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1 Introduction

This article is concerned with the numerical analysis of dynamical systems
using methods that are based on a discretized description of the system as
a graph. The graph-based description provides a unifying framework to ap-
proach a wide and diverse variety of dynamical systems, from time-discrete
maps via ordinary differential equations to stochastic differential equations
describing e. g. diffusion in a potential landscape.

Within this variety, this article focusses on those dynamical systems that
can possess a ‘multiscale structure’ in the sense that they exhibit interest-
ing dynamical behavior on more than one timescale. We will explain what
we mean with this phrase by means of some examples. Consider in Fig. 1
one trajectory of Chua’s circuit, that is described by the well-known three-
dimensional ordinary differential equation

ẋ = α(y −m0x−
1

3
m1x

3)

ẏ = x− y + z

ż = −βy

(see e. g. [HP*96]). It is clearly visible that relatively long parts of the whole
trajectory are contained in two ‘leaves’ within which the trajectory shows a
spiralling motion, with only some quick ‘jumps’ between the two leaves.

Similar phenomena can be observed in systems of quite different mathe-
matical type. As an example, consider a stochastic process in Rn describing
diffusion within a potential given by a function V : Rn → R. The system is
given by the Smoluchovski equation

Ẋ(t) = −∇V (X(t)) + εẆ (t)
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Fig. 1.1. A trajectory of Chua’s circuit that switches relatively rarely between two
almost invariant sets.

with Wt being a standard n-dimensional Wiener process and ε a small param-
eter. (A variation of this example is described in more detail in Sect. 4.) If we
assume V (x) → ∞ for ‖x‖ → ∞ (in order to avoid sample paths drifting off
to infinity), then any sample path will spend most of the time in the vicinity
of the local minima of V , with transitions between the minima being rare
events.

The common feature of the Chua circuit example and of the diffusion
example is the existence of subsets of the state space that are, although not
being invariant under the dynamics considered, nevertheless almost invariant
in the sense that on a short timescale, a change of a trajectory between the
sets is an event rarely encountered. This suggests to analyze such systems on
the short timescale as if those almost invariant sets were indeed invariant,
concentrating on features of the dynamics within the sets, and neglecting
outside interactions. On the long timescale, on the contrary, the dynamics
of such systems can be considered as some kind of ‘flipping process’ between
several almost invariant ‘superstates’. In this view, the first step of an analysis
that separates different timescales is the identification of almost invariant sets
in the dynamics, which forms the prime motivation for the work presented in
this article.

As was already alluded to in the beginning, we choose the approximation
of continuous dynamics through discrete Markov chains as the unifying ap-
proach to various kinds of dynamical systems. Reading a transition matrix
as the adjacency matrix of a graph naturally transforms the situation into a
graph theoretic framework. The problem of identifying almost invariant sets
thus becomes the problem of finding partitions of a graph that are optimal
with respect to certain cost functions, for which a plethora of solution or
approximation methods is at hand.
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The remainder of this article is organized as follows. In Sect. 2, together
with some notation we introduce the basic concepts used in this work, in par-
ticular the concept of almost invariant sets that is central for the contents
of this article. We formulate the problem of identifying almost invariant par-
titions and then reformulate it first as a discrete optimization problem and
then as a graph-theoretic problem. Sect. 3 takes up the last formulation and
introduces algorithmic possibilities graph theory offers for the solution of the
problem. We pay particular attention to the concept of the congestion of a
graph with its connection to dynamical systems concepts. Sect. 4 illustrates
the use of shortest-path-algorithms for the detection of dynamically meaning-
ful transition paths between almost invariant sets. Here the crucial point is
the appropriate choice of edge weights in the graph, for which two particular
examples are presented.

2 Numerical Analysis of Dynamical Systems

In this section we introduce the concept of almost invariant sets of a dynamical
system, and we describe a standard framework for their numerical analysis
using hierarchical set oriented methods.

2.1 Dynamical Systems and Invariant Measures

A map f : X → X on a compact subset X ⊂ R
n defines a discrete-time

dynamical system with state spaceX . Trajectories of the system are sequences
of points in X of the form

xk+1 = f(xk), k = 0, 1, . . . .

