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Chapter 1. Introduction

The biochemical functions of many important biomolecules result from their
dynamical properties, particularly from their ability to undergo so-called con-
formational transitions (cf. [64]). In a conformation, the large scale geometric
structure of the molecule is understood to be conserved, whereas on smaller
scales the system may well rotate, oscillate or fluctuate. Furthermore, tran-
sitions between conformations are rare events or, in other words, a typical
trajectory of a molecular system stays for long periods of time within the
conformation, while exits are long-term events. Hence, the term conformation
includes both geometric and dynamical aspects. From the geometrical point of
view, conformations are understood to represent all molecules with the same
large scale geometric structure and may thus be identified with a subset of
the state space. From the dynamical point of view, a conformation typically
persists for long periods of time (compared to the fastest molecular motions)
such that the associated subset of the state space is metastable and the re-
sulting macroscopic dynamical behavior can be described as a flipping process
between the metastable subsets.

Understanding conformation dynamics—that is the statistics of the flipping
process and the corresponding exit times as well as the actual transition paths
between different conformations—is crucial to the understanding of biomolec-
ular flexibility and activity. Prominent examples of conformation dynamics
are the conformational changes accompanying the action of the muscle pro-
tein myosin, the light-induced conformational transition of the photo-receptor
rhodopsin initializing the primary amplification cascade in vision, or the con-
formation conversion of human prions assumed to cause prion diseases.

The state—of-the—art biophysical explanation for the existence of conforma-
tions is as follows: The free energy landscape of a protein or peptide decom-
poses into particularly deep wells each containing huge numbers of local min-
ima. These wells are separated by relatively large barriers—as measured on
the scale of the thermal energy kg7 —from each other and represent different
metastable conformations. The hierarchy of barrier heights induces a hierar-
chy of conformations [21, 27, 26]. The corresponding hierarchy of time scales
observed for conformational transitions seems to confirm the biophysical expla-
nation for the existence of conformations [49]. However, the entire explanation
depends on the concept of the free energy landscape, whose definition is typi-
cally based on the assumption that the conformational degrees of freedom are
already known in advance. In other words, the model is of minor use if con-
formations and conformational degrees of freedom still have to be identified
by simulations.

Mathematically, the dynamical aspect of conformations is based on the con-
cept of metastability. In this paper we will pursue two characterizations of



metastability. The Ezit Time Approach based on exit rates characterizes meta-
stability of some subset by the property that a typical trajectory will only exit
the subset on macroscopically long time scales. The Ensemble Dynamics Ap-
proach based on transition probabilities characterizes metastability of some
subset in statistical terms in the following sense: the fraction of systems in an
ensemble that exit from the subset during some (not necessarily long) given
time span is significantly small in comparison to other subsets. It is one of the
main goals of this article to discuss and compare the similarities and distin-
guishing aspects of these two concepts in detail (the entire Chapter 2 will be
devoted to the conceptual differences).

We will see that the two characterizations of metastability can be formalized
and studied within the unified mathematical framework of the transfer opera-
tor approach to metastability. This approach originated from the work of Dell-
nitz et al. on the identification of almost invariant sets of discrete dynamical
systems with small random perturbations [13, 11] and it has been successfully
applied to examine metastable behavior of deterministic Hamiltonian systems
by Deuflhard et al. [13]. By reformulating this idea in the context of bio-
physical models of molecular motion, Schiitte et al. showed that biomolecular
conformations can be identified via the “dominant” eigenvectors of the trans-
fer operator associated with the dynamical model used [55, 57, 54, 35]. It has
been demonstrated that, for moderate size (bio)molecules, the eigenvectors of
interest can be computed efficiently and allow to identify the desired confor-
mations and the associated conformation dynamics in a unified setting based
on simulation of the dynamical behavior of molecular systems [25, 17, 38].

The literature on conformation dynamics is enormously rich, see e.g., [15, 3].
However, the branch that deals with the dynamical aspects of conforma-
tions mainly contains approaches to the computational detection of transition
paths between conformations and of the associated main transition coordi-
nates, see [20, 27, 5]. There are several approaches designed to bridge the
time scale gap between realizably short trajectory simulations and signifi-
cantly longer metastability periods of conformational substates. One example
are approaches that exploit artificial accelerations of the dynamics, cf. [32, 34];
another example is given by path integral approaches to long—term dynamics
where transition paths are discretized in time using extremely large timesteps
[50].

The article will be organized as follows: First we will sharpen and conceptu-
ally complement the two characterizations of metastability (Chapter 2), then
we will shortly summarize the different dynamical models designed to de-
scribe different aspects of the dynamical and statistical properties of molecules
(Chapter 3). This will be followed by the presentation of the mathematical
framework of the transfer operator approach to metastability (Chapters 4 and
5). Within this framework we will reformulate the two concepts of metastabil-



ity and justify in detail the key idea of the transfer operator approach. More-
over, it will be shown that the framework allows to incorporate almost all
different dynamical models available. In Chapter 6 the theoretical level is left
and the issues of practical realization are discussed: The concept of Galerkin
discretization of transfer operators is studied which leads to the question of
whether a discretization of the eigenvalue problem in huge dimensional state
spaces will be possible without risking the increase of numerical effort beyond
any tolerable amount. It is illustrated how this problem can be circumvented.
Chapters 7 and 8 conclude the article by demonstrating the application of the
approach. In Chapter 7 the entire concept is illustrated by means of a simple
but completely comprehensible test system whereas Chapter 8 is devoted to
the application to a small oligonucleotide.

Chapter 2. Conceptual Preliminaries

Before we go into details about molecular dynamics, conformations, and meta-
stability we first want to point out the fundamental principles of the approach
to biomolecular conformations.

Let us assume for the remainder of this section that a mathematical model is
available which, given an exact initial state, perfectly describes the true mo-
tion of the molecule under consideration in all necessary details. In general,
this will be given by some (discrete or continuous, deterministic or stochastic)
dynamical system. In the deterministic setting, the corresponding initial value
problem is thought to model the evolution of the state of a single molecule;
its exact solution will be called “trajectory” in the following. In the stochastic
setting, we use the same interpretation and wording for every single path-
wise realization. Trajectories have to be distinguished from their numerical
realization, which will be called “simulation” or “numerical integration”.

In the context of biochemical applications one is generally not interested in
single isolated molecules but in certain molecular ensembles that, for instance,
model the collection of many identical molecules in a living cell or in a test tube
with certain side conditions like, e.g., constant temperature. The molecular
ensemble is represented by a statistical distribution in molecular state space.
If the ensemble is assumed to be stationary, the distribution does not change
in time (see Figure 1). Within this setting, the transition probability from some
sub—ensemble A to some sub—ensemble B, both specified by some subset A
and B of the state space, within a pre—described time span 7 is given by the
fraction of systems with initial state in A at ¢ = 0 and final state in B at
t = 7. Built upon transition probabilities we may state the

Ensemble Dynamics Approach: Conformations are identified as sub-
ensembles/subsets, for which the fraction of systems that exit during a
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Fig. 1. Illustration of ensemble dynamics: (1) an ensemble of molecular systems
embedded in a heat bath of constant temperature; (2) the usual assumption is that
this can be modeled by some stationary probability distribution, e.g., the canonical
density; (3) the dynamical behavior of each single molecule in the ensemble (here
assumed to be modeled accurately by some dynamical system with flow ®7) induces
dynamical fluctuations within the ensemble without effect on the stationary distri-
bution.

prescribed observation time 7 is significantly smaller than for other sub-
ensembles/subsets.

In order to numerically compute the transition probabilities from sub—-ensemble
A to B one has to generate (i) a sample that represents the sub—ensemble of
initial states in A, and (ii) a sample that represents the corresponding sub—
ensemble of trajectories starting from these initial states, as illustrated in
Figure 1. Within this statistical setting the ensemble dynamics approach is
able to capture conformation dynamics by considering only short-term tra-
jectories, since measurements on ensembles already contain information about
all possible states, and short—term trajectories over time spans that are of the
order of magnitude of the rapid conformational transition itself contain all
transition paths from one conformation to another.

The ensemble dynamics approach has the advantage that it is based on a set-
ting and requires information which is experimentally available: ensembles of
short-term trajectories can be observed by means of femtochemistry (Nobel
price 1999) [62, 63], a novel technique that permits us to observe the dynam-
ical behavior of molecular systems in real-time. Boosted by the progress in
laser technology, ultrashort light pulses can be generated with durations on
the typical timescales of molecular vibrations, i.e., from picoseconds down to
femtoseconds. The prototypical experiment follows the pump—probe scenario:
A molecular ensemble that is initially prepared in some stationary state is
excited by a first laser pulse (“pump”) thus lifting the system into an ex-
cited state. Subsequently, a second laser pulse (“probe”) is used to stimulate
another transition (emission or absorption) that serves to generate an observ-
able signal. By measuring the observable signal as a function of the time delay



between pump and probe pulse the evolution of the system in its excited state
can be monitored. Hence, pump-probe measurements allow to experimentally
realize the ensemble dynamics approach.

In this article we will present two different algorithmic approaches to generate
the data needed in steps (i) and (ii) from above. The two concepts are sketched
in Figure 2. On the one hand, we may use any method available to compute
a sample that appropriately represents the stationary distribution. Given this
sample one then evaluates the trajectories starting from any sample point.
We will see later that the two steps may be combined into a single procedure
by introducing an appropriate Markov chain. On the other hand, whenever
the dynamical system under consideration is ergodic?, a single long—term
trajectory represents the average behavior of molecules in the ensemble. Then,
chopping the long—term trajectory into pieces of length 7 will also do the job.

(A) Markov chain
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Fig. 2. Illustration of different algorithmic options for realizing a sample of the
stationary ensemble under consideration and the induced sample the corresponding
ensemble of trajectories: realization of ensemble and trajectories can be done by
means of (A) specially designed Markov chains, or (B) time-T pieces from a single
ergodic long-term simulation of the corresponding dynamical system.

This algorithmic option via long—term simulation should not be confused with
another approach to conformation analysis, the

Exit Time Approach: Conformations are identified as subsets for which
the exit time of a typical trajectory is extraordinary large in comparison to
other subsets.

This approach is build upon the belief that the description of conformational
transitions requires to start a long-term simulation and wait through the
in general tremendously long period of time until a transition takes place.
However, as we will see in the following this is not necessarily the case, and

2 The notion of ergodicity has several different meanings in physics and mathe-
matics. The typical rough “definition” states that “time average equals ensemble
average”. We will introduce the precise meaning used in this article in Section 7.



the notion of conformations in the ensemble dynamics and exit time approach
in some sense turn out to be very similar.

