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Abstract Diffusion models arising in analysis of real world systems are typically
far too complex for exact solution, or even meaningful simulation. The
purpose of this paper is to develop foundations for model reduction,
and new modeling techniques for diffusion models. Based on the main
assumption of V-uniform ergodicity of the diffusion process it is shown
that real eigenfunctions provide a decomposition of the state space into
so-called metastable sets. We give a novel definition of metastability via
exit rates which seems to be promising for a algorithmic identification
of metastable sets even for large scale systems.

Introduction

Diffusion models are a popular alternative to the classical description
of complex processes in terms of large sets of ordinary differential equa-
tions that give rise to chaotic dynamics. Examples are varied and come
from the such diverse fields as molecular dynamics [4], materials science
[5], or internet security [3]. However, even diffusion models in practice
are far too complex for exact solution, or even long-term simulation.
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Recently, various approaches to the essential features of such diffusion
models have been proposed. They range from novel algorithmic meth-
ods based on transfer operator theory that decompose the state space
into ‘metastable’ sets [16, 17] and transition path computation between
these sets [6, 4], to more theoretical approaches to model reduction tech-
niques based on variants of the classical Wentzell-Freidlin theory (see
e.g. [2, 7, 15]), or the analysis of transition times via the theory of quasi-
stationary distributions of Markov process as introduced in [18, 19, §].
The approaches closest to this article are [2, 7]. However, while the
present article defines and investigates the essential features of diffusion
processes via resent results for spectral theory, [7] mainly exploits large
deviation theory and [2] is mainly concerned with the limit of vanishing
noise intensity (which is not the case in the present article).

The approach via quasi-stationary distributions and the mentioned al-
gorithmic transfer operator approach, both, rely on the analysis of eigen-
functions of the full or some restricted semigroup of the diffusion process.
This article corresponds to this discussion, combined with recent results
concerning large deviations and spectral theory for 1-irreducible Markov
processes [1, 10, 11]. It summarizes the article [9] of the present authors.
There, the theory is worked out in detail, while we here aim to provide
a rapidly accessible reference to the results in [9] combined with a short
nontrivial illustration.

We consider general multivariate diffusion processes X which are gov-
erned by the stochastic differential equation

dX = wu(X)dt+ A(X)dW,, (1)

where u : R — R? with measurable components, W denotes d-dimensional
Brownian motion, and A(z) a d X d matrix with measurable entries. A
special case is the so-called Smoluchowski or high friction Langevin equa-
tion on R?, where the function u is given by a potential U, v = —VU,
and the matrix A is state-independent and a multiple of the identity ma-
trix, A = oI, such that the process obeys dX = —VU(X)dt + o dW,.
Choosing d = 1 and U to be the perturbed three well potential shown
in Figure 1, we will use this case for illustration.

1. V-uniform ergodicity and spectral gaps

Here we assume that the reader is acquainted with the basics of the
general theory of Markov processes, especially with the definitions of
y-irreducibility, (Harris) recurrence, and aperiodicity. The state space
X considered herein is assumed to be an open, connected subset of R%.
The ergodic theory and spectral theory described here is based upon the
vector space setting developed in [12, Chapter 16]. Let V : X — [1, 00)



Metastability of Diffusion Processes 3

= 0 =5 0 5

Figure 1. Left: The pérturbed three-well potential U(z). The dashed lines indicate
the wells separated by the two saddle points with maximal barriers. Right: Corre-
sponding potential of the so-called twisted process due to Prop. 4 below based on the
eigenfunction hs of our illustrative example (see Figure 2, middle).

be a given function, and denote by LY, the vector space of measurable
functions h : X — C satisfying

|h(z)|
hl,, := sup
Bl = sup s

< 00

The vector space M7 is the set of complex-valued measures v on the
Borel sigma-field B = B(X) such that

|wv—/v v(dz)] < oo,

The induced operator norm is defined by

PRy
121y

where the supremum is over h € LY, ||h|ly # 0. For later reference, we
define the function space

121y ==

CV={geLl :|Pg—glly =0, t]0}

1.1 Diffusion semigroups

Based on the previous definitions this section will present some spec-
tral theory for the semigroup associated with a hypoelliptic diffusion
process: We assume that time is continuous, T := R, , and that the dif-
fusion X = {X(¢) : t € T} evolves on X due to (1). Its differential
generator (the generator of the associated Fokker-Planck equation) is
given by

Dh=3, (o) 5 Ja; (@) 2 Z Bij (2 8:1:18361 Bt )
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with 3;;(z) being the entries of the d x d matrix $(X) = A(z)A(z)T.
In more compact notation, D = —u -V + Ltrace (XV?). In the following
we assume that

the Markov process X is an aperiodic, hypoelliptic diffusion,
with continuous sample paths.

