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Abstract

The function of many important biomolecules comes from their dynamic prop-
erties and their ability to make statistically rare switches between different confor-

mations. Recent investigations demonstrated that (a) these conformations can be
understood as metastable or almost invariant sets of certain Markov chains related
with the dynamical behavior of the molecular system and that (b) these sets can
efficiently be computed via eigenvectors of some associated transfer operators. The
article presents in general the idea of computing metastable sets of Markov chains
via the dominant eigenmodes of some associated transfer operator, refers its rigor-
ous justification for specific chains, and illustrates the application of the resulting
algorithm to problems arising from molecular systems.

1 Introduction

The chemically interesting function of many important biomolecules, like proteins or
enzymes, results from their dynamical properties, particularly from their ability to un-
dergo so-called conformational transitions (cf. [22]). In a conformation, the large scale
geometric structure of the molecule is understood to be conserved, whereas on smaller
scales the system may well rotate, oscillate or fluctuate. Recently, Deuflhard et al.

demonstrated that conformations can be understood as almost invariant or meta-stable

sets of the Hamiltonian system governing the molecular dynamics [5]. In 1996, Dellnitz

and Junge demonstrated that such almost invariant sets of discrete dynamical systems
with small random perturbations can be identified numerically via certain “dominant”
eigenvectors of the Markov operator associated with the perturbed system [4].

By transferring this idea to statistical mechanics, Schütte et al. showed that the
almost invariant sets of dynamical fluctuations in statistical molecular ensembles can
be determined via the “dominant” eigenvectors of a specific class of Markov operators
associated with discrete time Markov chains with nonlinear state space [16, 17]. It has
been demonstrated that, even for larger (bio)molecules, the eigenvectors of interest can
be computed efficiently and allow to identify the desired almost invariant sets [6, 16].
This allows for the first time to identify dynamical conformations of molecular ensembles
including their stability life spans and the rate of transitions between them [10].
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The present article summarizes the basic ideas by reformulating it in a rather general
framework for a large class of Markov chains. The presentation is tailored to demonstrate
how the molecular applications and such of Dellnitz et al. result from the general
framework (s. Sec. 5). The article closes with a specific example which illustrates that the
suggested approach allows to uncover purely dynamically induced metastabilities which
are not explained by the common physical beliefs (s. Sec. 6).

2 Markov Chains and Transfer Operators

Consider a probability space (X,A, µ), where X ⊂ Rm for some m ∈ N denotes the
state space, A the Borel σ–algebra on X and µ a probability measure on A. By t ∈ T
we denote the discrete or continuous time, i.e., T = R0

+ or T = N.
A function p : T × X × A → [0, 1] is called a stochastic transition kernel [3, 12],

if (i) p(t, x, ·) is a probability measure on A for every t ∈ T, x ∈ X and furthermore,
p(0, x,X \{x}) = 0 for every x ∈ X, (ii) p(t, ·, A) is measurable for every t ∈ T, A ∈ A,
and (iii) p(·, x, A) satisfies the Chapman–Kolmogorov equation [7, 12]

p(t + s, x, A) =

∫

X

p(t, x, dy) p(s, y, A) (1)

for all t, s ∈ T, x ∈ X and A ∈ A. The family {Xt}t∈T is called a homogeneous Markov
process, if [3, 12]

P[Xt+s ∈ A |Xs = x] = p(t, x, A) (2)

for all s, t ∈ T, x ∈ X and and A ∈ A. Thus p(t, x, C) is the probability that the Markov
process started in x stays in A after the time span t.

In order to determine the essential statistical behavior of the Markov process, we have
to be able to analyze the evolution of the process for some given statistical distribution
of initial states. This is usually done by considering initial probability distributions
rather than initial states for starting the Markov process. Assume that X0 is distributed
according to some probability measure ν, i.e., P[X0 ∈ C] = ν(C). Then, the evolution
of the distribution of Xt is given by

Pν [Xt ∈ C] =

∫

X

ν(dx)p(t, x, C).

Of special interest are probability measures that are invariant w.r.t. Xt, i.e., which sat-
isfy Pµ[Xt ∈ C] = µ(C) for every t ∈ T; they are also called stationary probability
distributions.