Both approaches may exploit long-term simulations in the ergodic interpreta-
tion in order to generate ensembles of short-term trajectories only. Yet, the au-
thors want to emphasize that long—term trajectories of the dynamical system
under consideration are not necessarily needed. This is of utmost importance
because the literature on predictability and sensitivity w.r.t. perturbations
states that for any dynamical system and prescribed accuracy there is a cer-
tain maximal time 7', up to which initial value problems are make sense. For
time spans longer than 7 the deviation between trajectories of the dynamical
system caused by perturbations may exceed the accuracy requirement. The
nature of the perturbations to be considered depends on the actual applica-
tion context: one may have to take into account the uncertainty of the initial
value, or perturbations due to the numerical realization. The actual value of
T depends on the properties of the dynamical system and on the nature of the
perturbations and can be characterized by means of different estimates (e.g.
by Lyapunov exponents, so—called condition numbers [12], or predictability
analysis [42]). However, in the context of biomolecular dynamics all available
estimates indicate that for any tolerable accuracy, the time 7" is many orders
of magnitude smaller than the expected exit times from typical conforma-
tions. The same situation is encountered in the above mentioned pump—probe
experiments, where the time spans between the pump and probe pulse are
orders of magnitude smaller than typical exit times from some conformation.
However, experimental observations of conformational transitions in real-time
over milliseconds or even on longer scales are very limited and possible only
indirectly.

Before proceeding to the algorithmic realization of the ensemble dynamics
or exit time approach we may first introduce the most prominent types of
dynamical systems presently discussed in the context of molecular dynamics.
They can be classified in two main categories:

(MC1) Dynamical systems that are designed to model the precise motion of
some molecular system, at least on short time scales.

(MC2) Dynamical systems that are designed to sample the state space of some
molecular system w.r.t. some prescribed statistical distribution.

Chapter 3. Description of Dynamical Behavior

The literature on the description of the dynamical behavior of molecular sys-
tems is extremely rich; they range from classical deterministic Hamiltonian
models that try to cover the actual motion of each single molecule in the
system to stochastic descriptions like Langevin dynamics or iterative schemes



that only model artifical dynamics like most Markov chain Monte Carlo ap-
proaches.

1 Markov Processes and Transition Functions

We now introduce the mathematical framework that subsumes both approaches,
whether stochastic or deterministic.

Consider the state space X C R™ for some m € N equipped with the Borel o
algebra A on X.3 The evolution of a single microscopic system is supposed to
be given by a homogeneous Markov process X; = {X;};ct in continuous
or discrete time T = R{ or T = N, respectively. We write X, ~ u, if the
Markov process X; is initially distributed according to the probability measure
i, ie., if P[Xy € A] = u(A) for every A C X. We use Xy = z, if Xy ~ dg,
where J, denotes the Dirac measure at . The motion of X; is given in terms
of the stochastic transition function p: T x X x B(X) — [0, 1] according
to

p(t, 2, A) = P[X,, € A|X, =], (1.1)

for every t,s € T, z € X and A C X. Hence, p(t,z, A) describes the proba-
bility that the system moves from state z into the subset A within time ¢.
The relation between a stochastic transition function and a homogeneous
Markov process is one-to—one [48, Chapter 3]. In the special case, where
p(t,x, A) = dp(s,)(A), the Markov process is in fact a deterministic process,
whose evolution is defined by the flow map ®(z,t) in state space. Besides some
more technical properties (see Appendix A) the stochastic transition function
fulfills the so—called Chapman-Kolmogorov equation

p(t+s,z,A) = /Xp(t,x,dz) p(s,z,A) (1.2)

that holds for every ¢,s € T, € X and A C X and represents the semigroup
property of the Markov process. As a consequence, in the discrete time case
T = N it suffices to specify p(z,dy) = p(1, z,dy), since the n-step transition
probabilities p™(z,dy) = p(n, z,dy) are recursively determined by (1.2).

We say that the Markov process X; admits an invariant probability mea-

3 In the sequel every subset C C X is implicitly assumed to be measurable, i.e., we
assume that additionally C' € A holds without further mentioning.



sure /i, or y is invariant w.r.t. X;, if

[ P2, Apde) = u(4) (13)

for every t € T and A C X [48, Chapter 10]. Note that the invariant proba-
bility measure needs not to be unique. A Markov process is called reversible
w.r.t. an invariant probability measure p if

[ plt.. Butda) = [ p(t,z. A)p(da) (14)

forevery t € T and A, B C X. If i1 is unique, X, is simply called reversible. For
the special case of a stochastic transition function being absolutely continuous
w.r.t. u, reversibility reads p(¢,z,y) = p(t,y,z) for every ¢ € T and p—a.e.
z,y € X.

2 Model Systems

We now turn to the most prominent examples in the context of molecular
dynamics.

Let N denote the number of atoms of the system and 2 = R3" the position
space, i.e., ¢ € () represents the vector of atomic position coordinates. More-
over, let £ € R* denote the vector of all conjugated momenta. Suppose that
a differentiable potential energy function V : R3¥ — R describing all inter-
actions between the atoms is given. For each model system below we assume
that the positon space {2 belongs to one of the two fundamentally different
cases:

Bounded systems: The potential energy function V : R*N — R3V is
smooth, bounded from below, and satisfies V' — oo for |¢|] — o0. Such
systems are called bounded, since the energy surfaces {(¢,£) € T' : H(q, &) =
E} are bounded subsets of I for every energy E.

Periodic systems: The position space () is some 3/N-dimensional torus
and the potential energy function V' is continuous on {2 and thus bounded.
There is an intensive discussion concerning the question of whether V' can
also be assumed to be smooth as we will do herein, see [54, Section 2] for
details.

Both cases are typical for molecular dynamics applications. Periodic systems

in particular include the assumption of periodic boundaries, which is by far
the most popular modeling assumption for biomolecular systems.
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Deterministic Hamiltonian System. The most prominent model for the
dynamical behavior of molecular systems exploits classical Hamiltonian me-
chanics, i.e., atoms are described as mass points subject to forces that are
generated by specified classical interaction potentials V. The dynamical be-
havior is described by some deterministic Hamiltonian system of the form

i =M1 {=-V,V(g), (2.1)

defined on the state space X = R3" x R3" and M denoting the diagonal mass
matrix.

Eq. (2.1) models an energetically closed system, whose total energy, given by
the Hamiltonian

1

SEMTIE + V(g), (2:2)

H(q,§) =
is preserved under the dynamics. For the sake of simplicity, we assume in
the following that M is the identity matrix. The deterministic Hamiltonian
system is typically seen as the embodiment of our class (MC1) in the context
of molecular dynamics.

Let ®' denote the flow associated with the Hamiltonian system (2.1), i.e., the
solution z; = (g, &) of (2.1) for the initial value xy = (qo,&o) is given by
x; = ®'zy. Let 1o denote the characteristic function of the subset C C X.
Then, the stochastic transition function corresponding to (2.1) is given by

p(t,,C) = 1c(2'z) = d5:s(C) (2.3)

for every t € R{ and C' C X. The Markov process X; = {Xt}teRaL induced by

the stochastic transition function p coincides with the flow ®; hence X; = &'z,
for the initial distribution X, = .

It is well known that for every smooth function F : R — R the probability
measure p(dz) o< F(H)(z)dz is invariant w.r.t. the Markov process X;. The
most prominent choice is the canonical density or canonical ensemble

f(z) o< exp(—BH(x))

for some constant # > 0 that can be interpreted as inverse temperature. The
associated measure p(dz) o< f(z)dz is called the canonical measure. The
canonical ensemble is often used in modeling experiments on molecular sys-
tems that are performed under the conditions of constant volume and temper-
ature 7 = ﬁ, where kg Boltzmann’s constant. Obviously, a single solution
of the Hamiltonian system (2.1) can never be ergodic w.r.t. the canonical
measure, since it conserves the internal energy H, as defined in (2.2). Hence,
w.r.t. the canonical measure, the deterministic Hamiltonian system is not in

11



the class (MC2), while it might be w.r.t. to other measuere such as, e.g., the
microcanonical measure.

Hamiltonian System with Randomized Momenta. Aiming at a con-
formational analysis of biomolecular systems in the context of the canonical
ensemble, Schiitte et al. introduced a specific stochastic Hamiltonian system
[65] as a discrete time Markov chain, defined solely on the position space
and derived from the deterministic Hamiltonian system by “randomizing the
momenta”.

For some fixed observation time span 7 > 0 (for comments on the choice
of 7 see remark below) and some inverse temperature 3 > 0 the stochastic
transition function for the Hamiltonian system with randomized momenta is
given by

P A) = [ 14(1,27(0,6))Ple)d

where I1, : (¢,€) — q denotes the projection onto the position space Q2 = R3Y
and P the canonical distribution of momenta P o< exp(—B£'€/2).

The associated discrete time Markov process @, = {Qn }nen, defined on the
state space X = (), satisfies

Qn—f—l = Hq(DT(ngn)a neN (24)

where &, is chosen randomly from P [54]. As it is shown in [54] the positional
canonical measure p(dg) o< exp(—FV(g))dgq is invariant w.r.t. @), and unique.
Moreover, exploiting that ®7 is reversible and symplectic @, is shown to be
reversible w.r.t. p [54].

Y
dynamics ¥
i | random
, | choice of
i | momentum
| } *\ } >
T A
I
I
I
I
\_,J

Fig. 3. lllustration of the Hamiltonian system with randomized momenta as defined

The Hamiltonian system with randomized momenta generates an ensemble of
time—r trajectories such that each trajectory follows the deterministic Hamil-
tonian dynamics (2.1) starting at initial values distributed according to the

12



positional canonical ensemble f(q) o« exp(—BV(q)) (see Fig. 2 for illustra-
tion). When the deterministic Hamiltonian system is beliefed to be contained
in class (MC1), then the Hamiltonian system with randomized momenta is
contained in the classes (MC1) and (MC2).

Remark. For arbitrary, but fixed 7 > 0 we have defined the one-step transi-
tion function p(q, D) = p"(1, ¢, D). Changing the observation time to o > 0
results in a new one-step transition function p?(1,q, D). In general we will
have p?" (1, ¢, D) # p"(2,q, D); for an example see [54, Section 3.7.1].

Constant Temperature Molecular Dynamics. One traditional aspect of
molecular dynamics is the construction of (stochastic) dynamical systems that
allow of sampling the canonical ensemble by means of long-term simulation.
Several concepts have been discussed that all boil down to the idea to con-
struct a Hamiltonian system in some extended state space X, whose projection
onto the lower dimensional state space X of positions and momenta allows to
generate such a sampling. One of the most prominent examples is defined in
terms of the Nosé Hamiltonian

1 1 1
HNose(Q>§a S, V) = 2—82€T§ + V(q) + —1/2 -+ —IOgS,

. 2Q Y

ZH;Eq,ﬁ)

where s is called the thermostat with conjugated momentum 7 and associated
artificial mass (). Let the flow of the associated Nosé Hamiltonian system be
denoted ¥ and let IT denote the projection (g,&,s,v) — (q,&). If ¥' is er-
godic w.r.t. the microcanonical measure on the associated energy cell of Hyoge,
then IT¥! is ergodic w.r.t. the canonical measure pu(dz) oc exp(—BH—(x))dz,
where z = (¢,£) [6]. Thus, the Nosé Hamiltonian system is contained in the
class (MC2) but it is at least questionable whether it is part of (MC1).