A particularly important class of such maps f is that of time-T maps of
an ordinary differential equation. In this case, under mild assumptions on
the ODE (local existence and uniqueness) f is even a diffeomorphism; in the
following we will assume this to be the case. Note that the state space X need
not be the maximal domain of the map f . In many cases it is more appropriate
to consider the dynamical system on some (invariant) subset of the maximal
domain, e. g. an attractor, an ergodic component, the set of non-wandering
points or the chain recurrent set.

In this work, we are interested in questions about the global dynamical
behavior of the dynamical system f : X → X . A powerful approach to these
questions is to use the transfer operator (or Perron-Frobenius operator) asso-
ciated with f , which, instead of generating single trajectories of points in X ,
describes the evolution of sets or, more generally, of (signed) measures on X .
More precisely, the transfer operator associated with f is the linear operator
P :M→M,
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(Pν)(S) = ν(f−1(S)), S measurable,

on the space M of signed measures on the Borel σ-algebra over X .
In the following we will assume that µ is an invariant measure for f , that

is, the probability measure µ satisfies

µ(S) = µ(f−1(S)) = (Pµ)(S) for all measurable S ⊂ X ,

and thus is a fixed point of the transfer operator. Moreover we assume that µ is
a unique so-called SRB-measure (Sinai-Ruelle-Bowen) in the sense that this is
the only invariant measure which is robust under small random perturbations,
in other words the only physically relevant invariant measure for the dynamical
system f .

2.2 Almost Invariant Sets

For two measurable sets S1, S2 ⊂ X we define the transition probability ρ from
S1 to S2 as

ρ(S1, S2) :=
µ(S1 ∩ f−1(S2))

µ(S1)
,

whenever µ(S1) �= 0. The transition probability ρ(S) := ρ(S, S) from a set
S ⊂ X into itself is called the invariance ratio of S. If for a number δ ∈ [0, 1]
the relation

ρ(S) ≥ δ

holds, S is called an δ-almost invariant set. In practice, we will be interested
in numbers δ = 1 − ε with 0 < ε << 1. When no precise bound δ on the
invariance ratio is important, we will also simply speak of almost invariant
sets.

The following observation will be crucial for the rest of this article. Let S
be an δ-almost invariant set, with δ = 1− ε. From µ(S) = µ(f−1(S)) one has
on the one hand that

µ(S) = µ(f−1(S)) = µ(S ∩ f−1(S)) + µ(X \ S ∩ f−1(S)). (2.1)

On the other hand,

µ(X \ S) = µ(X \ S ∩ f−1(S)) + µ(X \ S ∩ f−1(X \ S)). (2.2)

As S is δ-almost invariant, (2.1) means that

µ(X \ S ∩ f−1(S)) ≤ εµ(S) (2.3)

which together with (2.2) implies that

µ(X \ S ∩ f−1(X \ S)) ≥ µ(X \ S)− εµ(S)

=

(

1− ε
µ(S)

µ(X \ S)

)

· µ(X \ S),
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and thus

ρ(X \ S) ≥

(

1− ε
µ(S)

µ(X \ S)

)

.

In short, this means that the complement of an almost invariant set is also
almost invariant, with the respective invariance ratios being the more similar

the closer the ratio µ(S)
µ(X\S) is to one.

This observation naturally motivates the problem of determining a parti-
tion of X consisting of almost invariant sets of roughly equal weight. For the
rest of this article we will be concerned with this problem.

Although it may seem obvious, it is important to note that unlike e. g.
the decomposition into ergodic components, which is unique for any given
system, the decomposition of the state space into almost invariant sets will
in general not be unique. In fact, any small (with respect to e. g. Lebesgue
measure) variation of an almost invariant set will also be an almost invariant
set, probably with a slightly different invariance ratio.

We now formally define the problem of finding a partition of almost invari-
ant sets in the spatially continuous setting we have been considering so far.
It will be reformulated twice in the course of this article, first for a spatially
discretized setting and later in the language of graph theory.

