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Abstract. We present a method for simultaneous dimension reduction
and metastability analysis of high dimensional time series. The approach
is based on the combination of hidden Markov models (HMMs) and
principal component analysis. We derive optimal estimators for the log-
likelihood functional and employ the Expectation Maximization algo-
rithm for its numerical optimization. We demonstrate the performance
of the method on a generic 102-dimensional example, apply the new
HMM-PCA algorithm to a molecular dynamics simulation of 12–alanine
in water and interpret the results.

Introduction

Let us assume that the observation of the physical process under consideration
(f. e. conformational dynamics of some biological molecule) is given in the form of
a high dimensional time series in some molecular degrees of freedom (f. e. torsion
angles or distances between some important groups of atoms in the molecule).
The general task which arises in many practical applications is to find the few
important or essential degrees of freedom that can explain most of the observed
process and thus can help to understand the physical mechanism [1–4].

The increasing amount of ”raw” simulation data and growing dimensionality
of these simulations have led to a persistent demand for modeling approaches
which allow to extract physically interpretable information out of the data. What
is needed is automatized generation of low–dimensional physical models based
on (noisy) data, i.e., interesting approaches should provide data–based dimen-
sion reduction. This should be carefully distinguished from analytical approaches
like, e.g., the Zwanzig-Mori approach, the Karhunen-Loève expansion, or aver-
aging techniques. The latter approaches allow to reduce the dimension of a given
physical model, but the problem of finding essential coordinates must be solved
previously and may be data–driven as well. See the textbook [5], or the excellent
review article [6] for an overview. Compare also [7] for a related approach.
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The problem of dimension reduction becomes crucial when dealing with data-
bases of molecular dynamics trajectories [8, 1]. Recent works show that even
such simple linear dimension reduction strategies as principal component anal-
ysis (PCA) allow for a significant compression of the time–series information
(factor 10 in [9]). However, such a linear technique as PCA applied to in general
nonlinear phenomena as, e.g., transitions between the metastable conformations
of biological molecules can be misleading and produce difficulties in the inter-
pretation [1, 10, 8]. One way of trying to circumvent these problems is non–linear
extension of PCA (NLPCA) [11]. However, this non-linear strategy is numeri-
cally expensive and not robust enough, thus resulting in restricted applicability of
the technique [12]. Another possibility to extend the linear dimension reduction
techniques is contained in the theory of the indexing of high dimensional data-
bases, where the problem was partially solved by combining correlation analysis
with clustering techniques [13–15]. But due to the fact that the proposed meth-
ods rely on geometrical clustering of possibly high dimensional data–spaces, the
resulting algorithms rely on some sort of distance-metric and scale polynomi-
ally wrt. the length of the data-set. Alternatively, for the time series analysis
of molecular dynamics trajectories, due to additional information encapsulated
in the time component, it is possible to employ dynamical clustering techniques
like hidden Markov models (HMMs) which scale linear wrt. the length of the
time series [16–21].

In this paper we present a novel method for simultaneous dimension reduction
and clustering of the time series into metastable states. The approach is based
on the combination of the HMM with PCA. The problem of simultaneous di-
mension reduction and metastability analysis is solved by the optimization of an
appropriate log–likelihood functional by means of the Expectation Maximization
algorithm (EM) [18]. The performance of the resulting HMM–PCA algorithm
is demonstrated by application to some model examples and to a microsecond
simulation of 12–alanine protein in water.

1 Principal Component Analysis (PCA)

The simplest form of the dimension reduction is known in statistics as prin-
ciple component analysis (PCA). Let the data be given in form of a sequence
{xt}t=1,...,T of states. The idea of the method consists in identification of m prin-
cipal directions with highest variance in n-dimensional observed data xt : R1 →
Rn (m << n). These directions are defined with the help of linear projectors
T ∈ Rn×m, i.e., T is understood to project onto the subspace spanned by the
principal directions. Mathematically the problem of identifying T can be stated
as minimization of the residuum–functional (which describes the least–squares
difference between the original observation and its reconstruction by means of
the m-dimensional projection):

L(xt,T, µ) =
T∑

t=1

∥∥∥(xt − µ)−TTT(t) (xt − µ)
∥∥∥2

2
. (1)
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The functional L depends on the projector matrices T and center vectors µ ∈ Rn.
Moreover, the projectors T are subjected to the orthogonality condition:

TTT = Idm×m, (2)

The functional (1) can be equivalently written as

L =
T∑

t=1

(xt − µ)T
(
Id−TTT

)
(xt − µ) . (3)