Langevin System. The most popular model for an open system with stochas-
tic interaction with its environment is the so-called Langevin System [52]:

qg =&, f = -V, V(g) —~v& + UWt, (2.5)

defined on the state space X = RSV . Here v > 0 denotes some friction constant
and Fuy = oW, the external forcing given by a 3/N-dimensional Brownian
motion W;. The external stochastic force is assumed to model the influence
of the heat bath surrounding the molecular system. In this case, the internal
energy given by the Hamiltonian H, as defined in (2.2), is not preserved, but
the interplay between stochastic excitation and damping balances the internal
energy. As a consequence, the canonical measure u(dz) o« exp(—FH(x))dz
with z = (g¢,€) is invariant w.r.t. the Markov process corresponding to the

13



Langevin system, where the noise and damping constants satisfy [52]:

2
B = O—Z (2.6)

Thus, the Langevin system satisfies our expectation on (MC2) w.r.t. the
canonical ensemble but simultaneously also allows to represent some essen-
tial aspects of (MC1), i.e., of the true dynamical behavior of the molecular
system. For more details see article of Tamar Schlick in this handbook.

Smoluchowski System. The Smoluchowski system can be understood as an
approximation to the Langevin system in the limit of high friction v — oo, see
[35, 56] for details. While the Langevin system gives a description of molecular
motion in terms of positions and momenta of all atoms in the system, the
Smoluchowski system is stated in the position space only. Moreover, in contrast
to the Langevin equation it defines a reversible Markov process that is given
by the equation

1 o _:
] =——V,V(q) + —W,. 2.7
i=-2V (9) W (2.7)

The stochastic differential equation (2.7) defines a continuous time Markov
process (J; on the state space X = () with invariant probability measure
w(dg) < exp(—BV (¢))dq [52]. Thus, this dynamical model satisfies our expec-
tation on class (MC2) but should in general not be expected to satisfy those
on (MC1). Nevertheless there is a long history of using it as a simple toolkit for
investigation of dynamical behavior in complicated energy landscapes [8]. It
is known that under weak conditions on the potential function V' the Markov
process is reversible [35].

Markov Chain Monte Carlo (MCMC). Markov Chain Monte Carlo tech-
niques are designed to sample a given probability density f : R? — R, partic-
ularly in highly dimensional state spaces. MCMC is an iterative realization of
some specific Markov chain, whose stochastic transition function is given by

p(z,dy) = q(z,y)u(dy) + (), (dy).

That is, the stochastic transition function is composed of some transition ker-
nel ¢(z, y), which is assumed to be p—integrable and some rejection probability

r(@) = 1= [ al@yuy) = o.

In almost all situations, the transition kernel ¢ is chosen in such a way that
the stochastic transition function is reversible w.r.t. p.

In general MCMC is an artificial dynamical model that is in general under-
stood as the embodiment of class (MC2), therefore being in general far from

14



satisfying the properties of (MC1). However, there are MCMC methods like
the popular hybrid Monte Carlo Method (HMC) that can be understood as a
special realization of the Hamiltonian system with randomized momenta.

3 Summary

Concerning our main categories (MC1) and (MC2) the summary could be
the following: Constant temperature MD, MCMC, the Langevin and Smolu-
chowski systems clearly belong to (MC2), while the deterministic Hamiltonian
system is supposed to be the incorporation of (MC1). However, this distinc-
tion is not sharp: the Langevin system is often also accepted as belonging
to (MC1), while the deterministic Hamiltonian system is accepted for (MC1)
only under the condition that enough details of the entire molecular system
(including parts of the solute environment) are represented in atomic resolu-
tion and the interaction potential V' is appropriate.

Chapter 4. Metastability

Given a dynamical system, metastability of some subset of the state space is
characterized by the property that the dynamical system is likely to remain
within the subset for a long period of time, until it exits and hence a transition
to some other region of the state space occurs. There is no unique but several
definitions of metastability in literature (see, e.g., [7, 9, 57, 58]); we will herein
focus on two different concepts that are adapted to suit the ensemble dynamics
and exit time approach, respectively, as discussed in Section 2.

A subset C' C X of the entire state space is called metastable, ...

Ensemble Dynamics Approach: ... if the fraction of systems in C, whose
trajectory exits during some pre-described time span 7, is significantly
small.

Exit Time Approach: ... if with high probability a typical long—term tra-
jectory stays within C' longer than some “macroscopic” time span.

Based on the discussion in Section “Conceptual Preliminaries” we would ex-
pect to run into trouble when aiming at a “naive” numerical realization of
the Exit Time Approach while the Ensemble Dynamics Approach seems to be
numerically treatable for short observation time spans 7. We will come back
to this question below.
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Fig. 4. lllustration of the different concepts of metastability: Exit Time Approach on
the left and Ensemble Dynamics Approach on the right.

In view of our biochemical application context we aim at the identification
of a decomposition of the state space into metastable subsets and the corre-
sponding “flipping dynamics” between these. In general, a decomposition
D = {D,...,Dy,} of the state space X is a collection of subsets D, C X
with the properties:

positivity: u(Dy) > 0 for every k,
disjointness up to null sets: u(Dy N D) = 0 for k # [, and
covering property: Uit , Dy = X.

The problem of identifying a decomposition into metastable subsets particu-
larly poses the task of specifying the number m of subsets one is looking for.
Within the transfer operator approach this is done via spectral analysis (see
key idea on page 24).

4 Ensemble Dynamics Approach: Transition Probabilities

We aim at defining an (ensemble) transition probability from a subset B to
C within some time span 7, denoted by p(r, B,C), such that an invariant
sub—ensemble C' is characterized by p(r,C,C) = 1, while a metastable sub—
ensemble can be characterized by p(r, C, C') ~ 1. We will see that within this
approach metastability is measured w.r.t. the invariant probability measure p
of the dynamics; in biomolecular systems, the measure y will often be defined
in terms of the canonical ensemble.

We define the transition probability p(¢, B,C) from B ¢ X to C € X
within the time span ¢ as the conditional probability

Pu[Xt € C and X() S B]

B =P,lX Xp € B| =
p(ta 70) u[ tECl 0 € ] PN[X()GB] )

(4.1)

where P, indicates that the initially the Markov process X, is distributed
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according to u, hence X, ~ pu. Exploiting the definition of the stochastic
transition function p(¢, z,C) in (1.1) we rewrite (4.1) as

p(t,B,C) = @ /Bp(t,x,C’) p(dz). (4.2)

In other words, the transition probability quantifies the dynamical fluctuations
within the stationary ensemble p. Due to the ensemble dynamics approach to
metastability we call a subset B C X metastable on the time scale 7 > 0 if

p(r, B, B°) ~ 0, or equivalently, p(r, B, B) =~ 1,

where B¢ = X \ B denotes the complement of B. Obviously, the approximate
equalities are not sharp enough for a rigorous definition of metastability. We
will come back to this problem in Section 7.

Remark. 1t is an intrinsic property of the ensemble transition probability to
depend on the observation time span 7. It is obvious from its definition that
p(r,C,C) approaches 1 for 7 — 0, while it decays to u(C) for 7 — oo, see
Figure 5. The most interesting phenomena occur on mesoscopic time scales 7.
In the biomolecular application context, the observation time span 7 will be
given by the experimental setting. In the earlier mentioned pump-and-probe
experiments, the values of 7 range in the sub—picosecond regime.
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Fig. 5. Dependence of the transition probability p(r,C,C) on the observation time
span 7 for 0 < 1 < 700 (left) and zoomed into 0 < 7 < 10 (right) w.r.t. two differ-
ent subsets, one being metastable (dashed line) the other being much less metastable
(solid line). The thick line corresponds to p(t,C,C), while the corresponding pre-
dicted limit value u(C) (see text) is indicated by a horizontal thin line. As can be seen
from the graphics the distinction between metastable and not—metastable is clearly
visible for mesoscopic observation time spans as, e.g., 1/2 < 7 < 10. (The data
are based on the Smoluchowski dynamics w.r.t. the perturbed three—well potential as
illustrated in Figure 7.)
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5 Exit Time Approach: Exit Rates

The characterization of metastability within the exit time approach is related
to the asymptotic decay of the distribution of exit times. Its precise formula-
tion via exit (decay) rates requires some extended mathematical theory that
hinders understanding at first reading. Therefore, we prefer to outline the fun-
damental idea rather than to give its mathematical justification, for which we
refer to [37].

Denote by D C X some connected open subset and consider some point x € D.
Then the exit time gp(x) of the Markov process X; from D started at X = z
is defined as

on(z) = inf {t >0 /Ot 1¢(X, ¢ D)ds > o} (5.1)

and measures only exits that happen for some non—null time interval neglecting
exit events that are “singular” in time. Note that in general op is a random
variable that depends on the realization of the Markov process X;.

The fundamental idea is a characterization of metastability in terms of the
asymptotic decay of the distribution of exit times

Fo(s) = Palop(z) 2 s].

While for small values of s the function F, may show complicated behavior,
it asymptotically may decay almost exponentially, at least under certain well—-
established conditions. The decay rate of F, can best be expressed by means
of the conditional exit time distribution

F.(s,t) = Pglop(z) > s+t | op(z) > 1]

for s,t > 0 that describes the tail of the distribution, for which the exit time
is larger than the so—called waiting time ¢. The decay rate is equal to I' if the
conditional distribution decays exponentially with rate I' > 0, i.e.,

F.(s,t) o exp(-T's), (5.2)

for s > 0 and ¢ > 0. When aiming at a definition of metastability in terms of
decay rates for entire subsets, there are two problems. Firstly, the relation in
(5.2) will only hold for very special Markov processes [37]. Secondly, we would
expect that the decay rate depends on the starting point, i.e., I' = [',.

The approach presented herein is based on the fact that there do exist subsets
C, for which the decay rate is basically independent for all states z € C. In a
more general setting, but for a specific class of dynamical systems including,
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e.g., the Smoluchowski dynamics, we are able to assign a so—called exit rate
I' =T'(C) to an entire subset C' C X rather than to single points z € X, thus
circumventing the two above mentioned problems with (5.2). This exit rates
may be thought of as some generalization of decay rates; see Appendix B, in
particular Theorem B.1.

Due to the exit time approach to metastability we call a subset B C X
metastable with exit rate I'(B) if

I'(A) >T'(B), for all open, connected sets A C B, A # B. (5.3)

As in the ensemble approach there will be infinitely many metastable subsets
and we expect to find a hierarchy of metastability.

