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Abs 

The article surveys the development of novel mathematical concepts 
and algorithmic approaches based thereon in view of their possible ap­
plicability to biomolecular design. Both a first deterministic approach, 
based on the Frobenius-Perron operator corresponding to the flow of the 
Hamiltonian dynamics, and later stochastic approaches, based on a spa­
tial Markov operator or on Langevin dynamics, can be subsumed under 
the unified mathematical roof of the transfer operator approach to effec­
tive dynamics of molecular systems. The key idea of constructing specific 
transfer operators especially taylored for the purpose of conformational 
dynamics appears as the red line throughout the paper. Different steps 
of the algorithm are exemplified by a trinucleotide molecular system as a 
small representative of possible RNA drug molecules 

K e y w o r d s . Transfer operator, Markov process, Markov chain, molecular dy­
namics, biomolecular conformations, canonical ensemble, transit ion probability 
Hamiltonian dynamics Langevin dynamics nearly degenerate eigenvalues Per 
ron cluster 

M a t h e m a t i c s subjec t c lassif icat ion. 65U05, 60J25, 60J60, 47B15 

Introduction 

In recent years biomolecular design has a t t racted considerable at tention both 
in the scientific and in the economic world. A few years ago, a research group at 
ZIB, part ly supported by the DFG research program described in this volume 
has started to work in this field. The problem of biomolecular design exhibits a 
huge discrepancy of t ime scales: those relevant from the pharmaceutical point of 
view are in the seconds, whereas present computations reach into the nanosecond 
regime at most. The reason for this is twofold: First, all available numerical 
integrators allow stepsizes of at most some femtoseconds only [38, 33]. Second, 
trajectory-oriented simulations are ill-conditioned after, say, a few thousand 
integration steps [1]. As a consequence, whenever dynamical informations (and 
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not only averages of physical bservables) are wanted—which is actually the case 
in biomolecular design—then only short term trajectories should be exploited. 
This message seems to be in direct contradiction to the desired aim of long term 
prediction in biomolecular design. 

Aware of this seemingly contradiction, the ZIB group got inspired by work 
of DELLNITZ and co-workers [10, 9] on almost invariant sets of dynamical 
sys temswithin the same DFG research program. As documented in [11], the 
key idea was to interpret almost invariant sets in phase space as chemical con­
formations. Within chemistry, the latter term describes metastable global states 
of a molecule wherein the large scale geometric structure is conserved over long 
time spans. As it turned out, the chemists' dominant interest was anyway just 
in these conformations, their life spans, and their patterns of conformational 
changes. Therefore, our first approach [11] followed the line of the original pa­
per by DELLNITZ AND JUNGE [10]: chemical conformations were identified via 
eigenmodes corresponding to an eigenvalue cluster of the Frobenius-Perron oper­
ator associated with the deterministic flow of the Hamiltonian system. However 
upon keeping a clear orientation towards the design of biomolecular systems, the 
computational techniques based on this first approach appeared to be unsatis­
factory for reasons of both lack of theoretical clarity and sheer computational 
complexity: The theoretical justification of the approach requires the introduc 
tion of artificial stochastic perturbations of the dynamics [10] regardless of any 
(physical) interpretation. Moreover, the computational techniques from [10, 11 
are suitable only, if the objects of interest are rather low-dimensional, whereas 
the search for conformations will have to include the entire high-dimensional 
phase space of the molecular dynamics. Therefore, an almost complete remod­
elling with special emphasis on both physical interpretation and dimensionality 
of the problem turned out to be necessary in view of biomolecular applications. 

In order to define conformations as experimentally determinable objects, con­
cepts of Statistical Physics needed to be included. In addition, the remodelling 
had to include the aspect that chemical conformations are purely spatial ob­
jects determined via molecular geometry. These insights gave rise to the study 
of "spatial" Markov operators beyond the Frobenius-Perron operator as well as 
the associated Markov chains replacing the Hamiltonian dynamics [35, 34]. The 
thus arising special Markov operator was shown to exhibit all the desirable theo­
retical properties needed as a basis for efficient algorithms. Moreover, a Galerkin 
approximation of this Markov operator in a weighted L2-space naturally led to 
the replacement of the original (expensive) subdivision techniques [9] by newly 
developed (cheap) Hybrid Monte Carlo (HMC) methods called reweighted adap­
tive temperature HMC, or short ATHMC [16]. On the basis of suggestions by 
AMADEI ET AL. [2] an algorithm for identifying the essential molecular degrees 
of freedom has been worked out that drastically reduces the eigenvalue cluster 
problem even in larger molecular systems see [22]. With these algorithmic im­
provements the applicability of our approach to realistic biomolecules came into 
reach. By applying the above ideas to the stochastic Langevin model of molec 
ular dynamics [36], we succeeded to show that the fruitful coupling between the 
concepts of Statistical Physics and the transfer operator approach to effective 
dynamics can be exploited in a much more general framework. 

The purpose of the present article is to survey what has been achieved, and to 
gain further insight from that. As will be shown subsequently, we are now able 
to subsume both our first deterministic approach [11] and the different stochastic 



approaches [35, 36] under the unified roof of transfer operators preserving th 
key idea of conformation analysis. In order to return to the original problem 
of biomolecular design, we illustrate the different steps of our present algorithm 
when applied to a small RNA molecular system. 

oleular Dynamics 
In order to introduce our mathematical frame, we need to fix some notation. 
Consider a probability space (X, A, /*), where X c R m for some m € N denotes 
the state space, A the Borel a-algebra on X and ß a probability measure on A 

We will see below that in classical molecular dynamics the evolution of a 
single molecular system with initial data xo € X is in general described by a 
homogeneous Markov process {Xt}t£M. with M = Ro or M — No in continuous 
or discrete time, respectively. We assume that Xt is measurable and non-
singular with respect to ß, i.e., /t(X t

_1(^l)) = 0 for all A € A with ß(A) — 0. 
Furthermore, we assume that the process satisfies the semigroup properties: 
Xt=0 — Id and Xt+S = Xto Xs for all t,s £ M. Then, the evolution of a single 
system starting in x(0) = x0 is given by x(t;xo) = Xt(x) for all t g M. We 
choose this more general framework to describe molecular dynamics, since it is 
suitable both for the deterministic case and for the stochastic situation. 

Markov processes may be defined in terms of stochastic transition kernels. 
A function p : M x X x A —> [0,1] is called a stochastic transiion kernel [6, 29] 
if 

1. p(t,x,-) is a probability measure on A for every t € M, x G X and 
furthermore p(0,x,X \{x}) = 0 for every x € X. 