Problem 2.1. For some fixed p ∈ N
+ find a collection of pairwise disjoint

sets S = {S1, . . . , Sp} with
⋃

1≤i≤p Si = X and µ(Si) > 0, 1 ≤ i ≤ p, such
that

ρ(S) :=
1

p

p
∑

i=1

ρ(Si) → max .

2.3 Discretization of the Transfer Operator

For the detection and approximation of almost invariant sets we need to ex-
plicitly deal with the transfer operator. Since an analytical expression for it
will only be derivable for none but the most simple systems, we need to derive
a finite-dimensional approximation to it. The following description is based
on results from e.g. [DH*97, DJ99, DFJ01, DJ02].

The basic idea for the discretization is to construct a sufficiently fine cov-
ering of the state space of the system consisting of boxes, i. e. generalized
rectangles, by means of a subdivision algorithm as described in [DH97]. The
basic principle of the subdivision algorithm is as follows. One starts with a
box Q ⊃ X containing the state space. Setting B0 = {Q}, a sequence (Bn)n∈N

is iteratively constructed, with each iteration step i → i + 1 of the iteration
consisting of two parts. In the first part, from the collection Bi a new collec-
tion B̃i+1 is constructed by subdividing each box B ∈ Bi along a prescribed
coordinate axis into two new boxes. In the second part, Bi+1 is constructed
as the collection of those boxes that do intersect with X , i. e.

Bi+1 =
{

B ∈ B̃i+1 | B ∩X �= ∅
}
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There are several modifications of this scheme, in particular regarding the
choice of boxes to be subdivided. While in the simple scheme every box is
subdivided in every step, one can reduce the numerical effort by introducing
an additional selection criterion that decides which boxes to subdivide and
which ones to leave at the present level. More detailed expositions of the
subdivision scheme can be found e. g. in [DH97, DJ99, Jun01].

Of course, in practice one cannot infinitly go on with the construction of
an arbitrarily fine box covering, but will have to stop the process at some
level, which results in a covering of the state space X by a finite collection
B = {B1, . . . , Bb} of boxes, i. e.

X ⊂
b

⋃

i=1

Bi with m(Bi ∩Bj) = 0 for i �= j .

Here m denotes Lebesgue measure.
To discretize the transfer operator, we replace the space M of signed

measures over the Borel σ-algebra by the finite-dimensional space MB of
signed measures on the σ-algebra that is given by the set of arbitrary unions
of boxes in B. The standard basis for this vector space is given by those
measures that assign the weight 1 to precisely one box in B and 0 to all other
boxes.

With respect to this basis, the discretized transfer operator PB : MB →
MB is represented by the matrix of transition probabilities

PB = (pij), where pij =
m(f−1(Bi) ∩Bj)

m(Bj)
, 1 ≤ i, j ≤ b. (2.4)

In the compution of the transition probabilities pij , the denominator poses
no problem, as the boxes Bi are generalized rectangles. For the computation
of m(f−1(Bi) ∩Bj), that is, the measure of the subset of Bj that is mapped
into Bi, there are several possibilities described e. g. in [DFJ01]. A method
that is often used is the Monte Carlo approach as described in [Hun94]:

m(f−1(Bi) ∩Bj) ≈
1

K

K
∑

k=1

χBi
(f(xk)),

where the xk’s are selected at random in Bj from a uniform distribution.
Evaluation of χBi

(f(xk)) only means that we have to check whether or not
the point f(xk) is contained in Bi. There are efficient ways to perform this
check based on a hierarchical construction and storage of the collection B (see
[DH97, DH*97]).

Note that once we have computed an approximation PB of the transfer
operator we can obtain a discretized version of the natural invariant measure
µ of the box covering B of A as the eigenvector to the eigenvalue 1 of PB.

As described in the beginning of this section, a region will be of interest if it
is almost invariant in the sense that typical points are mapped into the region
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itself with high probability. Evidently the infinite dimensional optimization
problem 2.1 needs to be discretized in order to be treated numerically. To this
end we again restrict ourselves to subsets that are unions of elements of the
partition B. Consider the transition matrix PB from (2.4). Then, our goal in
the discretized setting is to solve the following problem.