04 S decay coeff = —1.5646 5decay coeff = -0.025363
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Fig. 6. Dependence of the exit time distribution Fy(s) on the ezit time s for some
metastable subset D. The decay is shown for 0 < s < 300 (left), and zoomed into
0 < s < 3 (middle) and 10 < s < 300 (right) on a semi-logarithmic plot. We
observe regions of different decay (middle and right). Asymptotically, the decay rate
of the exit time distribution is close to the predicted value of T'(D), i.e., Fy(s) for
s > t decays approzimately with rate T'(D) for t — oco. Regions of different decay
rate (like, e.g., initial rapid decay followed by a much slower decay) are typically
due to the fact that with high probability the process exits very rapidly, while with
almost vanishing, but existing probability the process mowves into some much more
metastable region contained in D such that asymptotically the exit rate becomes very
small.

Chapter 5. Transfer Operators

We now give the mathematical foundations and the algorithmic strategies to
characterize and identify a decomposition of the state space into metastable
subsets. It turns out that in either of the approaches transfer operators and
their generators play a crucial role.
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6 Transfer Operators and Generators

Based on the assumption that the dynamical description is given by a (homo-
geneous) Markov process X; we now introduce a Markov operator that allows
to describe the propagation of sub—ensembles in time under the action of X;.
In so doing, we assume in the sequel that the probability measure p is invari-
ant w.r.t. the Markov process X;.

The basic idea is the following: Consider all systems within the stationary
ensemble u, whose states are in some subset C C X . This sub—ensemble is
distributed according to the probability measure

1
W) = e [ 1e@n(a) = [ w(@) udr)

corresponding to the density vg = 1¢/u(C) w.r.t. to p. Since every single
microscopic system evolves according to the Markov process defined by its
stochastic transition function p, the distribution of the sub—ensemble at time
t € T is given by the probability measure

w(A) = /x vo(x) p(t, z, A) p(dz). (6.1)

On the other hand, if 1, admits the density v;, we have

w(A) = /A () p(de). (6.2)

Our interest is to define a transfer operator P’ that propagates sub—ensembles
in time according to

vo — vy = Pluy. (6.3)

This transfer operator is well-defined due to [35, 51| and acts on the Banach
spaces L'(u), 1 < r < oo with corresponding norms || - ||, as defined in
Appendix A. Combining egs. (6.1) and (6.2), we define the semigroup of
propagators or forward transfer operators P* : L"(u) — L"(u) with ¢t € T
and 1 < r < oo as follows:

[ Ploy) ) = [ v@p(t,z, Au(do) (6.4)

for A C X. As a consequence of the invariance of u, the characteristic function
1x of the entire state space is an invariant density of P?, i.e., P'lx = 1x.
Furthermore, P is a Markov operator, i.e., P* conserves norm: ||P'v]|; =
||v||l: and positivity: P'v > 0 if v > 0, which is a simple consequence of the
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definition. Due to (6.3), the semigroup of propagators mathematically models
the physical phenomena of evolution of sub—ensembles in time.

In the theory of Markov processes another semigroup of operators is con-
sidered. We will call it the semigroup of backward transfer operators
T": L"(u) — L'() with ¢ € T and 1 <7 < 00, defined by

Thu(z) = E,[u(X))] = /x u(y)p(t, z, dy). (6.5)

As a consequence of property (ii) in Appendix A of the stochastic transition
function, we have T'1x = 1x for every ¢t € T. Both transfer operators are
closely related via the duality bracket (v, u), = [x v(z)u(z)u(dz) for v € LY{u)
and u € L>(u), namely

(Pv,uy, = (v, T'u),. (6.6)

In discrete time ¢ € N it is convenient to use the abbreviations P = P!
and T = T"' corresponding to the stochastic transition function p(z,dy) =
p(1, z,dy); compare Section 1. Propagators associated with reversible Markov
processes are of particular interest, since they possess additional structure on
the Hilbert space L%p). Such propagators will be called reversible, too.

Proposition 6.1 ([35]) Let P': L u) C LY u) — L¥11) denote the propaga-
tor corresponding to the Markov process X;. Then Pt is self-adjoint w.r.t. the
scalar product (-,-),, in LX), i.e.,

{(u, Pv), = (P'u,v),; teT
for every u,v € LX), if and only if the Markov process X; is reversible.

For the semigroup of propagators P : L"(u) — L"(u) with 1 < r < oo define
D(A) as the set of all v € L"(11) such that the strong limit

tyy
Av = limPU Y

t—o0 t

exists. Then, the operator A : D(A) — L"(u) is called the infinitesimal gen-
erator corresponding to the semigroup P' [40, 43].

Remark. Physical experiments on molecular ensembles allow to measure rel-
ative frequencies in the canonical ensemble u. Suppose again that u has the
form

p(dr) = f(z)dz,
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i.e., u is absolutely continuous w.r.t. the Lebesgue measure dx. Then physical
experiments are related to densities of the form

>

c(2)f(z) € LY(dz)

Uphys () =

w.r.t. the Lebesgue measure dz. Whenever physicists use the phrase “proba-
bility density” they refer to vpnys rather than to densities

A

Umath(x) = 10(.7)) € Ll(:u‘)

w.r.t. probability measure p, as we do. As it will become apparent later, it is
mathematically advantageous to consider the semigroup of propagators acting
on densities vman rather than the semigroup of propagators acting on vphys.
In the former approach, we have P!1x = 1x, while in the latter this would
read P'f = f. However, it should be clear that results obtained in either of
the two descriptions can be transformed into the other.

Examples. To be more specific, we now list the propagators for the different
dynamical descriptions introduced in Section 2.

The propagator corresponding to the deterministic Hamiltonian system with
flow ®' is known as the Frobenius—Perron operator [43] given by

Plu(z) = u(®7"z).

For the Hamiltonian system with randomized momenta we have a kind of
Frobenius—Perron operator averaged w.r.t. the momenta,

Plulg) = [ ulll,@ (. €)P()de. (6.7)

For MCMC the propagator is given by

Pu(y) = [ gz, y)u(z) dz +r(y)u(y). (6.8)

For Langevin and Smoluchowski dynamics, the semigroups of propagators
admit strong generators Asmo and Ay ., in L'(p) for 1 < r < oo such that the
semigroups can be written as

Pt = exp(tAsmo) and P! = exp(tAra),
respectively. For twice continuously differentiable u € L'(11) we have the iden-
tity

o? 1

Ay— =V, V(q)- vq> u

ASmou = (2—72 q y
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2
Apanu = <%AP — PV, + V-V, — ’)/p-Vp> u.

For details on Agm, and Ap,, see the theory of Fokker-Planck equations and
Kolmogoroff forward and backward equations [52, 57, 35].

7 Detecting Metastability

The key idea of the transfer operator approach to metastability is to exploit
the strong relation between stability properties of the Markov process and the
presence of special eigenvalues in the spectrum.

Since propagators are Markov operators by definition, their spectrum is con-
tained in the unit circle of the complex plane, i.e., the modulus of every eigen-
value is smaller or equal to 1. Suppose that some proper subset C' C X is
invariant under the Markov process, i.e., p(t,z,C¢) = 0 for all z € C. Then
we have:

ensemble dynamics approach: the transition probability from C' into its
complement C° is zero: p(t,C,C¢) = 0 for every t € T,

erit rate approach: the exit rate from C' is zero: I'(C) = 0.

In literature on Markov and transfer operators, it is a well-known fact that
the existence of invariant subsets has spectral consequences. Under well—
established stability conditions (see (C1) and (C2) on page 24), we have:

transfer operator: the propagator P! exhibits an eigenvalue \; = 1 with
corresponding eigenfunction 1¢, hence P'1¢ = 1. for every ¢t € T.

Now suppose that the entire state space decomposes into exactly two invariant
subsets, X = BUC. Then, according to (iii) the eigenvalue A = 1 is two—fold,
one corresponding to each invariant subset associated with the eigenfunctions
15 and 1¢. Introducing a weak coupling between the subsets B and C' yields
one invariant set, namely the entire state space X, and two weakly coupled or
metastable subsets, namely B and C. This has the following consequences:

ensemble dynamics approach: the transition probability from B to C is

almost zero: p(7, B,C) ~ 0 for 0 < 7 < T with large 7. The same holds
for the transition probability from C to B.
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exit rate approach: the exit rates from B and C' are very small: I'(B) ~ 0
and I'(C) = 0.

transfer operator: for 0 < 7 < T with large T', the propagator P” exhibits
two dominant eigenvalues. More precisely, there exists n; = 1 correspond-
ing to the invariant state space, and one eigenvalue A\, =~ 1 corresponding
to the weak coupling between the subsets B and C.

To the end, we fix some 7 > 0 and abbreviate P = P and p(x,C) = p(7, z, C).
Hence, (P)" = P™ corresponds to the Markov process sampled at rate 7 with
stochastic transition function given by p™(-,-) = p(nr, -, -).
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Fig. 7. Left: a perturbed three well potential V' used for illustration. Right: canonical
density corresponding to 8 = 3.0. Assume that the internal dynamics is given by
the Smoluchowski system corresponding to v = 2.0 and o given by eq. (2.6). The
dominant spectrum of the propagator P = P™ with T = 1.0 ezhibits three eigenvalues
close to 1. More precisely, we have A1 = 1.0000, Ao = 0.9924, A3 = 0.9886, which
are separated from the remaining eigenvalues by a significant gap, since Ay = 0.6634.
According to the key idea of the transfer operator approach we expect a decomposition
of the state space into three metastable subsets, which is in agreement with our
intuition for the above potential.

The above considerations motivate the following key idea of the transfer
operator approach:

Metastable subsets can be detected via eigenvalues of the propagator P
close to its maximal eigenvalue A = 1; moreover they can be identified
by exploiting the corresponding eigenfunctions. In doing so, the number of
metastable subsets is equal to the number of eigenvalues close to 1, including
A =1 and counting multiplicity.

The strategy mentioned above has first been proposed by Dellnitz and Junge
[11] for discrete dynamical systems with weak random perturbations and
has been successfully applied to molecular dynamics in different contexts
[55, 56, 54]; its justification is given in Section 9. The key idea requires the fol-
lowing two conditions on the propagator P (for a definition of the essential
spectral radius see Appendix A):

(C1) The essential spectral radius of P is less than one, i.e., 7 (P) < 1.
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(C2) The eigenvalue A = 1 of P is simple and dominant, i.e., n € o(P) with
In| = 1 implies n = 1.

While condition (C1) allows to ensure convergence results of the numerical
discretization scheme, condition (C2) excludes modeling and interpretation
problems; for more details see [54, 35]. In order to proceed along the way indi-
cated by the key idea we have to check in which situations the two conditions
(C1) and (C2) may hold. In this section, we establish sufficient conditions on
the Markov process that imply (C1) and (C2). Here, we mainly concentrate
on reversible propagators P on L¥ ) and refer for L'(x) and L$® to [35] and
[48], respectively.

There are some sufficient conditions to guarantee the spectral properties of
the propagator that are related to well studied stability properties of Markov
processes. The V-norm and total variation norm || - ||rv stated in the next
definition are defined in Appendix A:

Definition 7.1 Let p denote some stochastic transition function. Then
(a) p is called geometrically ergodic if
Ip"(2,) — pllrv < V(z)¢™;  neN (7.1)

for every x € X, some constant ¢ < 1, and some integrable function
V : X = R satisfying V < oo pointwise.