2. p(t -, A) is measurable for every t € M, A g A 

. p(x,A) satisfies the Chapman-Kolmogorov equation [19 29] 

p(t + sx,A) = / p(tx,dy)p(syA) (1 

for all t, s e M, x e X and A € A 

The family { X G M is called a homogeneous Markov process if 6 9] 

[Xt£A\X0=x] = p(tx,A) 2) 

for all t e M and A £ A. Thus p(t, x, C) is the probability that the Markov 
process started in x stays in A after the time span t 

2.1 Modelling Molecular Motion 

Classical models for molecular motion describe the molecular system under con­
sideration via coupled equations of motion for the N atoms in the system (cf 
textbook [1]). The most popular class of equations of motion can be written in 
the following general form: 

M"V, (3) 
-VqV) - j(p)p + Fe t 



where and p are the atomic positions and momenta, respectively, M the di 
agonal mass matrix and V = V(q) a differentiable potential energy function 
describing all the interactions between the atoms. The function 7 = -y(q, p) de­
notes the friction constant and Fext the external forces acting on the molecular 
system. The state space of the system is T c R8J and the solution (qt,Pt) of (3) 
describes the dynamics of a ingle molecular sstem. In the notation introduced 
above, we hence have X = T and XtqoPo) = (qtPt)-

The Hamiltonian function 

p) = lP
TM-1+V(q) 4) 

denotes the iernal energy of the system in state x = (q,p). In the following 
we assume M = IdR3w for simplicity. In most cases, the phase space is simply 
given by T = 0 x R3JV for some 0, C R3JV. We will call 0, the position space of 
the system and distinguish between two fundamentally different cases: 

(B) Bounde system: The position space Ü is unbounded, typically Q = R3Ar 

and the potential energy function is smooth, bounded from below, and 
satisfies V —> 00 for | | —> 00. Such systems are called bounded, since the 
energy surfaces {x : H(x) = E} are bounded subsets of T 

(P) Periodic systems: The position space Q is some 3N dimensional torus and 
V is continuous on Q, and thus bounded. There is an intensive discussion 
concerning the question of whether V can also be assumed to be smooth 
on Q as we will do herein, see Sec. 2 of [34] for details. 

Both cases are typical for molecular dynamics applications. Case (P) includes 
the assumption of periodic boundaries which is the by far the most popular 
modelling assumption for biomolecular systems. Subsequently, we will refer to 
these assumptions by referring to systems of type (B) or type (P) 

Deterministic Hamiltonian Dynamics. Whenever 7 = 0 and Fext = 0 
equation (3) reduces to the classical Newtonian equations of motion: 

=p7 p = - V q ) (5) 

The flow $* associated with the Hamiltonian H from (4) aloows to denote the 
solution process of (5) ie . x{t;x) — X(x) = $ and the transition kernel 
is given by 

p(tx,C)=xc(*x), (6) 

where \c denotes the characteristic function of the set C C T. In this deter­
ministic case, the equations of motion (5) model an energetically closed system, 
i.e., the Hamiltonian denotes the nergy of the system, which is preserved 
by the dynamics. 

Deterministic Thermostatted Dynamics. In general, the term 'j(q,p)p 
represents the effect of some "thermostat" on the system. In "thermostatted 
molecular dynamics", one designs deterministic descriptions of open but con­
servative molecular systems contained in a heat bath by choosing 7 / 0 and 
(deterministic) forces F e x t 7̂  0 such that the solution of (3) conserves either 
kinetic or total energy [14] 



ochastic Langevin Dynamics. The most popular model for an open sys 
tem with stochastic interaction with its environment is the so-called Langevin 
model 32]: 

= P, P = -VqV) - IP + <rW (7 

It is a special case of (3) with some constant friction j(q,p) = 7 > 0 and an 
external force F = aWt given by a 3iV-dimensional Wiener process Wt with 
zero mean (Wt) — 0 and correlation (WtWs — 6(t — s). The external stochastic 
force models the influence of the Brownian motion of the heat bath surrounding 
the molecular system. In this case, the internal energy H is not preserved, 
but the interplay between stochastic excitation and damping equilibrates the 
internal energy as we will see in Section 3.2. 

2.2 Long-Term Behavior and Conformations 

In principle, a discretization of (3) permits a simulation of single system tra­
jectories once the initial state is given. However, numerical analysis of present 
discretizations restricts the validity of such single system trajectory simula­
tions to only short time spans and to comparatively small discretization steps. 
The reason for this is two-fold: First, numerical long-term simulation is an 
ill-posed problem for the Hamiltonian systems under consideration [1], and sec 
ond, no numerical integrator is available that allows stepsizes larger than a few 
femtoseconds—neither for Hamiltonian nor for Langevin dynamics [38, 33]. 

On the smallest time scales of about one femtosecond molecular dynamics 
consists of fast oscillations or fluctuations around equilibrium positions. In 
contrast to these fast fluctuations the term conformations describes meta-stable 
global states of the molecule, in which the large cale geometric structure is 
understood to be conserved. Conformational changes are therefore rare events 
which will show up only in long term simulations of the dynamics, e.g on a 
nano- or millisecond time scale. Thus, the effective conformational dynamics 
occurs on time scales not accessible via long-term simulation. We thus have to 
abandon the trajectory-based approach of identifying conformations via long-
term simulations. Instead, we use the dynamical properties of conformations to 
introduce a set-oriented concept: 

Conformations are related to geometric structure given by the atomic posi 
tions. This means that conformations are subsets of the position space. Under 
additional consideration of the dynamical properties, we characterize confo 
mation as scial "almost invariant" subsets in position space in the following 
sense: An invriant set can never be left by the dynamical process under con­
sideration. If conformations were invariant sets of the molecular dynamics 
then transitions between different conformations would be impossible. Since 
transitions between conformations exist but are rare, we have to understand 
conformations as almost invariant sets of the molecular dynamics. 

In [10], DELLNITZ AND JUNGE proposed to identify almost invariant subsets 
of discrete dynamical systems via specific eigenvectors of corresponding transfer 
operators. In order to make this intriguing idea applicable to the identification 
of conformations, we will introduce some notation, define transfer operators for 
molecular motion and link them to concepts of statistical mechanics. 



lar E m b s and T a n s f r O p a t o r 

We in principle always have to accept experimental measurement uncertain­
ties when determining the initial state —all the positions and momenta— of 
some molecule. As a consequence, when modelling the physical reality, we have 
to propagate a statistical nsemble of molecular systems which represents the 
distribution of possible initial states determied ia the inial msureme 
The distribution may be described by some time dependn probabity dnsit 
u — u(x, t) in phase space. In the following, the density u is always meant with 
respect to the measure /x; consequently, the probability within the ensemble to 
encounter a system x € X in a subset C C A at time t is given by 

Ptx€C\ = f u(x,t)ß(dx) (8) 
Je 

Physical experiments allow for measuring relative frequencies in the ensem­
ble, e.g., to determine the relative frequency of systems within the ensemble 
whose state lies in C C X at time t. The probability Pt[x € C] corresponds to 
the relative frequency introduced above and is thus physically measurable— 
in contrast to the probability density u(x,t). Whenever physicists use the 
phrase "probability density" they refer to the density from (8) with respec 
to the Leesgue measure dx. This means, whenever u(x, t) is the density with 
respect to ß and, additionally, ß is absolutely continuous with respect to dx 
with density d(x,t), then the physical density is f(x,t) = u(x,t)d(x,t). Never 
theless it is sometimes mathematically advantageous to consider densities with 
respect to specific measures particularly adapted to the Markov process under 
investigation. 

3.1 Forward and Backward Transfer O p e r a r s 

The evolution of a probability density u = u(x,t) in state space X is governed 
by the (micro-) dynamics {Xt}t£W of each of the identically prepared molecular 
systems within the ensemble. We may describe the evolution by the propaga 
or rwrd transfer operat 

(x) = (x,t) 

which maps the initial probability density u(x) = u(x,0) to the density u(x,t) 
at time t. Assume for the moment that the transition kernel of the process 
{Xt} is absolutely continuous with respect to the probability measure ß, i.e. 
p(t,x,dy) = Jcp(t,x,y) ß(dy). Since p(t,x,y) denotes the "probability" of the 
process to move from x to y within the time t the propagator should have the 
form 

Pt(y) = / p(tx,y)(x)ß(dx) (9) 
x 

However, since in general the transition kernel will not be absolutely continuous 
we proceed in a different way and define Pt via the well-known backwa tranfer 
oper [19] 

Tt{x Ex(Xt) = (y)p(tx,dy) 10) 



where E^^XTt)] denotes the expectation of an observable u : X u n r th 
condition that the process {Xt} has been started at t = 0 in x. 

