparison of Markov transition probabilities as functions of time: original

transition probabilities (solid) used in generation of the time series; probabilities estimated

by the local Gaussian kernel smoothing with the value of σ2 defined by the variation of the

log-likelihood maximization procedure (dark grey, dotted) together with its robustness inter-

vals (light grey, dotted); probabilities estimated for ǫ2 = 0.2 (K = 2, with tolerance threshold

χN = 0.0001) (dark grey, dashed). The robustness intervals for the FEM-clustering method

estimates are of the order of ±0.06.

37



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3

4

5

6

7

8

9

ε2

K
m

ax
 (

ε2 )

 

 

Fig. 4. Maximal number of the statistically distinguishable cluster states Kmax as a function

of ǫ2.

38



0.2 0.4 0.6 0.8 1 1.2
−8410

−8408

−8406

−8404

−8402

−8400

−8398

−8396

−8394

−8392
L 1(α

)

α
 

 

Polynomial Trend
Seasonal Trend
Hidden States
Kernel Filtering

0.2 0.4 0.6 0.8 1 1.2

−9960

−9955

−9950

−9945

−9940

−9935

−9930

L 2(α
)

α
 

 

Polynomial Trend
Seasonal Trend
Hidden States
Kernel Filtering

0.2 0.4 0.6 0.8 1 1.2
−5910

−5905

−5900

−5895

−5890

−5885

−5880

−5875

−5870

−5865

L 3(α
)

α
 

 

Polynomial Trend
Seasonal Trend
Hidden States
Kernel Filtering

Fig. 5. Maximal partial log-likelihoods (5) of anticyclonic (left), cyclonic (right) and all other

(middle) circulation patterns. Dotted lines represent the partial log-likelihoods estimated for

non-stationary Markovian models P (t) = P (0) + P (1)tα as functions of exponent α. Dashed

lines mark the maximal values of partial loglikelihoods for the seasonal Markovian trends

of the form P (t) = P (0) + P (1) sin(2π
T

t + φ) (the maxima are calculated over all possible

φ ∈ [0, T ], where T = 365.4 days). Also shown are the partial log-likelihoods derived with

the help of: adaptive metastable FEM-clustering with K = 3,N = 50, ǫ = 50000 (bars), and

local kernel smoothing with the Gaussian window width of 10.0 years (dash-dotted lines).

The log-likelihood maxima for the polynomial trend are achieved at α1 = 0.8 (left), α2 = 0.5

(middle) and α3 = 0.3(right).

39



1960 1980 2000

0.35

0.4

Year

P
11

(t
)

1960 1980 2000
0.35

0.4

Year

P
12

(t
)

1960 1980 2000
0.2

0.25

Year

P
13

(t
)

1960 1980 2000
0.3

0.35

0.4

Year

P
21

(t
)

1960 1980 2000

0.4

0.45

Year
P

22
(t

)

1960 1980 2000
0.2

0.25

Year

P
23

(t
)

1960 1980 2000

0.3

0.35

0.4

Year

P
31

(t
)

1960 1980 2000
0.36
0.38
0.4

0.42
0.44
0.46

Year

P
32

(t
)

1960 1980 2000
0.18
0.2

0.22
0.24
0.26
0.28

Year

P
33

(t
)

Fig. 6. Comparison of Markovian transition probabilities Pij (t) estimated with:

log-likelihood maximization with polynomial trend Pij(t) = P
(0)
ij + P

(1)
ij tαi for α1 = 0.8, α2 =

0.5, α3 = 0.3 (black solid lines), local Gaussian kernel smoothing for the window width of

10.0 years (gray solid lines) and FEM-clustering for K = 3,N = 50, ǫ = 50000 (dashed

lines). Black dotted lines mark the robustness intervals for the parameters estimated by

the log-likelihood maximization with polynomial trend and gray dotted lines are the ro-

bustness intervals of the local Gaussian kernel smoothing. The robustness intervals of the

FEM-clustering method have almost the same size as the confidence intervals of the single

trend model (since both methods are global approaches.)
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Fig. 7. Instantaneous statistical weights (34) and their robustness intervals (dotted) cal-

culated with the local Gaussian kernel smoothing transition matrix(left) and with the

polynomial trend transition matrix from Fig. 6 (right). Dashed lines denote the respective

statistical weights calculated with the FEM-clustering procedure. The robustness intervals

of the FEM-clustering method have almost the same size as the confidence intervals of the

single trend model (since both methods are global approaches.
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Fig. 8. Mean log-likelihood of predictions (35) as a function of τ (in years, ∆t = 6000 days)

for P [1,τ ](t) estimated as: a stationary Markovian process without trend (dotted line), and

a non-stationary Markovian process with polynomial trend (solid line).
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