Governed by application to biomolecular systems, we focus our attention to Markov
processes that exhibit a unique stationary probability distribution, denoted by µ. Fur-
thermore, we are interested in determine the internal fluctuations within the stationary
distribution, which then will enable us to identify metastable subsets of the state space.
As we will see in the next section, the description of such internal fluctuation requires
to consider only initial probability distribution that are absolutely continuous w.r.t. the
stationary distribution µ. The evolution of some ensemble of initial states distributed
according to ν(dx) = u(x)µ(dx) for some density u ∈ L1(µ) may be described by the
propagator or forward transfer operator

Ptu(y) µ(dy) =

∫

X

p(t, x, dy) u(x) µ(dx),



which is well–defined on L1(µ) [13, Chpt. 4]. Its adjoint operator, the backward transfer

operator acts on L∞(µ) according to [7]

Ttu(x) = Ex[u(Xt)] =

∫

X

u(y) p(t, x, dy), (3)

where Ex[u(Xt)] denotes the expectation of an observable u : X → C under the condition
that the process {Xt} has been started at t = 0 in x. Hence, in terms of the duality
bracket 〈·, ·〉µ between L∞(µ) and L1(µ) we have 〈Ttu, v〉µ = 〈u, Ptv〉µ for u ∈ L∞(µ) and
v ∈ L1(µ).

Since p(t, ·, ·) is a transition kernel, the thereby defined operator Pt is a Markov

operator on L1(µ). Furthermore, the semigroup property of the Markov process implies
that {Pt}t∈T is a semigroup of Markov operators. Due to the properties of the transition
kernel and the definition of the backward transfer operator, we have for every t ∈ T,
Tt1X = 1X, where 1A denotes the characteristic function of the subset A. Note, that 1X

represents the stationary probability distribution µ. The above equality does in general
not hold for the forward transfer operator, because Pt depends on the probability measure
µ. However, if we assume µ to be invariant, we also get Pt1X = 1X for all t ∈ T. In
other words, 1X is an invariant density of Pt, whenever µ is invariant.

3 Transition Probabilities and Almost Invariant Sets

Assume that the Markov process is initially distributed according to µ. The transition

probability p(s, C,D) within the stationary distribution from C ∈ A to D ∈ A within
the time span s is defined as the conditional probability

p(s, C,D) = Pµ[Xs ∈ D |X0 ∈ C]. (4)

The similar symbols for both the transition probability p(s, C,D) and for the transition
kernel p(s, x, C) corresponding to the process emphasizes the strong relation to (2), which,
in addition to the above assumption, allows to rewrite the transition probability as

p(s, C,D) =
1

µ(C)

∫

C

p(s, x,D) µ(dx). (5)

The transition probabilities quantify the dynamical fluctuations within the stationary

distribution. Using the duality bracket 〈·, ·〉µ , the definitions of the transfer operators Tt

and Pt yield

p(s, C,D) =
〈Ts1D,1C〉µ
〈1C ,1C〉µ

=
〈1D, Ps1C〉µ
〈1C ,1C〉µ

. (6)

Following [4], we call some subset C ∈ A almost invariant, whenever the fraction of
systems within the distribution that stay in C after some characteristic time span s ∈ T
is close to 1:

C almost invariant ⇐⇒ p(s, C, C) ≈ 1.

Almost invariance may equivalently be characterized by p(s, C,X \ C) ≈ 0, which
allows to relate it to the semigroup of forward transfer operators {Pt}t∈T by the following
general identity [21]:

∥
∥
∥
∥
Ps

1

µ(C)
1C − 1

µ(C)
1C

∥
∥
∥
∥

1

= 2 p(s, C,X \ C). (7)



4 Identification of Almost Invariant Sets

Since Ps is a Markov operator its L1(µ)–spectrum is contained in the unit ball {λ ∈ C :
|λ| ≤ 1}. Every invariant density u ∈ L1(µ) of Ps satisfies Psu = u and therefore is an
eigenvector of Ps corresponding to the eigenvalue λ = 1, the so–called Perron root. Since
µ is assumed to be invariant, in particular u = 1X is an invariant density.

Whenever a proper subset C of X is invariant under the Markov process, i.e., p(s, x,X\
C) = 0 for all x ∈ C, the density u = 1C/µ(C) is an eigenvector corresponding to λ = 1.
Due to our above characterization, the set C ∈ A is almost invariant if p(s, C,X\C) ≈ 0,
which via formula (7) implies that 1C/µ(C) is an approximate invariant density, i.e., an
approximate normalized eigenvector associated with an eigenvalue close to the Perron
root λ = 1. This motivates the following algorithmic strategy:

Invariant sets can be identified via eigenvectors of Ps corre-
sponding to the Perron root λ = 1, while almost invariant

sets may be identified via eigenvectors corresponding to
eigenvalues |λ| < 1 close to the Perron root λ = 1.