Consider Tt as an operator on ££°(X) and Pt on L* (X), and let {-, -)ß denote 
the duality bracket between ££°(X) and L^(X). Then, as a generalization of 
(9), the forward transfer operator Pt is define as th adjoint oper Pt = T* 
of the backward transfer operator Tt [19] ie . 

v , foral\(X)v€(X) 11) 

Since p(t, x, •) is a transition kernel, the thereby defined operator Pt is a Markov 
operatr on L^(X). Furthermore, the semigroup property of the Markov process 
implies that {Pt}t£M is a semigroup of Markov operators. 

In view of equations (9) and (10), the notion of "forward" and "backward" 
transfer operator becomes clearer. For the forward case, the state average with 
respect to u is taken over all initial states x, which are propagated forward 
in time, while for the backward case, the state average is taken over all final 
states y. 

Invariant Measures and Stationary Densities A measure ß on X is called 
riant with respect to the process {Xt} if 

ß(C) = / p(t x, C) ß(dx) for all C G A and t € M 

Due to the properties of the transition kernel and the definition of the backward 
transfer operator, we have—independent of the measure ß—for every t € M, 

Tt 

The above equality does in general not hold for the forward transfer operator 
because Pt depends via (11) on the probability measure ß. However, if we 
assume ß to be invariant, we also get 

PtX (12) 

for all t € M. In other words, X is an invariant density of P, whenever ß is 
invariant. 

Remark. Suppose additionally that ß admits a density d with respect to 
the Lebesgue measure. Let moreover the ensemble be distributed according 
to ß so that d is the stationary physical probability density of the ensemble. 
Then, / ( , 0 ) = xc • d denotes the physical density of the subensemble of all 
systems being in C C X at some time t = 0. Since Pt denotes the evolution 
of the ensemble in time t, the physical density of the subensemble at time t is 
given by f(-,t) — PtXc • d In contrast to this, Ttxc = p(t,-,C) denotes the 
probability density to access C at time t. This again emphasizes the difference 
in interpretation between Pt and Tt: Pt denotes the physically interpretable 
propagator of the ensemble and is defined with respect to some measure ß, while 
Tt denotes the transfer operator related to the Markov process (independent of 
the measure ß) as usually considered in stochastic theory. 



2 ic nsemle 
Most experiments on molecular s s tems are performed under the conditions o 
constant temperature T and volume. The corresponding ensemble density (with 
respect to the Lebesgue measure on X) is the canonical density fn associated 
with the Hamiltonian H: 

/ ( x ^exp(-ßH(x), Z = I exp(-ßH(x))dx, 13) 

where ß = 1/kßT denotes the inverse temperature and kß Boltzmann's con­
stant. Since H was assumed to be separable fan factorizes in a product of two 
densities V and Q: 

/an(x ^ e x p ( - ^ p T M - v ) ±-exp(-ßV()) 14) 

Since we are interested in the canonical ensemble, we d e f e the cnoical prob­
abily mesure induced by the canonical density: 

Mcan(dx) = / n ( x ) d x . 

It will turn out advantageous to consider transfer operators acting on weighted 
function spaces with respect to yu 

3. Transfer O p e r a r s and he anonical nsemble 

In general, an equation of motion for the process {Xt} implies an equation 
of motion for a probability density u. We will see below that the processes 
induced by both, the Hamiltonian dynamics and the Langevin dynamics, leave 
the canonical measure yucan invariant. Since we are interested in describing 
fluctuations within the canonical ensemble, we thus define the forward transfer 
operator with respect to the canonical probability measure //cam ie . acting on 
LUV 

Langevin Dynamics. The process induced by the Langevin equation (7 
leaves the canonical measure /xcan corresponding the the inverse temperature ß 
invariant if the noise and damping constants satisfy [32]: 

J 15) 

The evolution of u — u(x,t) with respect to ßCan (compare introduction to 
Section 3) is governed by the well-known Fokker-Planck equation [32]: 

\ 
- p + V 16) 

V =A J 
As a consequence, the Fokker-Planck operator A is the infinitesimal generator 
of the semigroup of forward transition operators {Pt}ni acting on Z^can(X) 
with 

Pt exp(tA) 17) 



d, since ßca,n is invariant, we have PtXr = Xr-
Moreover, under certain conditions on the potential V (systems of type (B) 

with potential V e C°°(X)), this is the unique stationa ty and the semi 
group {Pt}tR$ is asymptotically stable [23], i.e., Ptu —> x r for t —> oo and 
every density u e L1

 n{T). Due to this property, the Langevin equation is the 
most prominent stochastic model for a heat bath driven relaxation of molecular 
ensembles to the canonical ensemble. 

Hamiltonian Dynamics. The Hamiltonian equations of motion are the de 
terministic analogue of the Langevin equations with 7 = 0 and a — 0. As for the 
Langevin dynamics, the canonical probability measure / i c a n is invariant under 
the dynamics. Using 7 — a = 0 the equation of motion (16) for the probability 
density u reduces to the iouve equion corresponding to the Hamiltonian 

- p - V , + V , y - V 18) 

where £ denotes the w e l l o w n Liouville operato 25]. The solution of (18) 
satisfies u(x,t + s) = u ( $ x , s) for all t, s € Using (17), the forward 
transfer operator acting on 1 (r) is given by 

Pt(x) — exp(it£)(x) — (x,t) — (^x) , 19) 

which is just the definition of the Frobenius-Perron operator corresponding to 
the Hamiltonian flow $ [26]. Additionally, inserting the transition kernel (6) 
in the definition (10) of the backward transfer operator yields 

Tt{x) (20) 

which is simply the Koopman operator corresponding to $ [26]. Equations 19) 
and (20) illustrate that Pt is the adjoint operator of Tt as discussed above. 

As we have seen, the canonical density / a n induces the invariant measure 
ean of the deterministic Hamiltonian dynamics. However, there are infinitely 

many other invariant measures induced by densities of the form f(x) = T(H(x)) 
for some smooth function T : R —> [0,1] of the Hamiltonian. Due to this ambi 
guity, pure Hamiltonian dynamics is not appropriate for modelling the relaxation 
of molecular ensembles to one specific ensemble, in our case the canonical en­
semble. This observation corresponds to the fact that, for solving the Liouville 
equation, we have to specify an initial density (, t — 0). Physically, the specifi­
cation of an initial density corresponds to an intial experimntal preparation of 
the ensemble due to (8). Thus, selecting one of the possible invariant densities 
means the specific initial preparation of a stationary ensemble. 

lmos Invariant Sets of Moleu la r Ensembles 

Assume in this section that the molecular motion is described by a Markov 
process {Xt}t£Ni that leaves the probability measure ß invariant. Moreover 



assume that the Markov process is i n i t i y distributed according to ß, i.e. 
probability to find the process at time t = 0 in a subset C £ Ais given by 

X0GC n{C 

(see introduction to Section 3). 

4.1 nsemble Transition Probai l i t ies 

The transition probability p(s, C, D) within the ensemble from C € A to D € A 
within the time span s is defined as the conditional probability 

* . C, D) = 6 D | JH, <• Ci = ^ * ° 6 ° (21) 

The similar symbols for both the transition probability p(s,C,D) and for the 
transition kernel p(s, x, C) corresponding to the process emphasizes the strong 
relation to (2), which, in addition to the above assumption, allows to rewrite 
the transition probability as 

p(sC,D) = -$-- p(sx:D)ß(dx) (22) 

The transition probabilities quantify the dynamical fluctuions within t sta­
tionary ensemble. Using the duality bracket (- - between (X) and L ( X ) 
the definitions of the transfer operators T and yield 

p(sC,D) XD>y XB>P (23) 
c, c, 

The above defined transition probabilities can be sured via the following 
two-step experiment on the ensemble: 

1. Pre-Selection: Select from the ensemble all such systems with states x € 
C € A. This selection prepares a new ensemble, which is described by the 
probability measure 

{D) j^ß(CnD), D&A. 