(b) p is called V—uniformly ergodic if
Ip"(z,") = plly < CV(z)¢"; neN

for every x € X, constants ¢ < 1 and C < oo, and some function
V € LYu) satisfying 1 <V pointwise.

The relation between geometrical and V—uniform ergodicity is as follows: By
definition, V-—uniform ergodicity implies geometric ergodicity. On the other
hand, for irreducible and aperiodic stochastic transition functions geometric
ergodicity implies V—uniform ergodicity according to [53, Proposition 2.1].
Either form of ergodicity implies the properties of interest:

Theorem 7.2 ([35]) Let P : L 1) — LX) denote a reversible propagator.
Then P satisfies conditions (C1) and (C2) in LX), if its stochastic transition
function s geometrically or V—uniformly ergodic.

Conditions, under which Markov processes are geometrically or V-uniformly
ergodic are widely studied; for sufficient conditions w.r.t. the dynamical models
introduced in Section 3 see, e.g., [35, Sec. 6] and cited references, or [47, 54].
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8 Identification Algorithm

The key idea of the transfer operator approach needs to be specified regarding
the actual algorithmic identification of metastable subsets based on the most
dominant eigenvectors. The basic idea is to reduce the problem of identifying a
decomposition into metastable subsets to a clustering problem, which is done
by incorporating dynamical information into the process of clustering. It is
therefore different from statistical clustering that is solely based on geometri-
cal information.

Following the key idea of the transfer operator approach we are aiming at
a decomposition D = {Ds,...,D,} of the state space into m metastable
subsets D1, ..., D,, such that the number of subsets m equals the number of
dominant eigenvalues. Figure 8 demonstrates the mechanism of the transfer
operator approach to metastability.

ensemble of states © € R4 — > clusters w.r.t.
distance contain

information about

ensemble of short-term
trajectories

geometric properties

transfer operator

dominant eigenfunctions
Vi,--. ,Um

dynamical coding transformation:

z = v(z) = (vi(z),... ,9m(z))
l clusters w.r.t.
distance contain
ensemble of dynamically — > information about
coded states v(z) € R™ dynamical properties

Fig. 8. Basic mechanism of incorporating dynamical information via dominant
eigenfunctions of the transfer operator. Note that the dimension of the state space
that have to be clustered reduces from d to m. In biomolecular applications, typically
we have m <K d.

Based on this mechanism, virtually almost every cluster algorithm can be
used to identify a decomposition of the state space into metastable subsets, if
applied to the dynamically coded sampling points. The identification procedure
introduced in [17] computes this decomposition from the sign structure of
the coded sampling points as illustrated in Figure 10. Given the m dominant
eigenvectors vy, ... ,v,, we can assign to every state x € X a unique sign
structure

s(z) = (sl(x), . ,sm(x)) ={+,-}",
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Fig. 9. Figenfunction corresponding to propagator based on the Smoluchowski system
in application to the perturbed three well potential V as illustrated in Figure 7. Figen-
functions corresponding to the largest eigenvalues 1.0000,0.9924,0.9886,0.6634
(clockwise, starting top—right). As expected, the eigenfunction corresponding to
A1 = 1 is constant. Note that the second and the third eigenfunction exhibit a very
special structure: they are almost constant around the three wells (cf. potential in
Fig. 7), while they show jumps near the saddle point regions.

where for some prescribed threshold value € we define the “unambiguous”
positive or negative sign si(x) of vi(x) as

+; vg(z) >0
— () < 6

sk(x) =

as explained in Figure 10. Denote by S(X) C X the set of all states with at
least one “unambiguous” sign si. If # is large enough and the eigenfunctions
are smooth, S(X) decomposes into exactly m subsets each containing states of
the same sign structure only [17]. These are the ”core sets” of the metastable
subsets. States with “unambiguous” sign structure are assigned to these core
sets [17] such that the resulting m metastable sets decompose the state space.
This clustering algorithm has proved to be successful in many different sit-
uations; in the following subsection we give a mathematical justification of
the algorithmic identification strategy from the point of view of the ensemble
dynamics and the exit time approach.
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Fig. 10. Nllustration of the identification procedure based on the perturbed three well
potential presented in Figure 7. The three grey shaded regions indicate the parts of
the g-azis on which the three most dominant eigenvectors erhibit “unambiguous”
sign structures (here @ = 0.05 as indicated by dashed lines). To give an example: the
grey shaded region on the very left has sign structure (+, —, +) since v1(q),v3(q) > 6
and vo(q) < —0 for all states q on the very left.

9 Mathematical Justification

We now give a mathematical justification of the key idea of the transfer op-
erator approach, which illuminates the strong relation between the existence
of a cluster of eigenvalues close to 1 and a possible decomposition of the state
space into metastable subsets.

Justification within the Ensemble Dynamics Approach. The investiga-
tion will be based on the following assumptions: The propagator P : L) —
L*(u) satisfies conditions (C1), (C2) and the underlying Markov process is
reversible. As a consequence the propagator P is self-adjoint due to Proposi-
tion 6.1.

The close relation between transition probabilities and transfer operators be-
comes transparent in

<P]-Ba]-C)/_t _ <]-B:T]-C>u
(1B, 1), (1p,1B),

p(B,C) = (91)

Eq. 9.1 allows to give a mathematical statement relating dominant eigenvalues,
the corresponding eigenfunctions and a decomposition of the state space into
metastable subsets. For later reference we define the metastability of a
decomposition D as the sum of the metastabilities of its subsets. The next
result can be found in [38]; a version for two subsets was published in [35].
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Theorem 9.1 Let P : LX) — L4 1) denote a reversible propagator satisfying
(C1) and (C2). Then P is self-adjoint and the spectrum has the form

o(P) Cla,b]u{\,}U...U{N}U{l}

with —1 < a < b< A\, < ... < A =1 and isolated, not necessarily simple
eigenvalues of finite multiplicity that are counted according to multiplicity.
Denote by vy, ... ,v1 the corresponding eigenfunctions, normalized to ||vg||s =
1. Let Q be the orthogonal projection of L?(u) onto span{lya,,...,14,}. The
metastability of an arbitrary decomposition D = {A1,...,An} of the state
space X can be bounded from above by

pP(A, A+ o+ (A, Ap) <14+ X+ .0+ Ay,
while it 1s bounded from below according to
L+ kodo+ .o+ Epdp +c < p(A1, A + ...+ p(Ap, An)
where r; = ||Quj|75,y and c=a (1l —ka)... (1 = Kn).

Theorem 9.1 highlights the strong relation between a decomposition of the
state space into metastable subsets and dominant eigenvalues close to 1. It
states that the metastability of an arbitrary decomposition D cannot be larger
than 14+ A+ ...+ A, while it is at least 1 4+ koAo + ... + K A + ¢, Which is
close to the upper bound whenever the dominant eigenfunctions vy, ... , v, are
almost constant on the metastable subsets A;,..., A, implying x; ~ 1 and
¢ =~ 0. The term c can be interpreted as a correction that is small, whenever
a ~ 0 or k; ~ 1. It is demonstrated in [38] that the lower and upper bounds
are sharp and asymptotically exact.

In view of Theorem 9.1, it is natural to ask, whether there is an optimal
decomposition with highest possible metastability. The answer is illustrated
by Figure 11: Fven if there exists an optimal decomposition, the problem of
finding it might be ill-conditioned. The graph shows the metastability of a
family of decompositions. It is based on the propagator P corresponding to the
Smoluchowski dynamics for the perturbed three—well potential. We identify
a flat plateau of decompositions that are nearly optimal. In this case the
problem of finding the maximum is ill-conditioned. We also observe that the
decomposition suggested by our identification algorithm is nearly optimal.
The phenomenon illustrated by Figure 11 is believed to be typical in our
application context, which is due to the fact that the state space admits large
regions corresponding to almost vanishing statistical weight (see also [38]).

Justification within the Exit Time Approach. The justification has been
worked out in [37] based on recent literature on Markov chains. The most im-
portant restriction of this approach is the restriction to Markov processes with
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Fig. 11. Metastability of the decomposition of the state space X = R into three
subsets D = {A,B,C} with A = (—o0,L), B = [L,R) and C = [R,00) parame-
terized by L < R € R. The problem of finding the mazimal value corresponding to
the optimal decomposition is often ill-conditioned. There is a large region roughly
characterized by —3 < L < —1 and 1 < R < 3, in which the metastability of the
corresponding decomposition is almost mazimal. This region is more or less a flat
plateau, for which the absolute mazimum is hard to identify. The identification al-
gorithm based on the sign structure identifies a decomposition with L = —2.13 and
R = 1.84 with corresponding metastability 2.9558, which is quite close to the upper
bound of 2.9916 resulting from Theorem 9.1. (Data based on Smoluchowski dynamics
as illustrated in Figure 7.)

continuous sample paths that admit a generator.

We will herein formulate the result for general Smoluchowski systems of type
(2.7) from Section 2, because this allows us to remain within the framework of
self-adjoint propagators with real-valued eigenvalues and eigenfunctions. The
generalization to Langevin systems seems to be possible but requires immense
technical effort.

Theorem 9.2 Assume that there is some continuous Lyapunov function V
such that the Markov process is V—uniformly ergodic, and that there exists a
twice continuously differentiable eigenfunction v: X — R of the Smoluchowsk:
generator A = Ag,,,. Hence, there exists some eigenvalue A < 0 such that

Av = Avw. (9.2)

Suppose moreover that the set C under consideration and the eigenfunction h
satisfy the following conditions:

(1) v(z) >0 orv(z) <0 forallz € C,
(2) v(z) =0 and (Vv(z))"(Vv(z)) > 0 for x € dC.
(8) K, ={ze€X:V(z) <nv(z)} is a compact subset of X for all n > 1.

Then, the set C is metastable in the sense of definition (5.3) with exit rate

30



['(C) = —A, where A is the eigenvalue associated with v.

This theorem has the following intriguing interpretation: If there is an eigen-
value —I'y of the generator close to zero, then there is an eigenvalue exp(—7I)
of the propagator P” close to A = 1. The corresponding eigenfunction v of the
generator is also the eigenfunction of the propagator. The set of zeros of this
eigenfunction decomposes the state space into open, connected subsets Cy, re-
stricted to each of which the eigenfunction is either positive or negative. Now
Theorem 9.2 states that each of this subsets C} is metastable with the same
rate ['(Cy) = [’y which is considerably small since Iy is.

0.5
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Fig. 12. Illustration of Theorem 9.2 for the perturbed three well potential illus-
trated in Figure 7. The lowest eigenfunctions of the generator corresponding to
the Smoluchowski dynamics are A1 = 0.0000, Ao = —0.0076, A3 = —0.0114,
while Ay = —0.4104. The eigenfunctions ve and vs exhibit sign changes and al-
low to decompose the state space into subsets, on which the eigenfunction is ei-
ther positive or negative. Since vo has exactly one zero a thereon based decom-
position of the state space yields the subsets C1 and Cy with common exit rate
'y = —Ay = 0.0076. Analogously, vs defines the subsets D1, Dy and D3 with com-
mon exit rate '3 = —A3 = 0.0114.