(3)

The definition of hypoellipticity can be found, e.g., in [13, Theo-
rem 3.3]. The following theorem gives a condition under which this
assumption holds:

Theorem 1 Suppose that X is a diffusion with generator given in (2),
and suppose that the generator is hypoelliptic. Suppose moreover that
there is a state xy € X that is ‘reachable’ in the following sense: For
any z € X, and any open set O whose closure contains xg, we have that
Pi(z,0) > 0, for all t € T sufficiently large. Then, the Markov process
is Y-irreducible and aperiodic with

¥() = /Oooetpt(xoa')dt- (4)

The RHS of (4) is know as the resolvent kernel corresponding to the
transition function P! of the diffusion defined in (1). Formulations and
characterizations of the spectral gap of our diffusion X are facilitated by
three different generators:

1 The extended generator A: We write ¢ = Af if the adapted
stochastic process (My(t),F;) is a local martingale, where F; =
0(X(s);0 <s<t),and

t
My (t) = f(X(t))—f(X(O))—/0 9(X(s))ds. (5)

2 The differential generator D: Defined on C?(X) via Df = —u -
Vf + itrace (BV2f).

3 The strong generator Dy: For a given V: X — [1, o], finite a.e.,
we write g = Dy f if f,g € CV, and \Hw —glly = 0 for ¢ ] 0.

The extended generator A is a true extension of D in the sense that
Af = Df ae. [1] when f € C%(X). The extended generator and differ-
ential generator are used in criteria for stability and to obtain bounds on
the ‘essential spectrum’ of the associated semigroup. The strong gener-
ator is used to define a spectral gap: For a given V: X — [1, 00|, finite
a.e.,
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1 The spectrum s(Dy) is the set of A € C such that the inverse
[IA — Dy]~! does not exist as a bounded linear operator on LY ;

2 The generator admits a spectral gap if the set s(Dy) N{z € C :
Re(z) > —¢} is finite for sufficiently small & > 0;

3 The Markov process is called V -uniformly ergodic if there is a spec-
tral gap; {0} = s(Dy) N{z € C: Re(z) = 0}; and the eigenvalue
A =0 is simple.

The following ‘drift condition’ characterizes V-uniform ergodicity and
is central to this paper. It is useful that we may use the extended
generator, and not the strong generator in (V4). A function s: X —
[0,00) is called small if

PT(z,A) > es(z)v(A), zeX
for some probability distribution v on B(X), ¢ > 0, and T < oc.

(V4)  For constants b < 00, 0 < T < o0, a small function s : X — [0, 00),
and a function V : X — [1,00), one has AV < =T'V + bs.

Condition (V4) is equivalent only to a spectral gap.

Theorem 2 Suppose that X is -irreducible and aperiodic, and sup-
pose that (V4) holds for some V: X — [1,00). Then X is V-uniformly
ergodic. Conwversely, if the Markov process X is Vy-uniformly ergodic
then there exists a solution to (V4) with V € LY3.

1.2 Non—probabilistic semigroups

For a given function F': X — R U {oo} we consider the following
positive semigroup, for A € B,x € X;t € T,

Ph(z, A) = E, [I(X(t) e A) exp(— /OtF(X(s)) ds)].

A strong generator can be defined in analogy with the probabilistic
semigroup. N

For an arbitrary positive semigroup { P’} the definitions of irreducibil-
ity, small sets and measures, and other set classifications remain the same
in this non-probabilistic setting. For a given function V: X — [1, o],
finite a.e., the V-spectral radius of {P'} is given by

~ ) ~ 1T
sty ({P'}) = Tim (IP"]),)
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Closely related is the Perron-Frobenius eigenvalue, defined for any small
pair (s,v) with s € Bt, v € MT, via

= ) ~m \U/T
pfe({P'}) := lim (UP s) (6)
T—o0
A straightforward generalization of [14, Proposition 3.4] shows that these
definition are independent of the particular small pair chosen when the
process is 9-irreducible. R
In analogy with V-uniform ergodicity, the semigroup {P! : t € R}

with generator ﬁv is called V-uniform if the following conditions are
satisfied:

1 The constant A := —log(sry (F)) is a simple eigenvalue, i.e., the
associated eigenspace is a one-dimensional subspace of LY.