2. Tansition-Counting: After the time span s, determine the relative fre 
quency of systems in the ensemble ßc with states in C. Since all systems 
evolve due to the process {Xt}teNi, this relative frequency is equal to 

p(sx,C)ßc(dx p(sCC) 

4.2 onformaions as Almost Invariant Subset 

We now aim at a dynamical characterization of conformations within the en­
semble; this characterization will be based on the notion of almost invariance. 
As already mentioned, we have to define almost invariance in terms of ensemble 
dynamics rather than in terms of the duration of stay of a single system. 

10 



Following [10], We call some subset C £ A almost invariant, whenever the 
fraction of systems within the ensemble that stay in C after some characteristic 
time span s g M i s close to 1: 

C almost invariant <*= p(s C C) s 1. 

This definition of almost invariance guarantees that its "degree" p(s C C) can 
be mesured via the two-step experiment introduced above. 

Almost invariance may equivalently be characterized by p(s, C,X.\C) « 0 
which allows to relate it to the semigroup of forward transfer operators {PtjtgM 
by the following general identity [37]: 

2p(sCX\C) (24) 

i f i o gy 

By definition, Ps is a Markov operator and consequently, its L^(X)-spectrum is 
contained in the unit ball {A G C : |A| < 1}. Every invariant density u € L^(K) 
of Ps satisfies Psu = u and therefore is an eigenvector of Ps corresponding to the 
eigenvalue A = 1, the so-called Perron root. Since ß is assumed to be invariant 
in particular u — \x is an invariant density. 

Whenever a proper subset C of X is invariant under the Markov process 
i.e., p(t, x, X \ C = 0 for all x € C, the density u — xc/ß(C) is an eigenvector 
corresponding to A = 1. 

Due to our above characterisation, the set C € A is almost invariant if 
p(r, C,X.\C) « 0, which via formula (24) implies that Xc/ß(C) is an approx­
imate invariant density, i.e., an approximate normalized eigenvector associated 
with an eigenvalue close to the Perron root A = 1. This motivates the following 
algorithmic strtegy: 

Invariant s t s c n be identified via e i g e c t o r s corresponding to the 
Perron root A = 1, while almost invarian sets may be identified via 
eigenvectors corresponding to eigenvalues A| < 1 close to the Perron 
root A = 1. 

This strategy has first been proposed by DELLNITZ AND JUNGE [10] for 
discrete dynamical systems with weak random perturbations and has been suc 
cessfully applied to molecular dynamics in different contexts [35, 36, 34]. It will 
be justified in more detail in Section 5.4 below, where more information about 
the properties of the transfer operators of interest will be available. 

It is important to notice that almost invariance is defined herein with re 
spect to some physically selected invariant probability measure ß that describes 
the stationary ensemble under consideration. Assume that the process {Xt} 
admits another invariant measure v, which, for the sake of simplicity, is abso­
lutely continuous with respect to ß with density d e L (X). Then, the density 
u = Xy-d is a n eigenvector of Ps corresponding to A = 1. As a consequence 
one will not be able to decide in general whether some eigenvector correspond­
ing to an eigenvalue |A| < 1 close to the Perron root is related to an almost 
invariant subset of the ensemble represented by ß or rather by v. Thus, the 

1 
^^r 77K K ß( 

11 



above algorithmic strategy requires uniqueness of the invariant measure. Fo 
its numerical realization via an eigenvalue problem we moreover need that the 
remaining spectrum of Ps is strictly bounded away from the Perron root, i.e. 
A = 1 must be an isolated, simple eigenvalue of Ps. Additionally, the physical 
interpretation of the ensemble excludes other eigenvalues than A = 1 on the unit 
circle or, equivalently, we exclude asymptotic periodicity of Ps. 

We introduce the following two fundamental conditions on the forward trans 
fer operator that are sufficient to guarantee the desired properties: 

(CI) is asymptotically stable ie. , ( in (X) for every density 
i^ (X) as n — oo 

(C2) The essential spectrum of P is strictly bounded away from | = 1. 

These conditions exclude some very prominent models for molecular motion. 
For example, in the pure Hamiltonian case the invariant density is no unique in 
X1(X) and, worse, the spectrum of the Frobenius-Perron operator Ps in i ( X ) 
lies on the unit circle1. Despite these fundamental problems, DEUFLHARD et al 
computed almost invariant subsets of Hamiltonian systems in the above sense 
with quite intriguing results [11]. However, they did not use the exact Hamil 
tonian flow <£* but added small, but significant perturbations originating from 
time discretization errors and the related energy fluctuations. It is a widely 
accepted approach to model such discretization effects by small random pertur­
bations. Under appropriate conditions, the thereby resulting transfer operator 
is compact and may have a unique invariant measure (see [10]). In [11] another 
interpretation of this approach via a sequence of nested function spaces based 
on subsequent coverings of the energy cell is indicated. 

There are other models that satisfy our conditions without additional arti 
ficial perturbations. An example is the Langevin model introduced above. For 
appropriate systems (see above), its unique invariant measure is the canonical 
measure. Hence, application of our algorithmic strategy to the Langevin model 
seems to allow to attack chemically interesting systems. However, there is an­
other condition which has to be considered and prevents the Langevin model 
from being a good starting point: Chemical conformations are usually under 
stood to be objects in position pace Q. Therefore, a proper model needs to yield 
a family of forward transition operators, which are defined on f! rather 
than on the entire phase space T of the molecular systems. 

onformational Dynamics in Position pace 

Since conformations are objects in position space, this section is devoted to 
an adequate theory of ensemble dynamics in position space, including two ex­
amples. We introduce two (reduced) Markov processes in position space and 
define the corresponding transfer operators. Due to physical reasons and as a 
consequence of (23), we restrict ourselves to the semigroup of forward transfer 
operators or propagators {Pt}teM for the canonical ensemble Q. 

1Here, - t1(X) may be replaced by L^(X) where ß may stand for /iCan or for any othe 
invariant measure of the Hamiltonian flow $* that is absolutel continuous th p e t t 
the L b e g u e measure on the phase space X. 
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1 P o s i i o l D y a m i c s nsfer O p e r a t r s 

Let (Q,A,ßo) denote the positional probability space with £tg(dg) = Q(q)dq 
and refer by LrQ(Q) for r = 1,2,... 00 to the corresponding function spaces 
with respect to the canonical measure ßQ. Note that L2Q(Q) is a Hubert space 
with scalar product 

) Q v()Q()d 

and induced norm ||W||Q = {U,U)Q. 

As a consequence of Subsection 4.3 we have to transform the state spac 
dynamics into a pure position space dynamics. Assume that the transformed 
dynamics of a single system in Q, is described by a (homogeneous) Markov 
process {Qt}tem with stochastic transition kernel p(t,q,C), invariant measure 
ßQ and initial distribution P[<2o G C] — ßQ(C). Then, the semigroup of forward 
transfer operators {Pt}teM. for the canonical ensemble is given by : LVQ) 
Lr

Q(fl) such that for all C e A 

)Q()d p(tC)Q() d (25) 
c 

under suitalbe conditions of the integrability of the transition kernel. In the 
following, we will consider Pt mainly as an operator acting on the Hilbert space 
L2Q(Q), since—as we will see below—the corresponding scalar product may re­
veal possible additional properties of Pt and allows to define Galerkin projections 
for the discretization procedure. 