Problem 2.2 (Boxes). For some p ∈ N
+ find a collection of pairwise disjoint

sets S = {S1, . . . , Sp} with
⋃

1≤i≤p Si = B and µ(Sk) > 0, 1 ≤ i ≤ p, such
that

ρ(S) =
1

p

p
∑

k=1

ρ(Sk) =
1

p

p
∑

k=1

∑

Bi,Bj⊂Sk
pij · µ(Bj)

∑

Bj⊂Sk
µ(Bj)

→ max .

2.4 Graph Formulation

In this section, we go one step further with reformulating the problem of
finding almost invariant sets of a dynamical system. As it turns out, the
optimization problem 2.2 can be translated into the problem of finding an
optimal cut in a graph. To see this, we first show how the matrix describing
the discretized transfer operator can also be understood as a matrix describing
a directed graph, and then show that the quantity ρ(S) can be naturally
expressed in terms of edge and vertex weights of the graph.

As in the previous section, let B be a box covering of X . Let G = (V,E)
be a graph with vertex set V = B and directed edge set

E = E(B) = {(B1, B2) ∈ B × B : f(B1) ∩B2 �= ∅} .

The function vw : V → R with vw(Bi) = µ(Bi) assigns a weight to the
vertices and the function ew : E → R with ew((Bi, Bj)) = µ(Bi)pji assigns a
weight to the edges. Furthermore, let

Ē = Ē(B) = {{B1, B2} ⊂ B : (f(B1) ∩B2) ∪ (f(B2) ∩B1) �= ∅} .

This defines an undirected graph Ḡ = (V, Ē) with a weight function ēw :
Ē → R with ēw({Bi, Bj}) = µ(Bj)pij +µ(Bi)pji on the edges. The difference
between the graphs G and Ḡ is that in Ḡ the edge weight between two vertices
is the sum of the edge weights of the two directed edges between the same
vertices in G. Thus, the total edge weights of both graphs are identical.

To formulate the problem of partitioning the state space into almost in-
variant sets, we will define two cost functions that describe how much weight
remains within a certain set on the one hand, and how much weight changes
the set of a partition on the other hand. In order to so, we first need some
more notation and write µ(S) =

∑

i∈S µ(Bi) for S ⊂ V , and with S̄ = V \ S
we further denote

ES,S =
∑

i,j∈S

µ(Bi)pij and ES,S̄ =
1

2

∑

i∈S,j∈S̄

µ(Bi)pij + µ(Bj)pji.
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Definition 2.3. For a set S ⊂ V we define

Cint(S) =
ES,S

µ(S)

as the internal cost of S, and

Cext(S) =
ES,S̄

µ(S) · µ(S̄)

as the external cost of S.

Note that both cost functions are independent from the choice between
the directed graph G or the undirected graph Ḡ. We can therefore choose the
simpler undirected graph, and we will do that in the following.

Definition 2.4. For a partition S = {S1, . . . , Sp} of V we define

Cint(S) =
1

p

p
∑

i=1

Cint(Si) (2.5)

as the internal cost of S, and

Cext(S) =

∑

1≤i<j≤p ESi,Sj
∏p

i=1 µ(Si)
(2.6)

as the external cost of S.

Intuitively, optimal almost invariant partitions have maximal internal cost
and minimal external cost. Therefore, both the internal and external costs
are useful cost functions for the problem of computing almost invariant sets.
However, the minimization of the external cost is not equivalent to the max-
imization of the internal cost. In fact, the maximization of the internal cost
favors in general parts that are on average very loosely coupled to the rest
of the system. However, the size of these parts can in principle become very
small. On the other hand the minimization of the external cost favors balanced
weighting of the components.

It is an easy task to check that ρ(S) = Cint(S). Thus, the optimization
of problem 2.2 is identical to the optimization of the internal costs of the
partition S in equation (2.5) written in graph notation. Therefore, we have
established the following graph partitioning problem.