2 The generator admits spectral gap: for sufficiently small € > 0,
{A}=s(Dy)N{z € C:Re(z) > A —¢}.

In [9], the reader may find an analog of Theorem 2 which states the
V-uniformity of the semigroup {PL} under the assumption of a drift
condition similar to (V4).

2. Metastability and exit rates
For a given set A € B we define the stopping times,

A= inf{t >0:X(1) € A}, 04 = inf{t >0: /Ot 1(X(s) € A) ds > 0}

Much of the analysis here is based on the semigroups {ﬁfw} considered
in Section 1.2 in the special case where F' = ool 4c for some A € B.
When F takes this form we denote the semigroup by {P}}, which can
be equivalently expressed,

Phg (z) = Ex[g(X (1) 1(eac > 1)], g€ Lo, z€X, t€T.

Let C denote the collection of all connected, open subsets of X. In
addition to assumption (3) the following assumptions will be imposed
throughout the subsequent:

For each A € C the semigroup {P4} is 1 a-irreducible, where 14
is Lebesgue measure restricted to A, and every compact subset (7)
of A is a small set for {P4}.
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2.1 Exit rates

Our goal in this section is to quantify the rate at which the process
moves between elements of C. The motivation for the consideration of
transition rates, rather than moments, is to set the stage for Markov
chain approximations. Exit rates and metastable sets are defined
as follows

1 The ezit rate of A € C is defined as T'(A4) := — log(pfe(A)), where
pfe(A) denotes the Perron-Frobenius eigenvalue for the semigroup
{P :t € T} as defined in eq. (6).

2 A set M € C is called metastable with exit rate T'(M) if T'(A4) >
(M) for all ACM, A#£M, A€C.

3 The V-ezit rate of A € B is given by I'y/(A) := —log(sry (4)),
where sry (A) denotes the V-spectral radius of {P}}.

4 For M € B we say that M is V-metastable if T'yy(M) < oo, and
'y (A) > I'y(M) for any A C M satisfying A € B and ¢»(M/A) > 0.

Certain metastable sets are closely related to eigenfunctions:

Theorem 3 Suppose that X is a diffusion satisfying (3) and (7), and
that M € C is both metastable and V -metastable, with common exit rate
I'(M) =Ty (M) < co. Then there ezists h: M — (0,00) satisfying the
etgenvalue equation

Ah = —-T'(M)h on M. (8)

Here, for a set A € C and functions f,g: A — R we write ‘g = Af on
A if {Ms(t A pac) : t € T} is a local martingale (see (5)).

2.2 The twisted process

Inspired by Theorem 3, this section investigates the consequences of
the following eigenfunction equation:

For some I'y < oo and some set M € C there exists a function h,
positive on M and C? in a neighborhood of M such that 9)
Dh(z) = —Toh(z), for z € M.

Under (9), for any = € X the stochastic process my, (t):=h(z) " h(X (t))elot,
t € T, is a positive martingale up to the stopping time T, := gpme. Hence
it may serve in a change of measure in the construction of the twisted
process X with state space X := M whose semigroup is defined for any
g € Loo(M), and any x € M via,:

E[g(X ()] := Ea[ma(t)g(X (#)1(Te > 1)]. (10)



The twisted process is a diffusion. The associated ‘twisted generator’
is given in Proposition 4 below.

Proposition 4 Suppose that (3), (7) and (9) hold. Then, The ezpec-
tation operator E defines a diffusion on M, up to the exit time T,. The
differential generator is given by,

D =I1,-1DI, + TyI = D+ (X(VH),V), (11)

where Iy, is the multiplication operator: Ig = h-g, and H(x) = log(h(x))
for x € M. If X is governed by a Smoluchowski equation on X with
potential U, and if ¥ = o2, then D is the differential generator for a
Smoluchowski equation with potential Uy = U — o H.

The following result characterizes metastability in terms of geometric
ergodicity of the twisted process.