We conclude by stating all assumptions on the transfer operators, which 
result from the requirements of Subsection 4 3 : 

(CI) Ps is asymptotically stable, i.e., (Ps)
nu —> o m - ^ Q ( ^ ) for n —> 00 and 

every density G L( f2 ) . This implies that A = 1 is an isolated, simple 
eigenvalue in L(i}) 

(C2) The essential spectrum of in L2VL) is strictl bounded away from 
|A| = 1. 

5.2 Discret Time Markov hain 

The first example of a reduced positional dynamics is based on the Hamiltonian 
equation of motion within the canonical ensemble / c a n (14) and a characteri 
zation of conformations as special almost invariant subsets. A subset C C 0 
of the position space is called almost invariant, if the enlarged "cylindrical" 
subset C x Hd c of the state space is almost invariant with respect to the 
Hamiltonian dynamics. 

Let px (t, x, A) denote the stochastic transition kernel of the Markov process 
in state space (see (6)). Fix an observation time span r > 0. Then, C C Q is 
almost invariant (with respect to r ) , if PX(T, C X Hd, C x Hd) as 1. For fixed r 
this definition can be used to derive a reduced dynamics in position space. For 
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two suse t s , D c ü , we have d e to 6) a d (22): 

r C x R , D x R 

= 7 1 TTT" < K * r ( £ / a n ( z ) d £ 
TLd (X) (IX Hd 

iJm L v*^™d Q^d ^ 
{lCD) 

where IIg denote the projection onto the position space. A comment on the 
dependence of the onestep transition probability PQ1,C, D) on the observa­
tion time span r can be found in the remark below. It is easy to show, that 

( 1 , q, D) is a transition kernel and thus defines a drete time Markov process 
{Qn}n£N0 on the position space Q. Furthermore {Qn} satisfies inductively for 
all n € No the stochastic dynamical equation ( S D ) [34] 

n 9 $ T (27) 

with Pn chosen randomly according to the momenta distribution V. The SDE 
(27) is the reduced positional dynamics that we were looking for. In mathe 
matical terms, it corresponds to a Hamiltonian motion with randomly chosen 
momenta at discrete (physical) times r r As shown in [4] {Q} leaves 
the canonical ensemble Q invariant. 

Via Equation (25), the transition kernel also defines a discrete time semi 
group of transition operators {Pn}n£N0 on LrQ(Q). Exploiting that $ T is a 
reversible symplectic and / invariant mapping (see (19) and below, and [4]) 
we get 

) = [ (Ip)V(p)d (28) 

for u € LrQ(Q). For all systems of type (P), Pt satisfies the requirements 
stated in Subsection 5.1 [34]; furthermore, it is self-adjoint on L2Q(Q) due to 
reversibility and symplecticness of the Hamiltonian flow [34]. As a consequence 
the L2Q (f2)-spectrum of Pt is real-valued, bounded and contained in the interval 
(—1,1]; the essential spectrum is bounded away from 1. 

Remark. In (26), we have defined the one step transition kernel ^ ( l , ^ , £>) 
for fixed r . Changing the observation time to a results in a new one step 
transition kernel p"n{l,q,D). In contrast to that, the n-term transition kernel 
Po(n></>-D) is defined recursively by the Chapman-Kolmogorov equation (1) 
In general, p$[(l,q,D) ^ pT

a{2,q,D) and, consequently, P\T ^ P£, where the 
superscript indicates the corresponding observation time span (for an example 
see [34, Sec. 3.7.1]). In terms of the SDE (27), this is not surprising, since P\ 
includes only one choice of momenta according to V, while does include two 

5. igh-Friction Langevin ynamics 

The second example of a reduced positional dynamics is based on the Langevin 
equation. We will see that in a specific high friction limit 7 —> 00 the Langevin 
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equation acting on t e state space reduces to the s a l l e d high-fricion L a i n 
equation acting only on the position space. 

Consider the Langevin equation (7) written in second order form 

-VV()- (29) 

For the high friction case, let e be a small positive parameter and consider 
the transformed friction 7/e. In order to preserve the temperature T of the 
surrounding heat bath, we simultaneously have to scale the white noise constant 
a !-• a/v^ due to (15). This yields 

- ^ V ( ) - - ^ r 

After rescaling the time according to t > t one gets 

-X7qV() -

For systems of type (B) for which the gradient of V satisfies a global Lipschit 
condition, and 0 < e <C 1 one may neglect the e2-term [30, Thm. 101] and 
finally get the high-friction Langevin equation2 

= ~-V{) + - 30) 
7 

modelling the high friction positional dynamics within the canonical ensemble. 
The stochastic differential system (30) defines a continuous time Markov process 
{Qt}te~R& on the position space Q with corresponding transition kernel p(tC 
The process leaves the canonical measure / Q invariant [32]. 

As for the general Langevin dynamics (16) in state space, the continuous 
time semigroup of forward transition operators { n i m a y be defined in 
terms of its infinitesimal generator [19]: 

| ^ A ; ^ W ) - V 31) 

acting on a suitable subspace of LrQ). As a consequence one gets 

Pt:L
Ta(Q) Lr

Q(ü) 

Pt - exp(tAu. 32) 

Thus, every probability density t) with respect to (J,Q evolves according 
to the Fokker-Planck equation and its solution is formally given by 
(32). 

It is shown in [36, 4] that for systems of type (B) the semigroup of forward 
transition operators satisfies the requirements of Subsection 5.1. Furthermore 

Pt}ten$ is a self-adjoint semigroup in L2Q(Q) since the infinitesimal generator  
is self-adjoint with respect to { -)Q [36] 
2In contrast to the usual quasistatic approximation in mechanics, we cannot imply assume 

that the accelaration q is bounded since the white noise proce is unbounded. However, the 
investigation in [30] shows that the Langevin solution <?Lan(t <?o,Po) and the solution </fric(t; qo) 
of (30) satisfy for all po, with probability one: l i e _ o |<?fri(*) — < ? L ( * ) l = ® uniformly for t 
i compact subintervals of [ , 0 ) 
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Remark. The physical density f(q,t) = u(q,t)Q(q) (see introduction to Sec 
tion 3) evolves according to the Fokker-Planck equation df = A*f, where A* 
denotes the formal adjoint of A, ie. , A* = a2/(2' l/-yVV(q) • V 
l/jV() (see [19]). 

Almost Invariance and First Exit Times. Due to experimental require­
ments, almost invariance of conformations is defined at dicrete poits 
(see Eq. (21)): 

, £C:s = 0<mds t] 
PäiUtcc Qo € c ] 33) 

This definition also holds for the continuous time Markov processes. However 
one could alternatively want to characterize almost invariance of conformations 
based on conus tme observtion 

W W C £ (
[ 0

t : ^ S e M 1 ] 4) 

Obviously, the two definitions will in general produce different result, since the 
former definition does not take into account fluctuations in between the two 
instances. However, in contrast to the latter definition, the former one can be 
realized by the two-step experiment from Section 4.1. 