This strategy has first been proposed by Dellnitz and Junge [4] for discrete dy-
namical systems with weak random perturbations and has been successfully applied to
molecular dynamics in different contexts [16, 17, 18]; it is justified in more detail in
[19]. For a detailed description of the resulting identification algorithm in the molecular
context, cf. [6, 19]; for an illustration of its basic idea see Fig. 1.

We want to emphasize that almost invariance is defined herein with respect to some
pre–selected invariant probability measure µ that describes the stationary ensemble un-
der consideration. The above algorithmic strategy requires uniqueness of the invariant
measure. For its numerical realization via an eigenvalue problem we moreover need that
the remaining spectrum of Ps is strictly bounded away from the Perron root, i.e., λ = 1
must be an isolated, simple eigenvalue of Ps. Additionally, the physical interpretation of
the ensemble excludes other eigenvalues than λ = 1 on the unit circle or, equivalently,
we exclude asymptotic periodicity of Ps.

We introduce the following two fundamental conditions on the forward transfer oper-
ator Ps that are sufficient to guarantee the desired properties:

(C1) Ps is asymptotically stable, i.e., (Ps)
nu → 1X in L1(µ) for every density u ∈ L1(µ)

as n → ∞.

(C2) The essential spectrum of Ps in L1(µ)—and sometimes in L2(µ)—is strictly bounded
away from |λ| = 1.

For details about the essential spectral radius (and its relation to asymptotic proper-
ties of transfer operators) see [9].

5 Examples from Molecular Dynamics (MD)

Stochastically perturbed Hamiltonian dynamics. Classical models for molecular
motion describe the molecular system via coupled equations of motion for the N atoms



in the system. For a differentiable potential function V : X ⊂ Rd → R, the Hamiltonian

equations of motion are given by

q̇ = M−1p, ṗ = −∇qV (q) (8)

where d = 3N , and q and p denote the positions and the momenta of the atoms in
the system, respectively and M the diagonal mass matrix [8]. Let qt = qt(q0, p0), pt =
pt(q0, p0) denote the solution of (8) for the initial data q0, p0. It is well–known that the
canonical measure

µcan(dq dp) =
1

Zq

exp(−βV (q))dq

︸ ︷︷ ︸

µQ(dq)

+
1

Zp

exp(−β

2
ptM−1p)dp

︸ ︷︷ ︸

µP (dp)

corresponding to the so–called inverse temperature β is invariant w.r.t. the evolution
process of (8). Since µcan is known to decribe molecular ensembles with constant tem-
perature, as they appear in biomolecular applications, this is the stationary distribution
of interest. In the following, we restrict our attention to potential functions V that allow
to normalize µcan to a probability measure.

Aiming at the identification of molecular conformations, we choose some fixed obser-
vation time span τ > 0 and introduce the Hamiltonian stochastic system

Qn+1 = qτ (Qn, Pn), n = 1, 2, . . . , (9)

where {Pn}n∈N is an i.i.d. sequence of random variables, each distributed according to µP ,
i.e., P[Pn ∈ A] = µP (A) [16, 17]. Metastable sets of this Markov chain are biomolecular

conformations of ensembles of molecular systems with constant temperature [17]. The
stochastic transition function corresponding to (9) is given by

p(q, A) =

∫

Rd

1A(qτ (q, p)) µP (dp)

for all A ∈ B(X); in [16] it is shown that µQ is stationary for the process. Exploiting
properties of the Hamiltonian equation of motion, the corresponding propagator P :
L1(µQ) → L1(µQ) may be written as

Pv(y) =

∫

Rd

v (qτ (q, p)) µP (dp)

for v ∈ L1(µQ) [17, 16]. Under additional conditions on the Hamiltonian system, which
hold for the most significant application class in molecular dynamics, one can show that
the propagator satisfies the conditions (C1) and (C2) of the preceding section [16].

Figure 1 illustrates the basic idea of the identification algorithm: metastable sets are
identifiable via almost constant levels or “sign structure” of the dominant eigenvectors.