Problem 2.5 (Graph). For some fixed p ∈ N
+ find a collection of pairwise

disjoint sets S = {S1, . . . , Sp} with
⋃

1≤i≤p Si = V and vw(Si) > 0, 1 ≤ i ≤ p,
such that

Cint(S) → max . (2.7)

One can also consider the analogous problem for the external cost function.

Problem 2.6 (Graph). For some fixed p ∈ N
+ find a collection of pairwise

disjoint sets S = {S1, . . . , Sp} with
⋃

1≤i≤p Si = V and vw(Si) > 0, 1 ≤ i ≤ p,
such that

Cext(S) → min . (2.8)
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3 Computation of Almost Invariant Sets as a Graph

Partitioning Problem

In this section we show how existing graph partitioning methods and tools can
be applied to compute almost invariant sets. We first describe some state of the
art graph partitioning heuristics. Then, we introduce the notion of congestion
in a graph and its use in the analysis of dynamical systems, in particular in
view of the problem of finding a partition of almost invariant sets. Finally, we
explain how the congestion can be used as a criterion to decide on the number
of almost invariant sets.

3.1 Graph Partitioning Heuristics

In this section we briefly review existing approaches and algorithms for parti-
tioning the vertex set of a graph. As most variations of the partitioning prob-
lem – including those we are interested in in this article – are NP-complete,
the algorithms we present are approximation algorithms that are often based
on some heuristic for obtaining good partitionings.

The existing methods and tools for graph partitioning do not exactly op-
timize the cost functions we introduced in the previous section. We therefore
give an overview of the most successful graph partitioning methods and im-
plementations and point out the necessary modifications to such tools.

For the remainder of this section we assume that we aim to partition a
the vertex set of a graph into a known number of p parts. In Sect. 3.3 we will
present a way to identify this number.

We want to calculate a partition of the vertex set V of a graph G = (V,E)
into p parts V = S1 ∪ · · · ∪ Sp such that one of our cost functions of equa-
tions (2.5) or (2.6) is optimized. However, the calculation of an optimal solu-
tion of both cost functions is NP-complete. Another widely discussed parti-
tioning problem is to minimize the cut size cut(π) =

∑

1≤i<j≤p ESi,Sj
of the

partition π under the constraint that all parts have an equal (or almost equal)
number of vertices. This problem is sometimes called Balanced Partitioning
Problem and is NP-complete, even in the simplest case when a graph with
constant vertex and edge weights is to be partitioned into two parts [GJ79].

Efficient graph partitioning strategies have been developed for a number
of different applications. Efficiency and generalizations of graph partitioning
methods strongly depend on specific implementations. There are several soft-
ware libraries, each of which provides a range of different methods. Examples
are CHACO [HL94], JOSTLE [Wal00], METIS [KK98a], SCOTCH [Pel96] or
PARTY [Pre98]. The goal of the libraries is to both provide efficient imple-
mentations and to offer a flexible and universal graph partitioning interface to
applications. These libraries are designed to create solutions to the balanced
partitioning problem.

The tool PARTY has been developed by one of the authors and we have
used it for partitioning the graphs in this paper. PARTY, like other graph par-
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titioning tools, follows the Multilevel Paradigm. The multilevel graph parti-
tioning strategies have been proven to be very powerful approaches to efficient
graph-partitioning [Bou98, Gup97, HL95, KK98b, KK99, MPD00, PM*94,
Pre00]. The efficiency of this paradigm is dominated by two parts: graph
coarsening and local improvement.

The graph is coarsened down in several levels until a graph with a suffi-
ciently small number of vertices is constructed. A single coarsening step be-
tween two levels can be performed by the use of graph matchings. A matching
of a graph is a subset of the edges such that each vertex is incident to at most
one matching edge. A matching of the graph is calculated and the vertices
incident to a matching edge are contracted to a super-vertex. Experimental
results reveal that it is important to contract those vertices which are con-
nected via an edge of a high weight, because it is very likely that this edge
does not cross between parts in a partition with a low weight of crossing edges.
PARTY uses a fast approximation algorithm which is able to calculate a good
matching in linear time [Pre00].