Mathematically, both characterizations are closely related by Fokker-Planck 
equations on appropriate function spaces. Let TQ denote the first exit time of 
the Markov process { < } R ^ , started at time zero in q C, from an open 
subset C c ! ] , 

c inf{t > 0 : Qt) i C} 35) 

For open, bounded subsets C with sufficiently smooth boundary dC the distri 
bution of exit times vc(qt) - P [ T £ > t] = P[Qs(q) e C : for all s G [0,i\] 
for q e C is given by the Fokker-Planck equation on C U dC with Dirichlet 
bondary conditions 

v = Av, v( 0) = x and v( t) — 0 for all t > 

In contrast uc(q,t) = P[Qs) € : s — 0 and s = t] satisfies the Fokker 
Planck Cachy problem on 0,: 

( 0 ) =x 

(with implicit "transparent boundary conditions"). With respect to the above 
two characterization of almost invariance, we finally get 

Pdicr(i CC — — - t)Q()d 
(< 

and 

Pco(tCC — j - r tQ()d 
ßQ{^ 
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u s i f i o n o l g h m i c gy 

Here, we want to pick up the algorithmic strategy presented in ection 4.3 and 
state more precisely how one can use eigenvectors corresponding to eigenvalues 
near the Perron root 1 in order to identify almost invariant subsets. In the 
following, we fix a time s £ M and—in accordance with the properties of the 
above two examples—we assume that the transition operator Ps is self-adjoint 
in Z/2g(f2). Moreover, for the sake of simplicity, we restrict our considerations to 
the case that the Perron root is "nearly two-fold degenerate", ie. , we assume 
that the spectrum of P has the form 

a() C [ r r ] U{A}U{1} 

with 0 < r < A 2 < A i = l; furthermore, we assume that i and 2 are simple 
eigenvalues. The eigenvector corresponding to A = 1 is xn, while we denote the 
eigenvector corresponding to by <j> € L2Q(Q) with normalization | | 0 = 1. 
Note that ( < / > , Q 0. 

Nonrigorous Approach. One intuitive idea is to interpret almost invariance 
as "perturbed invariance". Therefore, we assume that the above transition 
operator results from a continuous perturbation of some self-adjoint Markov 
operator P with degenerate, two-fold Perron root and invariant measure ji. If 
the degeneracy of the Perron root is caused by the existence of two disjoint 
invariant sets, say C and Cc = f2 \ C, the eigenspace E of the Perron root is 
spanned by the eigenvectors xc and xcc • Neither C nor C are invariant sets of 
Ps, however xc/ß(C) and Xcc/ß(C) remain to be "approximative" invariant 
densities of P in the sense that (compare Section 43) 

j4cjxc ~ MC) 

By means of the geera rmula 24), this implies that C as well as are 
almost invariant sets of Ps. Since xo is a common eigenvector of P and , we 
choose another orthonormal basis of E = s p a n { x f i c } with 

Mxa - M°~ 36) 

Since Ps is assumed to be a continuous perturbation of P, we have to expect that 
the so-defined uc is an approximation of the eigenvector 0 of Ps corresponding 
to A2. This motivates the algorithmic strategy to identify the almost invariant 
sets via the second eigenvector < (or —c) according to 

» { : <p( 0} and « { : 4>{ } (37) 

For more details concerning the idcation algorithm for the more general 
case see [13] 

Rigorous Approach. Although the perturbation analysis yields an intuitive 
understanding of the form of the second eigenvector of Ps, we subsequently will 
not assume any kind of perturbation embedding of Ps but rather proceed in 
another way towards a rigorous justification of the following "equivalence" 

0. 
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Decomposition into almost Eigenvalue cluster {1,A2} separated 
invariant subsets 0, — C U C from remaining spectrum: 

p(sCCa)*0 < = 
4>(q) > l-=^ 

The following rigorous statements are closely similar to the r e s l t s of E.B. 
DAVIES [7]. To simplify reference to his results, let us denote by r and p the 
positive values with 

exp(—sr and r = exp(—sp) 

where s denotes the initially fixed time span. For the ^"-direction in (38) 
we assume that e = (1 — A2)/(l — r) is small enough, and introduce c = \\4\oo 
satisfying c 1. Due to [7]3 there exists C £ A given by C = { 4>{ 0} 
such that Y? < ß(C) < 1 — -^ a n d 

0 - 4c 

Furthermore the subset C is almost invariant with 

p(ns C C) < K l + pns), for all G N, 

where K depends on c and ß(C), and is independent of e. 
For the " = " -direction in (38), we assume that C is almost invariant with 

p ( n s C C ( 1 + pns), for all n e N, 

with K = ~Q ' and sufficiently small ö > . Then, we again get that uc 
approximates the second eigenvector in the sense that cf> — \ V%ö, and 
that, due to Thm. 5 in [7] < 71P < 6 implying 

1-r6 

Thus, the formal equivalence (38) can be taken seriously. The above state 
ment can be generalized to the situation of more than one eigenvalue close to 
the Perron root, but bounded away from the remaining part of the spectrum 
(see [8] 

Remark. We are aware of the fact that the above assumption e C I o n 
the distribution of the eigenvalues is quite restrictive. However, we observed 
intriguing results of the identification strategy even for situations corresponding 
t o v a l u e s close to 1 [13] 

3 The proofs of Thms. 3 and 5 of [7] have to be adapted to our situation. In the proof of 
Thm. 3, the arguments using the generator H have t be replaced by analogous argument 
for l-Pa. 
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pectr p r o x a t i o n of ansf O p a ­
tors 

We are interested in fluctuation within the canonical ensemble for some fixed 
observation time span r . As a result, we restrict our consideration to the time 
s transition operator Ps with s = r or s = 1 for the high-friction Langevin 
equation or the discrete time Markov chain with the same observation time in 
(26), respectively. Since both associated semigroups of transfer operators are 
self-adjoint, we assume in this section, that P is a self-adjoint operator acting 
on L2Ü). 

6.1 alerkin Discretization 

In order to compute the conformational subsets exploiting certain eigenvectors 
of Ps, we will introduce a special Galerkin procedure to discretize the eigenvalue 
problem P = X 

Let B\,... , B c Vt be a partition of Vt such that Bk n Bi — 0 for k ^ I 
and ö^=1Bk = 0,. Our finite dimensional ansatz space Vn = span jx i , . . . ,xn} 
is spanned by the associated characteristic functions \k = Xßh- Then, the 
Galerkin projection I : L2(i}) —>• V of € L 2 Q(Q) is defined by 

5 I ^—Xk)QXk 
f- XkXk 

Note that {xk,Xk)Q = JB Q(?)dg is simply the weight of the subset B^. The 
resulting discretized transition operator n r a P s n induces the approximate eigen­
value problem n „ P s i l n u = All„w in V„. Using u — ̂ 221 aXk the discretized 
eigenvalue problems in coordinate representation reads 

XkXi)o i = XkXk)Qk Vfc = l . , 

After dividing by XkXk)a 0, we end up with the convenient form 

w i t h . , 

The entries of the nxn matri are given by the one step transition probabilities 
from Bk to Bi 

Skl fsXfc'X')Q =p(sBB) 39) 
XkXk)Q 

Since Ps is a Markov operator, its Galerkin discretization S is a (row) 
stochastic matrix, i.e., Ski 0 and J^ILi $ki = 1 for all fc = 1 , . . . , n. Hence, all 
its eigenvalues A satisfy | | < 1. Moreover, we have the following four important 
properties [35 34]: 

1. The row vector -K = (m,..., nn) with wt — JB Q(q) dq, which represents 
the discretized invariant density Q, is a left eigenvector corresponding to 
the eigenvalue A = 1 ie. , wS = n. 