Langevin dynamics. The most popular model for an open system with stochastic
interaction with its environment is the so-called Langevin model [14]:

q̇ = p, ṗ = −∇q V (q) − γ p + σ Ẇ (10)

with some friction constant γ > 0 and an external force given by a 3N -dimensional Brow-
nian motion Wt. The stochastic force models the influence of the Brownian motion of the
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Figure 1: Three well potential and dominant eigenvectors. The choice of β implies the average kinetic
energy to be small enough so that the neighborhood around the three potential energy minima are
metastable sets of the Markov chain (9). Please observe that the dominant eigenvectors are almost
constant on these sets and that the combination of signs of the three eigenvectors—the so–called sign
structure—are different on the three sets.

heat bath surrounding the molecular system. The process induced by the Langevin equa-
tion (10) leaves the canonical measure µcan corresponding the the inverse temperature β
invariant, if the noise and damping constants satisfy β = 2γ/σ2 [14]. The evolution of
u = u(x, t) with respect to µcan is governed by the well–known Fokker–Planck equation

[14]:

∂tu =






σ2

2
∆p − p · ∇q + ∇qV · ∇p − γp · ∇p

︸ ︷︷ ︸

=A




 u. (11)

As a consequence, the operator A is the infinitesimal generator of the semigroup of
forward transition operators {Pt}t∈R0

+ acting on L1(µcan) with

Ptu = exp(tA)u. (12)

Since µcan is invariant, we have Pt1X = 1X. Moreover, under certain conditions on
the potential V , this is the unique stationary density and the semigroup {Pt}t∈R0

+ is
asymptotically stable [11], i.e., Ptu → 1X for t → ∞ and every density u ∈ L1(µcan).
Due to this property, the Langevin equation is the most prominent stochastic model for
a heat bath driven relaxation of molecular ensembles to the canonical ensemble.

6 Identifying Dynamical Barriers in MD

In order to illustrate the power of the algorithmic idea presented so far, let us return
to the stochastically perturbed Hamiltonian dynamics and consider so-called strong con-
straining potentials of the form

Vε(q) = U(q) +
1

ε2
W (q),

for significantly small values of ε. The solutions qε = qε
t(q0, p0) of the resulting Hamilto-

nian system depend on the smallness parameter ε. For sufficiently small ε > 0 the strong
part W/ε2 of the potential may induce unexpected dynamical behavior. We will show
that the transfer operator approach allows to detect and characterize this behavior, and
that, in addition, this can be understood by studying the transfer operator in the limit
ε → 0.



Our illustrative system for this process is the following two-dimensional system: q =
(x, y) ∈ Ω = R2, in polar coordinates x = r(x, y) cos φ(x, y) and y = r(x, y) sin φ(x, y),
with potential

Vε(r, φ) = U(cos φ) +
1

ε2
W (r, φ), W (r, φ) =

1

2
ω2(φ) (r − π)2, (13)

with ω = ω(φ) smooth and strictly bounded away from zero. Figure 2 illustrates this
potential for the specific choices U(c) = (c2 − 1)2/2 and ω(φ) = 1 + exp(−(φ − π)2/σ2)
mod 2π with σ = 0.05, which we will herein discuss in detail.
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Figure 2: Illustration of the potential Vε for ε = 0.1 with U and ω as given in the text above. Contour
plot with equipotential curves for Vε = 0, 2, 4, . . . , 10. Observe that, on the circle r = π, the potential
has two saddle points at φ = π/2, 3π/2, and two global minima, one for φ = 0, the other one in the
middle of the narrow pathway at φ = π.

In this case the solutions qε
t display the following feature: the motion is a combination

of a slow motion along the circle r = π and some significantly faster oscillations in radial
direction, normal to the circle, which are induced by the part W/ε2 of the potential.
These fast normal oscillations may induce unexpected dynamical behavior. For certain
choices of the initial conditions, the amplitude of these normal oscillations is too large
to pass the narrow pathway at φ = π (see Fig. 2), although the potential Vε has one
of its global minima at (r, φ) = (π, π). One says, that there is a “dynamical barrier” at
φ = π. Whenever one considers an statistical ensemble of initial states, e.g., the canonical
ensemble, the dynamical barrier has the effect that a certain ratio of trajectories will
never cross the point φ = π so that it may separate two metastable sets from each
other. Whenever, in addition, the average kinetic energy in the ensemble is significantly
smaller than the potential energy barrier at the local saddle points at (r, φ) = (π, π/2)
and (r, φ) = (π, 3π/2), these points may also induce separations between metastable
sets. Thus, one may expect to find three metastable sets separated by the lines φ = π/2,
φ = π, and φ = π/2. We will see below that this eventually is true.

Spectrum of Pε. The largest eigenvalues of the full transfer operator Pε for ε = 0.1
and τ = 1.5 in the canonical ensemble with inverse temperature β = 5 are:

k 1 2 3 4 5 6 . . .
λk 1.0000 0.9938 0.9639 0.9221 0.8441 0.7895 . . .
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Figure 3: Illustration of the three metastable sets computed via the identification algorithm.