PARTY stops the coarsening process when the number of vertices is equal
to the desired number of parts. Thus, each vertex of the coarse graph is one
part of the partition. However, it is also possible to stop the coarsening process
as soon as the number of vertices is sufficiently small. Then, any standard
graph partitioning method can be used to calculate a partition of the coarse
graph.

Finally, the partition of the smallest graph is projected back level-by-level
to the initial graph. The partition is locally refined on each level. Standard
methods for local improvement are Kernighan/Lin [KL70] type of algorithms
with improvement ideas from Fiduccia/Mattheyses [FM82]. An alternative
local improvement heuristic is the Helpful-Set method [DMP95] which is de-
rived from a constructive proof of upper bounds on the bisection width of
regular graphs [HM92, MD97, MP01].

As mentioned above, the tools are designed for solving the balanced graph
partitioning problem. Thus, the optimization criterion is different from our
cost functions of Sect. 2.4. The coarsening step of the multilevel approach does
not consider the balancing of the weights of the super-vertices. It is the local
refinement step which not only improves the partition locally but also balances
the weights of the parts. Thus, we have to modify the local improvement part
of the multilevel approach. We therefore modified the Kernighan/Lin imple-
mentation in PARTY such that it optimizes the cost-function Cint. Overall,
we use the algorithm of Fig. 3.1 to calculate almost invariant sets.

As an example to illustrate the partitioning we consider a graph that was
obtained as the discretization of the dynamics of a pentane molecule that is
considered in detail in [DH*00]. This molecule has two dihedral angles which
are used as state space coordinates. The left plot of Fig. 3.2 shows the box
collection and all transitions between boxes. As we will see in sect. 3.3, it is
adequate to partition the graph into five or seven parts. These are shown in
the center and right plots of Fig. 3.2.
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Partition graph G0 = (V0, E0) into p parts

i = 0;
WHILE (|Vi| > p)

calculate a graph matching Mi ⊂ Ei;
use Mi to coarse graph Gi = (Vi, Ei) to a graph Gi+1 = (Vi+1, Ei+1);
i := i + 1;

END WHILE
let πi be a p-partition of Gi such that each vertex is one part;
WHILE (i > 0)

i := i − 1;
use Mi to project πi+1 to a p-partition πi of Gi;
modify the partition πi on Gi locally to optimize Cint(πi);

END WHILE
output π0.

Fig. 3.1. Computing a graph partitioning with the multilevel approach.
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Fig. 3.2. Partition of graph describing the dynamics Pentane300. Left: The graph
with all edges. Center: Partition consisting of five parts with Cint = 0.980. Right:
Partition consisting of seven parts with Cint = 0.963. (See page 695 for a colored
version of the figure.)

3.2 Congestion

Standard graph partitioning methods partition the graph into a predefined
number of parts. However, if we do not know the resulting number of almost
invariant sets a priori, we need to find mechanisms which help us to decide on
a natural number of parts. As we will see, such a mechanism can be devised
on the basis of the concept of congestion of a graph.

Intuitively, the congestion of a graph is a quantity that can be used to
identify ‘bottlenecks’ in the graph, i. e. edges that connect subgraphs which
have relatively many internal and relatively few external edges. This descrip-
tion already explains the relevance of the congestion for the problem of finding
almost invariant sets of a dynamical system. The concept is based on the idea
of so-called multi-commodity flows on the graph (see e.g. [Lei92, Sin93]).
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In the following, we first formally define the congestion. As it is often
not feasibly to precisely compute this quantity for a given graph, we will
then shortly discuss heuristics for an approximation of the congestion. These
heuristics will produce upper bounds on the congestion, which we can use in
a lower bound on the external cost of a bisection of a graph that is discussed
immediately afterwards.

The first concept we need for the definition of the congestion is that of a
single-commodity flow in a graph. Such a flow may be imagined as a way of
describing the transport of a certain quantity c of some good from a source s
to a target t through a network of roads that is given by the graph.

Definition 3.1. Let G = (V,E) be an undirected graph with the vertex set
V = {1, . . . , d}. Let s, t ∈ V be vertices of G with s �= t, let c ∈ R. A
single-commodity flow f of the commodity c from s to t on G is a function
f : V × V → R such that

i. f(v, w) = 0 for all {v, w} /∈ E (flow on edges only),
ii. f(v, w) = −f(w, v) for all v, w ∈ V (symmetry),
iii.