2. S is irreducible and aperiodic, if Ps is ampto t ica l ly stable. As a conse 
quence, the eigenvalue A = 1 is simple. Hence, the discretized invariant 
density w is the que stationary distribution of S 

. The transition matri is selfadjo with respect to the discrete scalar 
product {u,v)x = ^ U i , since P is self-adjoint. Equivalently 
satisfies the condition of etaile balanc 

Ski for all kl £ { 1 . ,n} 

Therefore, all eigenvalues of are real-valued and, due to 2., contained 
in the interval [—1,1] 

In other words, for an arbitrary covering B\,... ,Bn C f2, the discretization 
matrix inherits the most important properties of the transition operator 

6.2 Convergence f Discret igenvalues 

Denote by <J(PS) the L2Q(Q)-spectrum of Ps and by Odiscr(-Ps) C o{Ps) the sub­
set of all isolated eigenvalues of finite (algebraic) multiplicity. Then, <7discr(-P» 
is called the discrete spectrum, while aess(Ps) = a(Ps) \<JdiSCr(-Ps) is called the 
essential spectrum of Ps [24]. Assume that the essential spectrum is bounded 
away from 1 (condition C2 on page 12), i.e., there exists a constant 0 < K < 
such that (Tess(-Ps) is contained is the ball with radius K centered a the origin. 

We are interested in approximating a cluster of (real-valued) discrete eigen­
values A . , G Odicr(P) near 1 "outside" the essential spectrum 

c < • • • 1 , 

repeated according to multiplicity. The corresponding eigenvectors uc, • • • ,u 
are assumed to be orthogonal; this is always possible since P is assumed to be 
self-adjoint. 

Assume that the sequence of Galerkin ansatz spaces Vi C V-2 C . . is 
dense in L2Q(Q) and the corresponding partitions are getting finer and finer 
maxBey„ diam(£?) —> 0 as n —> oo. Denote by the transition matrix (39) 
associated with the ansatz space V„ and by \iyn ,«i,y„ its eigenvalues and eigen­
vectors, respectively, ordered in decreasing magnitude and taken into account 
multiplicity. 

Under the above stated assumptions, the dominant eigenvalues of Sv are 
good approximations of the dominant eigenvalues of Ps, whenever the dis­
cretization is fine enough; in this case, Pyrt also has a cluster of eigenvalues 
^c,vn < • • ^ v i,v 1 near 1. More precisely, for every i = 1 . , c 
we get [34] 

— and , — as n —>• o 

in modulus and I / 2 O)-norm, respectively. 

lgorithmic Realization 

In this section, we want to outline the basic steps for an algorithmic realization 
of identifying molecular conformations their meta-stability and the transition 
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rates between them. In doing so, we will exclusively focus on the discrete time 
Markov chain and the related transition operator defined in Section 5.2 due to 
the following two reasons. First, it is the common belief that the discrete time 
Markov chain approach based on Hamiltonian motion is more realistic for mod­
elling conformational dynamics of biomolecules than the high friction Langevin 
approach. Second, we managed to prevent the numerical effort for solving the 
eigenvalue problem for the transition operator from exploding combinatorially 
with the number of atoms in the molecule: This was done by discretizing it by 
means of a special hybrid Monte Carlo method [16], such that the computa­
tional effort does not depend explicitly on the dimension of the system. The 
basic scheme of the resulting algorithm is illustrated in Fig. 1. We will explain 
the single algorithmic steps subsequently. 

Reweighted 
ATHMC 

Conformational subsets 
& transition probabilities 

Identification of 
essential variables 

Evaluation of 
transition matrix 

Identification 
of conformations 

Subspace oriented 
eigenvalue solver 

F i g e 1: Basic scheme of he a l g o r h m . 

Each step of the algorithm is illustrated by application to the triribonu-
cleotide adenylyl(3'-5')cytidylyl(3'-5')cytidin (r(ACC)) model system in vacuum 
(see Fig. 2). Its physical representation (N 0 atoms) is based on the GRO-
MOS96 extended atom force field ] 

F i g u r e 2: Configuration of the trinucleotide r(ACC) in a ball-and-stick represntat ion he 
G r k symbols indicate some of the important dihedral angl of the molcule . 
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1 l u i o nsition M a i x 

In order to compute the discretization matrix S of the transition operator — 
called the transition matrix in the following— we have to be able to determine 
transition probabilities between subsets. This task includes three subproblems: 
Generation of an adequate box partition of the position space f2, sampling of 
the canonical ensemble Q and approximation of the internal dynamics within 
the ensemble. 

Sampling of the Canonical Density. The typical approach to sample the 
canonical density is via Monte Carlo (MC) techniques. There is an extremely 
rich and varied literature on this topic (see, e.g., [5, 39]) and every converging 
MC method would allow to realize this subproblem. In addition, one may 
also apply MD-based techniques, e.g, constant temperature sampling of the 
canonical density [31, 3]. 

It is widely known, that MC simulations for ensemble averages in biomolecu-
lar systems may suffer from possible "trapping problems" [28]. As illustrated in 
[34], this phenomenon is related to the existence of almost invariant sets for the 
MonteCarlo Markov chain We use a specific MC method, the hybrid Monte 
Carlo method with adaptive choice of temperature (ATHMC) [16], which was 
especially constructed to overcome this trapping problem. Moreover, ATHMC 
is particularly useful for linking the sampling technique with the ensemble dy­
namics. Future approaches will be based on a hierarchical sampling technique 
[15], which might be understood as a specific multilevel approach to ATHMC 
that merges its superior sampling properties with the identification of almost 
invariant sets. 

The result of every converging MC method is a finite sampling S C 0 of 
positions that are distributed according to the canonical ensemble. 

Application to r(ACC). The simulation data were generated by means of an 
ATHMC sampling of the canonical density at T = 300K. The subtrajectories 
of length 80 femtoseconds were computed by means of the Verlet discretization 
with a stepsize of 2fs. For these parameters standard MC simulations typically 
require thousands of iterations only to leave the neighborhood of the initial con­
figuration. Application of ATHMC (with adaptive temperatures between 300K 
and 400K) circumvents this trapping problem: one observes frequent transitions 
in the crucial dihedral angles of the molecule (for details see [15]). The simula­
tion was divided into 4 Markov chains, each starting with a different state chosen 
from a high temperature run at 500K, which allowed the molecule to move into 
different conformations. The sampling took about 12h on a workstation with 
MIPS RIO.000 processor. It was terminated by a convergence indicator [21] as­
sociated with the potential energy and all 37 dihedral angles after 320.000 steps 
resulting in the sampling sequence S = {qi,.. , </32.ooo}> considering only every 
10th step. Since the temperature can change during the ATHMC run, each con­
figuration is connected with a reweighting factor with respect to the canonical 
ensemble at 300K. 

4 The trapping phenomenon occurs when the Monte-Carlo Markov chain gets trapped near 
a local potential energy minimum due to high energy barriers so that proper sampling of 
the entire phase space w t h i easonable computing times i preventd . 
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Box Partition via Essential Degrees of Freedom. Typical biomolecular 
systems contain hundreds or thousands of atoms. As a consequence, the number 
of discretization boxes, and thus the dimension of the transition matrix S, would 
grow exponentially with the size of the molecular system, if we would generate 
a box decomposition for Q by simply partitioning every degree of freedom. 

Chemical insight allows to circumvent this "curse of dimension". In the 
chemical literature conformations of biomolecules are mostly described in terms 
of a few essential dgrees of freedom. In the subspace of essential degrees of 
freedom anharmonic motion occurs that comprises most of the positional fluc 
tuations, while in the remaining degrees of freedom the motion has a narrow 
Gaussian distribution and can be considered as "physically constrained". 