The identification algorithm is based on the collection of the most dominant
eigenfunctions. In seemingly contrast, Theorem 9.2 indicates that each single
eigenfunction induces a metastable decomposition, in particular that different
eigenfunctions might induce different metastable decompositions. We illustrate
this for the three—well potential in Figure 12. The second and third eigenfunc-
tions v and wvs allow application of Theorem 9.2 and induce two different
decompositions, namely {Cy,Cy} and {D;, Dy, D3}. The rate of metastabil-
ity of the first is superior (I'(Cx) = 0.022); the latter reproduces the three-
well structure of the potential but its metastable subsets show less signifi-
cant metastability (I'(Dy) = 0.036). Conclusively, the result is a hierarchy of
metastable decompositions with decreasingly significant metastability of the
subset. However, the identification algorithm will result in a very similar hier-
archy if iteratively applied to the set {v1, vy} of eigenfunctions first and then
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to the set {vy, vo, v3}.

Chapter 6. Numerical Realization

Identification of metastable subsets necessitates the computation of the most
dominant eigenfunctions of the propagator P = P7 for some fixed observation
time span 7 > 0. In the following we describe the discretization procedure of
the eigenvalue problem Pv = Av. Throughout this section we assume that P
satisfies the conditions (C1) and (C2) defined in Section 7. Part of this section
follows from [54, 55].

10 Galerkin Discretization

Let x = {x1,-..,Xn} C L¥11) denote a set of non-negative functions with the
property to yield a partition of unity, i.e.,

The Galerkin projection IT,, : LAu) — S, onto the associated finite dimen-
sional ansatz space S, = span{xi, ..., Xn} is defined by

(U, Xk>u

v =
k=1 {Xk Xk)u

Application of the Galerkin projection to Pv = Av yields an eigenvalue prob-
lem for the discretized propagator 1I,PII, acting on the finite-dimensional
space S,,. The matrix representation of this finite dimensional operator is
given by the n x n transition matriz S = (Sy;), whose entries are given by

(PXk, X1) _ (Xe> TX1)
<Xk:Xk>N <Xk’Xk>/_L ’

Sy = (10.1)

where 1" denotes the adjoint transfer operator.

Properties of discretization matrix. Since P is a Markov operator and y
a partition of unity, the Galerkin discretization S is a (row) stochastic matrix,
ie., Sg>0and >, Sy =1fork =1,...,n. Consequently, all its eigenvalues
A satisfy |A| < 1. Moreover, we have the following three important properties
[54, 55]:

(1) The row vector 7 = (m1,...,T,) with m = (Xk, X)u = |IXkll, represents

the discretized invariant probability measure u. It is a left eigenvector
corresponding to the eigenvalue A = 1, thus 7.5 = .
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(2) S is irreducible and aperiodic. As a consequence, the eigenvalue A = 1
is simple and dominant, hence A € ¢(S) implies A = 1 or |lambda| < 1.
In particular, the discretized invariant density 7 is the unique invariant
density of S.

(3) If P is reversible then S is self-adjoint w.r.t. the discrete scalar product
(u, v, = 3 u;v;m;. Equivalently, S satisfies the detailed balance condition
7k Sgr = m Sy for every k,1 € {1,... ,n}. Hence, all eigenvalues of S are
real-valued and contained in the interval (—1,1].

Partitions of unity that are defined in terms of some decomposition D =
{Dy, ..., D,} of the state space are of particular interest. Any decomposition
D defines a partition of unity x = {xi1,...,xn} With x, = 1p,. Galerkin
discretization based on this boz discretization then yields a transition matrix
that in addition to the above properties has the advantageous property that
its entries are one—step transition probabilities from Dy to D

(Plp,,1p,),

Skl =
<1Dk’ 1Dk>u

= p(DkaDl)-

Another prominent example is given by partitions of unity x whose elements
Xr € X are so-called mollifies, i.e., non-negative C'°°-functions of compact
support that approximate indicator functions. In this case, the discretization
often is called fuzzy set discretization.

Summarizing, the discretization of the propagator can be interpreted as a
coarse graining procedure, especially in the case of box discretization: Coarse
graining the state space {x € X} — {Ds,..., D,} results in a coarse graining
of the propagator P — S corresponding to a coarse graining of the Markov
process p(x, D) — p(Dy, D;) with invariant measures p — 7. In doing so, the
discretization inherits the most important properties of the propagator.

Remark. Tt is important to notice that—unless in very special situations—the
discretization process does not commute with the semigroup property of the
transfer operator P. Hence, in general we have

(5*)u # p°(Dy, Dy),

where S? denotes the square of the transition matrix S obtained from dis-
cretization P, and p? denotes the stochastic transition function corresponding
to P2.
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11 The Eigenvalue Problem

We restrict our considerations to the important class of reversible propagators
P : L) — L) satisfying the conditions (C1) and (C2).

Under these assumptions, convergence results for the eigenvalues are simple
consequences of, e.g., the Rayleigh-Ritz theory (see [54] for details). Obviously
we have to require that the sequence of the Galerkin ansatz spaces S,,;, C S,,, C

. is dense in L), and the corresponding partitions of unity x,x®, ...
are getting gradually finer, e.g., maxgc, ) diam(supp ®) — 0 as ny — oo with
k — 0o, where we assume that the functions in the kth partition of unity x¥
have compact support.

For the explicit numerical approximation of the dominant eigenvalues and
eigenvectors different settings are available. Whenever one is interested in the
dominant eigenvalues and eigenvectors of the transition matrix for a given
discretization one may use iterative eigenvalue solvers, see, e.g., [45]. These
allow to compute the desired information even for matrices of size 108 x 108,
for example. Whenever one is interested in subsequent refinements of the dis-
cretization to achieve approximations with high precision, one should apply
multigrid techniques with optimal efficiency even for very fine grids like those
constructed in [14], for example. The mentioned preconditions for efficient
convergence of the techniques perfectly fit to the scenario of metastability: it
is required that the dominant eigenvalues are separated from the remainder of
the spectrum by a significant gap. Then the convergence rate of those methods
only depends on the spectral gap and is in principle independent of the size of
the stochastic transition matrix. The numerical effort is given mainly by the
effort of matrix-vector multiplications.

We emphasize, however, that already for small molecules the dimension of
state space X is so high as to make the transfer operator approach computa-
tionally infeasible if naively applied directly in X. This problem is sometimes
called the curse of dimensionality. To some extend it can be ameliorated by
the use of adaptive algorithms such as those in [10] but, for many problems in
high dimensions, combination of the transfer operator approach with cluster-
ing approaches, and/or with mathematical modeling such as the exploitation
of fast/slow time-scale separation, is needed to circumvent the curse of dimen-
sionality. We will address this problem in Section 14.
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12 Evaluation of Transition Matrix

We consider the evaluation of the stochastic transition matrix S obtained from
discretizing P = P7. The corresponding discrete time Markov chain is denoted
by X, = {X, }nen- Consider two elements Xy, x; of the partition of unity used
for discretization. Combining T7 x;(x) = E;[x;(X,)] with (10.1) yields

1

S = ———
& <Xkan>u

[ 0@ Exla ()] ()

which can be approximated within two steps:

(A1) approximation of the integral

Jy9@ntde) ~ X arg(o)

by some deterministic or stochastic integration scheme with partition points
or random variables z1, ... ,zy, respectively, and weights ay,...,ay [16,
31];

(A2) approximation of the expectation value

ELbu(Xo)] & g7 2 (X (oy,2)

by relative frequencies, where X (wy, z) denotes a realization of the Markov
process with initial distribution X, = z [48, Chapter 17].

A combination of (A1) and (A2) with g(z) = xx(2)Ez[x:(X;)] results in

1 N M
S~ 37 DD e xw(@) - xi (Xr(wis 7)) ;

k=1j=1

hence, for each initial point x;, the Markov process X, is realized M times.
The approximation quality depends on the interplay between the two approx-
imation steps (A1) and (A2). Numerical experiments in low dimensions show
that it is even possible to choose small M, if the number of partition points
N is chosen in such a way that the number of points in the support of any of
the xi is reasonably large. For high—dimensional problems, we will in general
be forced to use stochastic integration schemes such as Monte Carlo methods
in order to approximate the integral in (Al). For the analysis of biomolecules
Monte Carlo based techniques have been applied successfully [55, 36].

Whenever the discrete time Markov process X, = { X, }nen is ergodic w.r.t.
1, and a statistically representative realization of X, is available, we may also
combine (Al) and (A2):
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Example 12.1 Let xg,... ,zy denote a sequence of sampling points obtained
from a realization of the discrete time Markov process X,,. Then

e Xk(®5) - xu(wj1)
Z;'V:1 Xk (25)? ’

Sp o~ SN = (12.1)

where convergence is guaranteed for p—a.e. initial points xo by conditions (C1)
and (C2) and the law of large numbers [48].

13 Trapping Problem

The rate of convergence of S,SV) — Sy depends on the smoothness of the par-
tition functions x; as well as on the mixing properties of the Markov chain X,
[46]. The latter property is crucial here: The convergence is geometric with a
rate constant A\; — Ay = 1 — Ay where Ay denotes the second largest eigenvalue
(in modulus). That is, in case of metastability and thus Ay being very close
to A\; = 1, we will have dramatically slow convergence. As this is the main
problem for all approaches to biomolecular dynamics and statistics, this is also
a bottleneck of the transfer operator approach. An entire bunch of the liter-
ature aims at tackling this problem that is often called the trapping problem
[4, 22]. In the framework of the transfer operator approach presented herein,
A. Fischer recently designed a hierarchical approach tailored to accelerate con-
vergence called uncoupling-coupling (UC) (23, 25]. Its key assumption is the
following property of all stochastic systems designed to sample the canoni-
cal ensemble: Decreasing temperature induces stronger metastabilities, while
metastability vanishes for large temperatures. Thus heating can help to reduce
trapping which reappears if the system is annealed to lower temperatures. The
uncoupling-coupling approach has been designed to circumvent this problems
by combining the idea of domain decomposition with bridge sampling tech-
niques.

In Section 8 a special bridge sampling technique called Adaptive Temperature
HMC (ATHMC) [24] is used. Based on the Hybrid Monte Carlo procedure
ATHMC reduces trapping problems by allowing to adapt the temperature dur-
ing the sampling such that it can be increased to induce exits from metastable
subsets. It was demonstrated that this procedure can be described by means
of a generalized ensemble such that all parts of the sample (with different
temperatures) can be reweighted to the temperature of interest [24].
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14 Discretization in Higher Dimensions

Any discretization will suffer from the curse of dimensionality whenever it
were based on uniform partition of all of the hundreds or thousands of degrees
of freedom in a typical biomolecular system. Fortunately, chemical observa-
tions reveal that—even for larger biomolecules—the curse of dimensionality
can be circumvented by exploiting the hierarchical structure of the dynami-
cal and statistical properties of biomolecular systems: Firstly, only relatively
few conformational or essential degrees of freedom are needed to describe the
conformational transitions [1]. Furthermore, the canonical density has a rich
spatial multiscale structure induced by the rich structure of the potential en-
ergy landscape. This structure induces a hierarchical cluster structure of the
sampling data that can be identified and used to define a multilevel discretiza-
tion adapted to the structures of the statistical data.