This functional can be minimized analytically subject to the orthogonality
conditions resulting in the expressions for optimal parameters µ and T:

µ =
1
T

T∑
t=1

xt, C =
1
T

T∑
t=1

(xt − µ)(xt − µ)T = TSTT +O(Λmin) (4)

where T is the matrix of m dominant eigenvectors and S = diag(λ1, .., λm) con-
tains m corresponding largest eigenvalues of the covariance matrix C. Λmin =
diag(λm+1, . . . , λn) is the diagonal matrix containing the remaining part of the
spectrum. This result means that the optimal value of the parameter µ is given
simply by the expectation value of the data and the corresponding optimal pro-
jector T is defined by the dominant eigenvectors of the data covariance–matrix.
It is important to mention that nowhere in the derivation of the optimal esti-
mator the assumption about the form of the xt distribution is needed.

However, in many interesting cases the standard PCA–approach does not
result in a meaningful dimension reduction. Let us assume, for example, that
the time series given results from a realization of the process governed by a
two–dimensional double-well Langevin–dynamics of the form

ẍ(t) = −gradV (x(t))− γẋ(t)− σ ˙W (t), (5)

with friction matrix γ =
(

0.25 0.125
0.125 0.25

)
, noise matrix σ =

(
0.6 0
0 0.6

)
and po-

tential energy defined as the sum of two Gaussian wells orthogonal to each other
added to a harmonic potential:

V (x) =
2∑

l=1

al exp
(
−(x− µsys

l )TDsys
l (x− µsys

l )
)

+6(x− 0.5(µsys
l + µsys

l ))T(Dsys
1 + Dsys

2 )(x− 0.5(µsys
l + µsys

l )), (6)

Dsys
1 =

(
20 0
0 0.5

)
, Dsys

2 =
(

0.5 0
0 20

)
, µsys

1 =
(

0
1.5

)
, µsys

2 =
(

1.5
0

)
The Langevin dynamics in this case produces two clusters of states each

associated with the corresponding metastable well. The application of PCA via
(4) with m = 1 to this time series results in an inadequately reconstructed
dynamics. If we first cluster the time series into two clusters and then apply
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(4) to each of the clusters separately, we can reduce the value of the residuum–
functional (1) from 191.1 in a ”global” PCA case to 46.3 in a ”local” one (by
”local” PCA we understand the PCA for each of the clusters, the value of the
residuum-functional is then given by the sum of the ”local” functionals). This
also results in a much better quality of the data-reconstruction.

This leads us to a simple idea: if we want to enhance the performance of
PCA–based dimension reduction we should exploit the internal structure of the
data, i.e., we should decompose the time series of the observed process into
metastable aggregates and then make the ”local” dimension reduction by means
of PCA. Furthermore, we can state more ambitious question: Is it probably
possible to use the local principle dimensions as tokens in the clustering of the
time series itself. If it is possible this will allow to combine clustering of data
and dimension reduction in one algorithmic step hopefully leading to synergetic
effects and allowing both clustering of the time series in metastable sets and the
dimension reduction.

1.1 Hidden Markov Models (HMM)

A hidden Markov model (HMM) is a stochastic process with hidden and observ-
able states. The hidden process consists of a sequence X1, X2, X3, . . . of random
variables taking values in some ”state space”, the value of Xt being ”the state
of the system at time t”. In applications these states are not observable, and
therefore called hidden. Each state causes a specific output that might be either
discrete or continuous. This output is distributed according to a certain condi-
tional distribution (conditioned to the hidden state). Thus, realizations of HMM
are concerned with two sequences, an observation sequence and a sequence of
hidden states.

The dynamics under consideration is assumed to be a Markov process, that
is, the state sequence has the Markov property which means that the conditional
distribution of the ”future” Xn+1 given the ”past”, X1, . . . , Xn, depends on the
past only through Xn. Since the HMM state space in general is finite, we thus are
concerned with a Markov chain, which is characterized by the so-called transition
matrix, whose entries correspond to the probabilities of switching from one state
to another. The sum of all coefficients in one row is the probability of taking
any state, therefore being one, which means that the transition matrix is a row-
stochastic matrix.

A HMM is designed to describe the situation in which part of the infor-
mation of the system is unknown (or hidden) and another part is observed. In
molecular dynamics the information initially is hidden in which metastable sub-
set (conformation) the molecular system is at a certain instant in time, while
the information on the state of the selected torsion or backbone angles is com-
pletely known. A HMM then consists of a Markov chain model for the hidden
(metastable) states that encodes with which probability one switches from one
hidden state to another, and a conditional probability of observation of specific
torsion angles if one is in a certain hidden state. To describe the whole system,
we need to know the number of hidden states, the transition matrix between
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them, an initial distribution, and for each state a certain probability distribu-
tion for the observation.