Theorem 5 Assume that (3), (7) and (9) hold. Suppose moreover that
the escape-time for the twisted process is infinite a.s., and that the twisted
process is V -uniformly ergodic for some V: M — [1,00), with k=1 € LY.
Then, the set M is both metastable and Vy-metastable, with common exit
rate T(M) = Ty, (M) = Ty given in (9), and with Vy = Vh.

We now provide more readily verifiable sufficient conditions under
which the conclusions of Theorem 5 will hold.

Theorem 6 Assume that (3), (7) and (9) hold, and that (V4) is also
satisfied for a continuous function V: X — [1,00). Suppose moreover
that the Lyapunov function V and the eigenfunction h satisfy the follow-
ing additional conditions:

(a) The constant T in (9) satisfies 0 < T'g < T.

(b) h(z) > 0 for all z € M, and h(z) = 0 for x € OM := M\ M.

(¢) (Vh(z))"S(z)(Vh(z)) > 0 for all z € OM.

(d) Ky, :={z € X: V(z) < nh(z)} is a compact subset of X for alln > 1.
Then,

(i) The escape-time from M for the twisted process is infinite a.s. for X (0) =
z € My

(ii) The twisted process is Vi -uniformly ergodic with Vi = V/h.

(iif) The set M is both metastable and V -metastable, with ezit rate T'(M) =
I'v (M) =T, where I'g is given in (9).

The following data illustrates the meaning of Theorem 6 for the Smolu-
chowski equation dX = —VU(X)dt + o dW in dimension d = 1 with
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the perturbed three well potential U of Figure 1 and o = 1. The eigen-
problem of the generator has been solved numerically by means of an
appropriate finite element solver. The resulting eigenvalues are:

A1 A2 A3 A4 A5
0.000 | —0.041 | —0.069 || —0.906 | —1.419

Thus, the eigenfunctions associated with the low eigenvalues A and A3
should allow a decomposition of state space into metastable sets with
significantly small exit rates. This eigenfunctions are shown in Figure 2.
We observe that the decompositions based on the zeros of the eigen-
functions ho or hg, respectively, are related to the decomposition into
the three dominant wells of the potential; deviations of the zeros from
the location of the saddle points with maximal barriers are in detail

discussed in [9].

-1 H H -1 H ! -1

hy(a)

h,(@

0 0 5 -5 0 5
a a a

Figure 2.  Second to forth eigenfunction hs, ..., hs of the generator for the Smolu-
chowski equation with the perturbed three-well potential and o = 1. The first eigen-
function h; is constant. The dashed lines indicate the main wells of the potential as in
Figure 1. Note that the eigenfunctions are remarkable insensitive to large variations
of the potential function.

2.3 Consequences for exit times

We show here that V-uniform ergodicity of the twisted process implies
that the exit time T, := gy from a metastable set M is approximately
exponentially distributed, with rate I'(M), provided there is a sufficient
spectral gap. For the random variable T, we define the conditional
distribution function, and the conditional moment generating function

for the residual life at time T' by
F.(s,T) = P [(Te—T)>s|Te >T], s>0, T >0; 12)
12
M,(8,T) = Eifexp(8(T. ~T))|T.>T], B<T, T>0.

These quantities are independent of T only for exponential random
variables. Theorem 7 states that the rate of decay of the exit time is
basically independent of the starting point and of T'.
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Theorem 7 Suppose that the conditions of Theorem 6 hold, so that the
set M is V-metastable with exit-rate T' > 0. Then there exists g > 0
such that for all s, T >0 and all 8 < T,

140 (e%05V (2)h= ()
140 (e~ (T30 V (z)h =1 (z))

Mo(B,T) = 5 +0(e”®"V(2)h™(z))

Fy(s,T) = e T®

Under the conditions supposed here, an application of Theorem 6
implies that the twisted process is V-uniformly ergodic for some V' sat-
isfying h~! € LY. Tt follows that, for some dg > 0,

Pht(z) =7(h™H) 4+ 0(e™ %V (z)h ™ (z)) s>0, zeX. (13)

Exacty this dg is the constant that enters in Theorem 7. The potential for
the twisted process(es) based on the eigenfunction ks of our illustrative
example is shown in Figure 1. In each of the three parts the twisted
potential does not exhibit any significant barriers. Thus, the diffusion is
rapidly mixing in all three components and therefore the associated dg
is large compared to the low eigenvalues of the full spectrum.
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