Based on the sampling of the canonical ensemble, we may determine essential 
degrees of freedom either in the position space according to AMADEI ET AL. [2] 
or in the space of internal degrees of freedom, e.g., dihedral angles, by statistical 
analysis of circular data [22]. These techniques are based on the following sta­
tistical analysis of the sampling data: The correlations between atomic motions 
within the simulation data are expressed by the covariance matrix C.5 Since 
C is symmetric, it can always be diagonalized, i.e., there is an orthonormal 
matrix U such that C = UTAU with A being the diagonal matrix whose en­
tries are the eigenvalues of C. The matrix U defines the transformation of the 
original coordinates (positions or internal degrees of freedom) into the uncor 
rected coordinates. The matrix A is connected to the systems constraints in 
the following way [2]: Transformed coordinates corresponding to zero or nearly 
zero eigenvalues behave effectively as constraints; they have narrow Gaussian 
distributions and do not contribute significantly to the fluctuations. In contrast 
to that, transformed coordinates corresponding to large eigenvalues have large 
deviations from their mean position, i.e., they belong to important fluctuations. 
Mostly, only a few coordinates exhibit such important fluctuations; these are 
called essential degrees of freedom. Thus, this procedure results in a tremendous 
reduction of the number of degrees of freedom and, consequently, in a moderate 
number of partition boxes when discretizing the essential variables only. 22] 

6 • . 

3 
0 10 20 30 10 20 30 

transformed torsion angles torsion angles 

F i g u r e 3 : Top: circular deviation of the transformed dihedral angles ordered by magnitude 
(left) and circular deviation of the original dihedral angles ( ight ) 

5To analyze the simulaton data in erms of the dihedral angles we have to apply s t a t i s c a l 
methods for c icular dat 7, 18]; see 22] for r u l t i n g definition of the covariance m a t i 
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R e m a k . As discussed in detail in [34], the transition operator can be re­
stricted to the coordinate space spanned by the essential variables without loos 
ing its desired spectral properties. 

Application to r(ACC). Since essential degrees of freedom should solely re­
flect internal fluctuations of the molecule we only consider the 37 dihedral 
angles of the r(ACC) molecule (see Fig. 2). The above explained transforma­
tion process based on the simulation data for r(ACC) is exemplified in Fig. 3 
and Fig. 4. Figure 3 shows the circular deviations of the original and trans 
formed dihedral angles in decreasing order of magnitude. Only the first four 
transformed dihedral angles have relevant circular deviation and are far from 
being Gaussian shaped (see Fig. 4), while the remaining transformed dihedral 
angles are Gaussian like. 

-100 0 100 
degrees 

0.06
 

0.0
 

ft 
0 t III 0 

degrees 

F i g r e 4: Distribution of the four essential dihedral angles. The d i s t b u t i o n s at the top 
allow to identify t h r e maxima each, while there are two maxima for each d i t i b u t i o n at the 
bottom. 

The configurational space was discretized into "boxes" £?i, . . . ,Ba,by means 
of all four essential degrees of freedom (see Fig 4) resulting in d — 36 discretiza­
tion boxes. 

Approximation of Internal Dynamics. Due to equatios (22) and (39) 
the entries of the transition matrix S with respect to the boxes Bk are given by 

p(lBkBt) 

1 

k Q() d JB 
[ p(lB)Q()d 
Bh 

(40) 

Let now qi,q2,... denote an arbitrary sequence of positions generated by some 
ergodic Markov chain Monte Carlo method that is asymptotically distributed 



according to the canonical density Q. Then, e to t e law of l a e n m b e r fo 
Markov chains [40], we may rewrite Ski as 

P(^^-g0xgfe( 

By using o r particular MC seqence S, we thus get 

GE Bk ( 

Finally, we have to approximate the transition kernel p(l,q,Bk) for all q € E 
and all Bj. For the discrete Markov chain, this can be done by applying some 
integration scheme to ( 6 ) . A convergence analysis is presented in 34] 

Application to r(ACC). The dynamical fluctuations within the canonical 
ensemble were approximated by integrating four short trajectories of length r = 
80fs starting from each sampling point q € E. To facilitate transitions, analogous 
to the ATHMC sampling, the momenta were chosen according to the momenta 
distribution V for 4 different temperatures between 300-ftf—400K and reweighted 
afterwards. This resulted in a total of 4x32.000 = 128.000 transitions. This 
calculation took less than 25% of the total computing time. Then the 36 x 
36 transition matrix S was computed based on the 128.000 transitions taking 
the different weighting factors into account. Since every box had been hit by 
sufficiently many transitions the statistical sampling was accepted to be reliable. 

2 ing t i g l u r o l e m 

Once the entries of the transition matrix have been computed, we have to deter 
mine the eigenvectors corresponding to a cluster of eigenvalues near the domi 
nant eigenvalue 1. That is, only a small part of the spectrum of S is required 
not its full diagonalization. Actual evaluation is efficiently possible using sub-
space oriented iterative techniques, even if the number of discretization boxes 
may be about 100.000 or larger [27 0] 

Application to r(ACC). The computation of the eigenvalues of S near 
yielded a cluster of eight eigenvalues with a significant gap to the remaining 
part of the spectrum: 

1.000 999 0.989 0.974 963 0.46 933 0.904 805 

i f i o n of C n f o r m a i o n s 

According to the definition of almost invariance we are interested in unions 
C = UkeiBk of partition sets, for which p(l , C, C) PS 1. In other words, we are 
looking for a nontrivial index set / C { 1 , . . . ,n} such that the process Qt almost 
certainly stays within B = UkeiBk after one step. Using the transition proba­
bilities p(l , .Bfc, B[) between the partition sets, cluster algorithm can be used to 
identify almost invariant subsets [22]. We apply the identification strategy of 
Sec. 5.4 in its algorithmic realization due to [13], which exploits a certain almost 
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constant le e of e i g s c p o i n g to a c l u r of e i g a l u 
near 1. 

Application to r(ACC). Finally, the conformational subsets were computed 
based on the eigenvectors of via the identification algorithm. This yielded 
eight conformations. 

The conformational subsets identified turned out to be rather insensitive 
to further refinements of the discretization. The weighting factors within the 
canonical ensemble and the meta-stability of the eight identified conformations 
are given in the following table: 

coformations Di Dlt D2 D2 D3 D3 D4 
weighting fact 
meta-stability 

0.107 0.011 
0.986 0.938 

116 0.028 
961 0.888 

320 0.038 
991 0 .49 

285 0.095 
981 0.962 

The transition probabilities between the different conformations are visual 
ized schematically in Fig. 5. The matrix allows to define a hierarchy between the 
conformations, which is inherent to the algorithm. On the top level, there are 
two conformations, D1&D2 and D3&D4 corresponding to the two 4 x 4 blocks 
on the diagonal of S. On the next level, each of these conformations split up 
into two subconformations yielding D l , . . . ,D4. On the bottom level, each con­
formation is further divided into a c-part and a t-part (for interpretation see 
[22]). The evaluation of the transition matrix together with the execution of 
the identification algorithm took less than 2% of the computing time required 
for evaluation of the simulation data via ATHMC 

F i u r e 5: Visua lza ton of the o n e - s p transition probabilities p ( l , -Dfrom, -Dto) between 
the conformation -Dfrom (row) and Dto (column) The colors ar c h o s n according t the 
logarithm of the corresponding e n t i s ; black: , •, •) f 1, white: , •, •) m 0. m 26 
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Fi g u r e 6: 2d plot of the four conformations D l , . . . ,D4 (squares). The distinction between 
open and filld quares ind ica t s a further splitting int eight conformations r u l t i n g f o m 
partition int c-conformation and a —conformation. 
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