Therefore, a HMM formally is defined as a tuple λ = (S, V,A,B, π) where

– S = {s1, s2, ..., sL} is a set of a finite number L of states,
– V ⊂ Rk is the observation space,
– A = (aij) is the transition matrix, where aij = P (Xt+1 = sj |Xt = si)

describes the the transition probability from state si to state sj ,
– Bk, k = 1, . . . , N are probability density functions in the observation space,
– π = πi is a stochastic vector, that describes the initial state distribution,

πi = P (X1 = si).

Often, the short notation λ = (A,B, π) is used since S and V are implicitly
included. HMMs can be set up for discrete or continuous observations. For con-
tinuous observations the most popular choice is to use (multivariate) normal
distributions for the output distributions Bk.

1.2 HMM-PCA

The fitting of the parameters can be pefomred with the help of the maximum
likelihood principle. The likelihood function is L(λ) = P (xt, Xt|λ), i.e., we con-
sider the observation sequence as being given and ask for the variation of the
probability in terms of the parameters. The maximum likelihood principle then
simply states, that the optimal parameters are given by the absolute maximum
of L. Thus, similarly to the PCA dimension reduction, the maximum likelihood
principle is an optimization problem in parameter space.

In order to combine both approaches, we first make two assumptions on the
observation process: (i) the observed data in the hidden states are distributed
according to a multivariate Gaussian distributions ρB , (ii) the hidden process
switching between the metastable states is Markovian, i.e., the probability of
the conformational change depends on the current conformation only. The first
assumption is approximately valid for a large class of observables in molecular
dynamics (f. e. for the torsion angles or chemical bond lengths in the molecule).
The second assumption is connected to the characteristic timescale at which the
memory kernel of the molecular system is decaying and is also satisfied for a
wide class of applications.

These assumptions allow to design a statistical model for the observed data
and to construct the likelihood function for a reduced system. In analogy to the
residuum–functional (3) we have

P (xt, Xt|λ) = πX0e
− 1

2 (x0−µX0)
T
TX0SX0TT

X0(x0−µX0)
T−1∏
k=1

A(Xk, Xk+1)√
(2π)m det(SXk+1)

×e
− 1

2 (xk+1−µXk+1)
T
TXk+1SXk+1TT

Xk+1(xk+1−µXk+1) (7)

where Bi = (µi,Ti, Si) is a set of multivariate Gaussian distribution parameters
where µi ∈ Rn are the centers of the clusters, Ti ∈ Rn×m the corresponding
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optimal projectors, and Si ∈ Rm×m a diagonal matrix of dominant variances.
Functional (7) should be additionally subjected to constraints: (i) the projector
orthogonality condition (2),(ii) and the condition for stochasticity of the transi-
tion matrix A (i.e., the row sums of the matrix should be 1.0).

For numerical reasons it is much more convenient to take the logarithm of the
likelihood functional and optimize the resulting log-likelihood functional. Writing
the log-likelihood together with both constraints in Lagrange–form, taking the
derivatives wrt. to the model parameters and setting them to zero we get:

µi =
1
T

T∑
t=1

αi(t)βi(t)xt,
T∑

t=1

αi(t)βi(t)(xt − µ)(xt − µ)T = TiSiTT
i +O(Λi

min)

where αi(t), βi(t) are forward and backward variables (as usually defined in
the context of HMMs, see [21]). They are related to the Markov process (A, π)
and describe the probabilities to observe the hidden process Xt in the state i in
the time t. We observe direct correspondence between the estimator formulas (8)
and those given by standard PCA (4). That is, in the case of a single hidden state
the minimization of the HMM-PCA functional (7) is equivalent to optimization
of the residuum–functional (3). Only the dominant eigenvectors are needed for
the construction of matrix T. One can compute them efficiently with some itera-
tive subspace method (e.g. Lanczos, cf. [22]). In the case of several hidden states
we suggest to use the standard Expectation-Maximization algorithm [23], often
also called the Baum-Welch algorithm [16, 17]. The Expectation-Maximization
(EM) algorithm is a maximum likelihood approach that improves iteratively
an initial parameter set, and converges to a local maximum of the likelihood
function. Its two steps, the E- and M-steps, are iteratively repeated until the
improvement of the likelihood becomes smaller than a given limit. In all other
details the EM algorithm used herein follows standard procedures.