These observations give rise to a collection of approaches to the construction
of structure-adapted discretizations:

Essential Degrees of Freedom. In the (low dimensional) subspace of es-
sential degrees of freedom most of the positional fluctuations occur, while in
the remaining degrees of freedom the motion can be considered as “physically
constrained”. Based on the available sampling, we may determine essential de-
grees of freedom either in the position space according to Amadei et al. [1] or
in the space of internal degrees of freedom, e.g., dihedral angles, by statistical
analysis of circular data [36]. Either case is based on a principal component
analysis of the sampling. As shown in [36], this procedure may results in a
enormous reduction of the number of degrees of freedom and, consequently, in
a moderate number of subsets within the decomposition when discretizing the
essential variables only. The principal component analysis is a linear approach
to essential degrees of freedom. A characterization and identification of more
general nonlinear essential degrees of freedom presently is a topic of further
investigation.

Clustering Algorithms. Another approach of decomposing the state space
is based on clustering the sampling data by means of clustering algorithms
(see, e.g., [39] and cited references). These methods cluster the sampling data
according to structural similarity: The set of sampling points is partitioned into
disjoint subsets with the property that two states belonging to the same subset
are in some sense structural closer to each other than two states belonging to
different subsets. A crucial question is the design of appropriate measures of
structural similarity. In the biomolecular application context, these measures
may either be based on the Cartesian coordinates or on the internal degrees
of freedom. In contrast to the former the latter approach is invariant under
rotations and translations of the entire molecule.
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A novel promising approach to the above type of clustering problem uses
self-organizing maps, a special kind of neural networks. Self-organizing maps
allow to cluster the sampling data by assigning each sampling point to its
nearest “neurons”, each of them representing a subset of the decomposition.
We have demonstrated its successful application to sampling data of biomolec-
ular systems in [30]. More advanced extensions, such as “box—neurons” and a
hierarchical embedding, have recently been designed [28, 29].

Whenever the statistical distribution allows to be clustered into a limited but
significant number of clusters (e.g. a few thousand at most), these clusters can
be used to define a statistics-adapted discretization as by fuzzy partitions of
unity or by introducing discretization “boxes” such that each box contains a
single cluster; for an application to biomolecular systems see [36, 60].

Chapter 7. Illustrative Numerical Experiments

We now want to illustrate the transfer operator approach to metastability in
application to different dynamical descriptions that are based on the earlier
introduced perturbed three—well potential (see Figure 7, left). Further investi-
gations, including dependence on parameters and discretization, can be found
in [35]. The theoretical justification of the transfer operator approach via con-
ditions (C1) and (C2) for the below dynamical descriptions can be found in
(54, 35].

Parameters. The perturbed three—well potential is defined by

1
V(@) = 155 (¢° — 30q" + 234¢7 + 14¢ + 100 + 30sin(17g) + 26 cos(11g)) .

Below, we analyze the ensemble dynamics based on the Hamiltonian system
with randomized momenta, the Langevin system and the Smoluchowski sys-
tem. We choose # = 2.0 for the inverse temperature and v = 2.0 for the
friction constant. Then, o is defined via the relation 3 = 2v/0? as stated in
eq. 2.6. For the observation time span we take 7 = 1.0.

Sampling. We sample the Markov processes given by the Hamiltonian sys-
tem with randomized momenta with periodic boundary conditions on the po-
sitional state space [—5,+5], the Langevin systems on X = R X R and the
Smoluchowski systems on X = R. The sampling length is n = 300000 points.

Discretization. We discretize the positional state space into n = 70 equally
sized intervals (boxes). For the Langevin dynamics, we additionally have to
discretize the space of momenta. Examining the canonical density of momenta
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Fig. 13. The four dominant eigenfunctions of the propagator P, for differ-
ent model systems. Left: Hamiltonian system with randomized momenta corre-
sponding to the eigenvalues 1.0000,0.9939,0.9912,0.6946 (from top to bottom).
Middle: Smoluchowski equation for v = 2.0 corresponding to the eigenvalues
1.0000,0.9925,0.9893, 0.6585. Right: Langevin equation for v = 2.0 corresponding
to the eigenvalues 1.0000,0.9948,0.9924,0.6796.

reveals that it is very unlikely to stay outside the interval [—3, +3]. Hence,
we discretize the state space of momenta R by discretizing [—3, +3] into 28
equally sized intervals and adding the two infinite intervals (—oo, —3) and
(3,00). Applying the discretization methods described in Section 6, we end
up with an n X n stochastic transition matrix S with n = 50 x 30 for the
Langevin dynamics and n = 70 otherwise. For the Hamiltonian system with
randomized momenta and the Smoluchowski dynamics, the transition matrix
is self-adjoint.

Hamiltonian System with randomized momenta. Solving the eigenvalue
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problem for S yields:

At | A | Ag Aol A | e
1.000(0.9939(0.9912|0.6946|0.6481|0.5952| ...

Application of our identification algorithm yields a decomposition of the state
space D = {C4, Cy, C3} with Cy = {¢ < —2.13}, Cy = {—2.13 < ¢ < 1.99} and
C3 = {1.99 < ¢}. The statistical weights p(Cy) within the positional canonical
ensemble p and the metastabilities p(Cy, Cy) are given by the following table:

metastable subset| C; Cy Cs

statistical weight |0.2018]0.6979(0.1003
metastability 0.9883/0.9938(0.9800

The essential statistical behavior, i.e., the probability of transitions between
the metastable subsets, is described by the coupling matrix C' = (¢jx)jk=1,2,3
with ¢, = p(Cj, Cy). For our example, we obtain

0.9883 0.0117 0
C =1 0.0034 0.9938 0.0029
0  0.0200 0.9800

Langevin system. Solving the eigenvalue problem for S yields

)‘1 AZ )\3 )\4 /\5
1.0000(0.9948(0.9924(0.6796|0.5365] ...

Application of our identification algorithm yields a decomposition of the state
space D = {C4,Cy, C3}. The statistical weights u(Cy) within the canonical
ensemble p and the metastabilities p(Cy, Cy) are given by the following table:

metastable subset| C; Cy Cs

statistical weight [0.1918|0.7012]0.1070 (14.1)
metastability 0.9887(0.9946|0.9851
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Calculating the coupling matrix yields

0.9887 0.0113 0
C = 0.0031 0.9946 0.0023 | . (14.2)
0 0.0149 0.9851

Smoluchowski system. Solving the eigenvalue problem for S yields:

)\1 /\2 )\3 )\4 /\5 )\6
1.000010.9925]0.9893(0.6585(0.5496|0.4562| ...

Application of our identification algorithm yields a decomposition of the state
space D = {C4, Cy, C3} with C; = {¢ < —2.04}, Cy = {—2.04 < ¢ < 1.94} and
C3 = {1.94 < ¢}. The statistical weights p(C)) within the positional canonical
ensemble p and the metastabilities p(Cy, Cy) are given by the following table:

metastable subset| C; Cy Cs

statistical weight |0.2083|0.6936|0.0981
metastability 0.9863]0.9926|0.9770

The coupling matrix C' = (¢jk);k=1,2,3 is given by

0.9863 0.0137 0
C = | 0.0041 0.9926 0.0033
0 0.0230 0.9770

Determining a decomposition of the state space following the Exit Time Ap-
proach and partitioning according to the zeros of the second or third eigen-
function v, and vs, respectively, we obtain:

Second eigenfunction: D = {C}, Co} with C; = {g < —1.32} and Cs =
{-1.32 < ¢} corresponding to the exit rate I'(C;) = —log(\)/7 =
0.0076.

Third eigenfunction: D = {Dy, Dy, D3} with D; = {q < —2.04}, Dy =
{-2.04 < ¢ < 1.94} and D3 = {1.94 < ¢} corresponding to the exit rate

Hence, in this case the decomposition induced by h3 is identical to the decom-
position obtained via the identification algorithm.
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Chapter 8. Application to Biomolecular
Systems

In this section we demonstrate that the algorithmic strategy presented in
Section 7 can be applied to identify biomolecular conformations even for large
systems as, for instance, small biomolecules with hundreds of atoms. For large
systems, we have to face two particular problems:

(1) How to generate a sample of the stationary distribution in a high—dimensional
space?

(2) How to decompose the highly-dimensional state space in order to dis-
cretize the propagator?

We will address these problems in the following.

Analyzing a Small Biomolecule. This section illustrates the performance
of the algorithmic approach to the tri-ribonucleotide adenylyl(3’-5’)cytidylyl(3’-
5")cytidin (r(ACC)) model system in vacuum, see Figure 14. Its physical repre-
sentation is based on the GROMOS96 extended atom force field [59], resulting
in N = 70 atoms, hence Q@ = R?'? and I' = R*?°. The internal fluctuations
are modeled w.r.t. the Hamiltonian system with randomized momenta. For
details see [36].

Fig. 14. Two representatives of different conformations of r(ACC). Left: The x angle
around the first glycosidic bond is in anti position (-175 degrees) and the terminal
ribose pucker P is in C(8’)endo C(2’)exo conformation. Right: The x angle is in syn
position (19 degrees) and the terminal ribose in C(2’)endo C(3’)exo conformation.
Visualization by amira [2].

The sampling of the canonical ensemble was generated using an adaptive
temperature hybrid Monte Carlo method [24] at T" = 300K resulting in the
sampling sequence ¢y, ... , 32000 € §2. The dynamical fluctuations within the
canonical ensemble were approximated by integrating M = 4 short trajectories
of length 7 = 80fs starting from each sampling point. To facilitate transitions,
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analogous to the ATHMC sampling, the momenta were chosen according to
the canonical ensemble of momenta corresponding to four different temper-
atures between 300K — 400K and reweighted afterwards. This resulted in a
total of 4x32.000 = 128.000 trajectories.

The configurational space was discretized using all four essential degrees of
freedom, which were identified by means of a statistical analysis of the sam-
pling data (see [36]), resulting in d = 36 discretization subsets. Then the 36x36
stochastic transition matrix S was computed based on the 128.000 transitions
taking the different weighting factors into account. The computation of the
eigenvalues of S close to 1 yielded a cluster of eight eigenvalues with a sig-
nificant gap to the remaining part of the spectrum, as shown in the following
table:

ki1 1234|5656 78129
Ar|1.00]0.99(0.98(0.97]0.96|0.95(0.93]0.90/0.81] ...