Evaluation of the eigenvectors corresponding to the three dominant eigenvalues yields
a decomposition of the inner part of the potential energy well into three metastable sets
which are shown in Fig. 3 above. Since it is the common physical belief that metastable
sets of molecular motion are separated by saddle points of the potential energy function,
our illustrative systems displays an unexpected dynamical behavior.

6.1 Limit dynamics

In order to further understand our observation, we study the motion in the limit ε → 0.
Therefore, consider the sequence qε = qε

t(q
ε
∗
, pε

∗
) of solutions of (8) with potential Vε given

by (13). We also use the alternative notations qε = (xε, yε) = (rε, φε). Let (q∗, p∗) ∈
Ω × Rd be arbitrary initial values, and Sε : Ω → Ω the scaling transformation given
by Sε(x, y) = (Rε cos φ,Rε sin φ), with Rε = π + (r(x, y) − π) ε. Consider the family of
solutions qε = qε

t(Sεq
∗, p∗) in a finite time interval [0, T ].

In the limit ε → 0, the strong part W/ε2 of the potential will constrain the motion
to the minimum of W , i.e., to the manifold M = {q ∈ Ω : r(q) = π}. For every set
(q, p) of state variables, we can find the projection qM of every positions q onto M via
qM = π (cos φ(q), sin φ(q)) with normal component qN = (r(q) − π) (cos φ(q), sin φ(q)),
and decompose the momenta into components tangential and normal to M at q, i.e.,

p = pM + pN with pN =
pT q

qT q
q.

According to [15, 2, 1] the limit dynamics q0 is the strong limit of qε = qε
t(Sεq

∗, p∗)
in C1[0, T ] and is governed by the limit equation of motion that—in polar coordinates
q0 7→ (r0, φ0)—has the form

φ̈0 +
1

π2
gradφ (U + θ ω) |φ=φ0 = 0, r0 = π, (14)

with initial conditions φ0(0) = arcos(q∗M/π) and φ̇0(0) = (eφ(φ
∗)p∗M)/π, where eφ de-

notes the unit vector in the direction of φ in polar coordinates. The parameter θ
is a constant which is uniquely determined by the initial values via the formula θ =

1
ω(q∗

M
)

(
1
2
|p∗N |2 + W (q∗)

)
. Obviously, the limit motion on the circle M sees an additional

potential θω which represents the influence of the energy that is contained in the motion
normal to M, although this motion has vanishing amplitude for ε → 0. For details see
[2].

Figure 4 clearly indicates that the correcting potential θω induces an additional po-
tential energy barrier at φ = π to the original potential U on the circle M. This perfectly
explains the existence of a dynamical barrier at φ = π for small ε > 0.
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Figure 4: Original potential U on the manifold M and corrected potential U + θω for the case shown
in Fig. 2 and initial conditions p∗ = (1.5, 1.5) and q∗ = (0.1,

√
π − 0.1).

Limit Transfer Operator T0. It is shown in [20] that the limit transfer operator in
the canonical ensemble is given by

T0u(q) =

∫

Rd

u
(
q0
τ (qM , p)

)
µP (dp). (15)

Obviously, P0 acts on functions defined on the constraining manifold M.

Spectrum of P0. The six largest eigenvalues of P0 for τ = 1.5 with β = 5 are

k 1 2 3 4 5 6 . . .
λk 1.0000 0.9933 0.9633 0.9246 0.8440 0.7945 . . .

which is in perfect agreement to the results given above. Evaluation of the eigenvectors
corresponding to the three dominant eigenvalues yields a decomposition of the circle r = π
into three metastable sets (φ ∈ [0, π/2]∪ [3π/2, 2π], φ ∈ [π, 3π/2], and φ ∈ [π/2, π]). This
result perfectly corresponds to the sets computed from the full transfer operator Pε for
ε = 0.1, see Fig. 3.
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in nearly uncoupled Markov chains. Lin. Alg. Appl., 315:39–59, 2000.

[7] M. Freidlin and A. Wentzell. Random perturbations of dynamical systems. Springer, New York,
London, 1984. Series in Comprehensive Studies in Mathematics.



[8] R. Haberlandt, S. Fritzsche, G. Peinel, and K. Heinzinger. Molekulardynamik - Grundlagen und

Anwendungen. Vieweg, 1995.

[9] W. Huisinga. The essential spectral radius and asymptotic properties of transfer operators. sub-

mitted to Dynam. Systems Appl., 2000. Available via http://www.math.fu-berlin.de/˜huisinga.
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