To apply the EM algorithm to a given observation sequence, we have to set
up a HMM λ = λ(A,B, π) by assuming a finite number L of hidden states, a
distribution function for the output of each state, and an initial values for all
remaining parameters.

2 Numerical Examples

2.1 Langevin Dynamics in 102 Dimensions

As a first example we consider realizations of the Langevin equation (5) with
x = (q, y) ∈ R2 ×RN and the perturbed two–hole potential

V (x) =
2∑

l=1

al exp
(
−(q − µsys

l )TDsys
l (q − µsys

l )
)

+
1
2
yTDbathy (8)

+δ0

(
cos(2πk(x1 + x2)) + cos(2πk(x1 − x2))

)
, (9)
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Fig. 1. Clustering of the time series resulting from the application of the Viterbi-
algorithm [24]. The 102–dimensional data is back–rotated and projected on metastable
dimensions.

where δ0 � 1 is a small perturbation parameter. The N harmonic bath variables
are denoted by y, whereas x labels the two ”metastable” dimensions that live in
the plane of the double well potential. We have chosen the following parameter

values: µsys
1 = (1.8, 2.2)T, µsys

2 = (1.8, 0.8)T, Dsys
1 =

(
1 −1
−1 3

)
, Dsys

2 =
(

1 1
1 3

)
,

a1 = −6, a2 = −6 such that we get two contiguously placed skew wells and
make identification of the metastable sets more challenging compared to a well–
separated situation. The parameter matrices Dbath and γ have been chosen to
be symmetric, positive definite, and tri-diagonal, with 10.0 on the main diagonal
and 5.0 on secondary diagonals for Dbath (5.0 and 2.5 respectively for γ). The
noise parameter σ was taken as a diagonal matrix with 4.0 on the diagonal. The
system is metastable because the barrier is sufficiently larger than the average
kinetic energy in the system.

Simulation of the model has been realized with the Euler–Maruyama integra-
tor (discretization time step ∆tEuler = 0.0002) and total time length 500. Each
hundredth instance of the resulting time series has been taken for a subsequent
parameter estimation (resulting in observation time step τ = 0.02) such that
T = 25.000.

Furthermore, in order to make our model system more realistic and mimic
the features inherent in biological systems, we rotate the resulting time series in
the (N+2) dimensional space. We do it in such a way, that the metastability of
the system becomes hidden in all the dimensions of the system. Application of
the HMM–PCA method indicates the presence of two metastable states in the
time series. In order to interpret the quality of the resulting model, we rotate the
time series back, color the elements according to the corresponding metastable
state and plot them atop of the original potential surface in (x1, x2). As we can
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see in Fig. 1, the local Langevin models are correctly situated at the wells of the
double–well potential in the metastable dimensions and the elements of the time
series are assigned in a proper way.

2.2 Analysis of the Long–Time Behavior of 12-Alanine in Water.

As a second application we analyzed a molecular dynamics trajectory of 12-
Alanine for conformational changes. The molecule was simulated using CHARMM
with an implicit water environment. The data were kindly provided by Jeremy
Smith and Frank Noé (IWR Heidelberg). We analyzed a 1µs long simulation
with 2fs time steps. The analysis was performed on the basis of the 33 back-
bone torsion angles. We identified 3 metastable states that were analyzed with
m = 3 local PCA modes. The left column of Fig. 2 illustrates the shape vari-
ability of the three conformations using a technique from [25]. The geometries
of all time steps are accumulated into a pseudo density that is visualized us-
ing direct volume rendering. In the right column, the mean backbone shapes of
the three states are depicted together with arrows that indicate the dominant
PCA-dimensions inside the conformations.

The identified metastable sets are the conformations of the molecule [26],
which have life times of 10 ns. As we can see, the dominant dimensions can be
interpreted as principal movements of the backbone which are characteristic for
the corresponding conformations. The analysis shows that in terms of HMM-
PCA these characteristic movements can be used to distinguish between the
metastable sets and can be helpful in the clustering of the time series.

3 Conclusion

We presented a novel HMM based method for simultaneous dimension reduction
and clustering of time series data. The method is based on a combination of
an HMM approach and local PCA analysis. Incorporation of the local PCA
analysis helps to map the clustering problem into low dimensional space. We have
demonstrated the application of the method for a model system and a molecular
dynamics trajectory of 12-Alanine. The numerical examples demonstrate the
usefulness of the HMM-PCA approach.
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