Finally, we computed conformations based on the corresponding eight eigen-
vectors of S via the identification algorithm presented in Section 8. We identi-
fied eight conformations; their statistical weights and metastabilities are shown
in the following table:

conformations C, Cy|Cy Cy|Cs5 Cg| Cr Cy
statistical weight|0.11 0.01{0.12 0.03|0.32 0.04|0.29 0.10
metastability 0.99 0.94|0.96 0.89]0.99 0.95]0.98 0.96

The transition probabilities between the different conformations are visualized
schematically in Figure 15. The matrix allows to define a hierarchy between the
clusters: on the top level, there are two clusters, one consisting of the confor-
mations C1, ... ,Cy and the other consisting of the conformations Cs, . .. , Cs.
This structure corresponds to the two 4 x4 blocks on the diagonal. On the
next level, each of these clusters splits up into two subclusters yielding four
conformations {C7, Co}, {Cs,C4}, {C5,Cs}, {C7,Cs}. On the bottom level,
each cluster is further divided resulting in eight conformations.
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Fig. 15. Schematical visualization of the transition probabilities p(7, C;, C;) between
the conformation C; (row) and C; (column). The colors are chosen according to the
logarithm of the corresponding entries: from p = 0 (light) to p = 1 (dark).

Chapter 9. Appendix

A Some Mathematical Aspects of Transfer Operators

Consider the state space X C R™ for some m € N equipped with the Borel
o—algebra A on X. The evolution of a single microscopic system is supposed
to be given by a homogeneous Markov process X; = {X; }seT in continuous or
discrete time with T = R§ or T = N, respectively. The motion of X; is given
in terms of a stochastic transition function p according to

p(t,z,A) = P[Xps € A | X = 1],

forevery t,s € T,z € X and A C X. The map p: T x X x B(X) — [0, 1] has
the following properties

(i) =+ p(t,z, A) is measurable for every ¢t € T and A € B(X),

(ii)) A — p(t,z, A) is a probability measure for every ¢t € T and z € X.
(iii) p(0,z,X\ {z}) = 0 for every z € X.
(iv) the Chapman-Kolmogorov equation

plt+s,3,4) = [ plt,z,d2) pls, 2, 4)
X
holds for every t,s € T, x € X and A C X.
The relation between Markov processes and stochastic transition functions is

one-to-one, i.e., every homogeneous Markov process defines a stochastic tran-
sition function satisfying properties (i) to (iv), and vice versa [48, Chapter 3.
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To introduce the transfer operators consider the Banach spaces of equivalence
classes of measurable functions

L(p) = {u:X—)C:/X\u(:ﬂ)V,u(dx) <oo}. (A1)

for 1 <r < oo and

L¥u) = {u : X = C: pesssup |u(z)| < oo}
zeX

with corresponding norms || - ||, and || - ||, respectively. Due to Hélder’s
inequality we have L"(u) C L) for every 1 < s < r < oco. The propagators
or forward transfer operators P’ : LYy) — LY i) are defined by

P'o(y) uldy) = [ plt 7, dy)v(a)n(de),

while the backward transfer operators 7% : L>(u) — L°(u) are given by

T'u(z) = Euu(x)] = [ uyp(t,z,dy).

The assumed invariance of p w.r.t. the stochastic transition function guaran-
tees that the forward transfer operators is well-defined [51, Chapter 4] and
may be consider as acting on L"(u) for 1 < r. Moreover the backward transfer
operator may be extended to any L"(u) with 1 <.

Due to the properties of the stochastic transition function p both definitions
define semigroups of Markov operators, i.e., we especially have

T'T* = T"* and P'P° = P°*,

and both operators, A = T* or A = P*, conserve norm ||Av||; = ||A|; and
positivity Av > 0 if v > 0. With the duality bracket defined in (6.6) the
backward transfer operator is the adjoint of the propagator: (P*)* = T*. Since
L*(u1) is a proper subset, of the dual of L>(u), we have P ¢ (T%)*, hence P! is
not the adjoint of T%. As a consequence, it is much easier to relate properties
of P to T* than vice versa.

Spectral Properties. Consider a complex Banach space E with norm ||-|| and
denote the spectrum* of a bounded linear operator P : E — E by o(P). For
an eigenvalue A € o(P), the multiplicity of A is defined as the dimension of the
generalized eigenspace; see e.g., [41, Chap. I11.6]. Eigenvalues of multiplicity
1 are called simple. The set of all eigenvalues A € o(P) that are isolated and
of finite multiplicity is called the discrete spectrum, denoted by ogiser(P)-
The essential spectral radius r.s(P) of P is defined as the smallest real

* For common functional analytical terminology see, e.g., [19, 33, 41, 61].
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number, such that outside the ball of radius res(P), centered at the origin,
are only discrete eigenvalues, i.e.,

Tess(P) = inf{r > 0: X\ € o(P) with |A\| > r implies \ € ogiser(P)}-

This definition of res(P) is unusual in the sense that it does not involve any
definition of the essential spectrum. This is owed to the surprising fact that
although there are many different definitions of essential spectra, the associ-
ated spectral radii coincide [35, 44] and are therefore somehow independent of
the specific definition of essential spectra.

Proposition A.1 ([35]) Consider the Lebesgue decomposition of the
stochastic transition function

p(z,dy) = pu(z,y)u(dy) + ps(z,dy)

where p, and ps represent the absolutely continuous and the singular part w.r.t.
1, respectively. Assume that

(i) the inequality

|, [, pel@v)ulda)utay) < oo

holds, and
(i1) there exists some n < 1 such that

n = supp,(a,X) = 1—inf | po(a,y)p(dy).
for p—a.e. x € X.

Then, the essential spectrum is uniformly bounded away from 1, more precisely,
we have ress(P) < \/n < 1. In particular, condition (C1) is fulfilled.

As stated in Section 7 the probabilistic interpretation of condition (C2) is
that the Markov process admits a unique invariant probability measure and is
aperiodic, hence does not show any periodic behavior. Consequently, the state
space X can neither be decomposed into non-interacting (invariant) subsets
nor into so—called cyclic subset such that the Markov process cycles with prob-
ability 1 along these cyclic subset. To interpret condition (C1), consider the
Lebesgue decomposition of the stochastic transition function p. For simplic-
ity assume that the invariant measure p is absolutely continuous w.r.t. the
Lebesgue measure as, for instance, the measure induced by the canonical en-
semble. Then, as shown in Propositon A.1, the essential spectral radius 7eg(P)
is related to regularity conditions on the stochastic transition function. The
essential spectral radius is close to one, if (a) the singular part p;, is close to
one, or (b) the absolutely continuous part p, shows a singularity like behavior,
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e.g., grows too fast at infinity. There is a rapidly growing literature on testable
conditions, which imply that neither (a) nor (b) are valid and thus the spectral
radius is strictly bounded away from 1 [|. We only want to make the following
remarks: Firstly, for the special case of the deterministic Hamiltonian system,
the absolutely continuous part p, vanishes such that 7.s(P) = 1 via condition
(a). Then, for the case of Langevin or Smoluchowski dynamics with smooth
potentials, the singular part vanishes and the validity of condition (C1) de-
pends on the growths of p, at infinity only; therefore Ljapunov conditions on
p, suffice to prove (C1) in these cases. Finally, we can safely exclude prob-
lems with condition (a) whenever the transition function p allows to reach an
open set with positive measure w.r.t. g from any point x € X. This shows
that for the Hamiltonian system with randomized momenta we only have to
exclude that there is an initial position ¢ from which 7-trajectories with arbi-
trary initial momentum always end up in some discrete set of positions. This
typically is not the case such that condition (a) will typically be no problem
for the Hamiltonian system with randomized momenta whereas it is for the
deterministic Hamiltonian system, see [54] for details.

Implications of V—uniform ergodicity. The main body of ergodic theory
and spectral theory of transfer operators is based upon another vector space
setting developed in [48, Chapter 16]. Let V : X — [1,00), finite a.e., be a
given Ljapunov function, and denote by L)) the vector space of measurable
functions h : X — C satisfying

|h(2)|

|hlly = sup =~ < oc.
zeX

V(z)

Let |- ||y also denote the operator norm induced by this V-norm. The V-norm
on measures (as it is used in Section 8) is defined by

lvlly = sup | | v(z)r(dz)l,
w<y X

where |v| <V is understood to hold pointwise for every measurable function
v and every x € X; here V needs to be integrable. For the special case V =1,
the V-norm coincides with the total variation norm || - ||rv.

Consider the backward transfer operator acting on the function space L(V).
We have seen in Section 9 that the assumption of V—ergodicity is crucial for
our approach. Then, from Theorem 5.2 of [18] and the results of [37] it follows

Theorem A.2 If the stochastic transition function p is V-uniformly ergodic
then,

(1) there is an invariant probability measure p, and the semigroup T* strongly
converges in LSy .
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(2) T admits a spectral gap in L>(V), i.e., the set o(T*)N{z € C: |z—1| < €}
s finite for sufficiently small e > 0. )
(8) for any B € B with u(B) > 0, there exists 'y > 0 and b < oo such that

P.{os >t} <bV(x)e T8, zeX. (A.2)

The last properties nicely illustrates that there is a deep connection between
V-ergodicity, the existence of a spectral gap, and the exponential decay of the
exit time distribution. This is important for the definition of exit rates in the
next subsection.

B Definition of Exit Rates

Consider the Markov process X; with transition function p. As outlined above,
p defines the semigroup of transfer operators via T*u(z) = E,[u(X;)]. We now
turn our attention to some open connected set B and define the restricted
process on B induced by the process X; via the semigroup of restricted
transfer operators

Tpu(z) = BEofu(Xi)1x(ep > 1)),

where ppe denotes the exit time from B¢ as introduced in (5.1). Thus, the
new process lives on B only; considering the original process exits from B are
killed. The family {T%} is a semigroup of positive operators that in general
are no longer Markov operators. We define the spectral radius for the family

{T5} by
r({T5Y) = lim (150",
and define the V—exit rate from the set B by

[(B) = —logr({Ts}).

Now, one may raise the question whether the so-defined exit rate really mea-
sures the asymptotic decay of the distribution of exit times in the sense of
Section 5. The answer is yes: If for the set B the exit time distribution de-
cays due to (5.2) for some I' > 0 that is constant in B, then ||T%||, decays
asymptotically as cexp(—T't) such that I'(B) = —logr({T%}) = I'. The other
way around and in terms of a rigorous statement for the situation described
in Section 9, we have:

Theorem B.1 Suppose that the conditions of Theorem 9.2 hold implying that
the subset C' is metastable with exit rate I' > 0. Then there exists 6g > 0 such
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that for all s, T > 0 the conditional distribution of exit times satisfies

= ¢ Ts | _140(Ga(s))
Fx(S,T) = € r 1+é4(—eO—TC§0Gm(s)) ) (T_>OO)

with G4(s) = e %%V (z)/h(x).

In [37], o is some well-defined computable constant and it is shown that in
typical situations we have dy > T
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