∑

w∈V

f(v, w) = 0 for all v ∈ V \{s, t} (flow conservation) and

iv.
∑

w∈V

f(s, w) =
∑

w∈V

f(w, t) = c.

As the next step, we will define multi-commodity flows which general-
ize single-commodity flows. Intuitively, a multi-commodity flow describes the
transport of certain commodities from every vertex to every vertex of the
graph. The formal definition is as follows.

Definition 3.2. Let cs,t ∈ R for 1 ≤ s, t ≤ d. A multi-commodity flow F
of the commodities cs,t on G is a function F : V × V × V × V → R such that
for each pair (s, t) ∈ V ×V , the function F (s, t, ·, ·) is a single-commodity flow
of the commodity cs,t from s to t on G.

With these concepts, we are in a position that allows us to introduce the
congestion of a graph as we are using it in this work.

Definition 3.3. Let G = (V,E) be an undirected graph with the vertex set
V = {1, . . . , d}, vertex weights µd

i for i ∈ V , and edge weights Aij for {i, j} ∈
E. For s, t ∈ V , let cs,t = µd

s ·µ
d
t . Denote by F the set of all multi-commodity

flows of the commodities cs,t on G. For an edge {v, w} ∈ E and F ∈ F , the
edge congestion of {v, w} in F is

cong({v, w}, F ) =

∑

1≤s,t≤d |F (s, t, v, w)|

Avw

. (3.1)

The flow congestion of F on G is

cong(F ) = max
{v,w}∈E

cong({v, w}, F ) , (3.2)
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and finally the congestion of the graph G is

cong(G) = min
F∈F

cong(F ) . (3.3)

In principle, other choices of commodities cs,t than those used in this
definition are also possible. However, the choice we made here seems the most
appropriate for the use we will make of the congestion in this paper, as will
become clear in the following section.

Approximation of the congestion

The computation of the congestion cong(G) of a graph can be costly and is
often infeasible. We will see in the next section that the congestion can be
used to bound the external cost of a partition. However, that bound holds for
the congestion cong(F ) of any multi-commodity flow F . Thus, a sub-optimal
flow produces a sub-optimal, but still valid bound. In this section we discuss
heuristics for calculating a flow with a small flow congestion.

There are some hints of how to construct a flow with a small flow con-
gestion. Clearly, cycles in the flow should be avoided. Furthermore, it is easy
to imagine that a low-congestion flow should - at least primarily - go along
shortest paths between the pairs of vertices. Here, the length of a path is the
sum of the reciprocal values of the edge weights along the path.

A straightforward method is to send the flow along shortest paths only. If
more than one shortest paths exist, the flow value can be split among them.
If the edge weights are constant, all shortest paths can be calculated in time
O(|V | · |E|). This can be done by |V | independent Breath-First searches in
time O(|E|) each. If the edge weights are non-negative, all shortest paths can
be calculated in time O(|V | · (|V | · log |V | + |E|)), e.g. with |V | runs of the
single-source shortest path Dijkstra algorithm using Fibonacci heaps. We refer
to [CLR90] for a deeper discussion of shortest paths algorithms.

A different method is to consider n commodities at a time. For each vertex
vs, 1 ≤ s ≤ n, consider the commodities cs,t, 1 ≤ t ≤ n, i.e. all commodi-
ties with vs as the source. For each source vs we calculate a flow Fs which
transports all commodities from vs to all other vertices, i.e. it replaces n single-
commodity flows such that Fs(v, w) =

∑n
t=1 F (s, t, v, w). Fs is a single-source,

multiple-destination commodity flow. Definitions (i.) and (ii.) for the single-
commodity flow (Definition 3.1) remain unchanged whereas the definitions of
(iii.) and (iv.) are replaced by

v.
∑

w∈V

Fs(vt, w) = −cs,t for all t �= s (from source s to target t) and

vi.
∑

w∈V

Fs(vs, w) =
n
∑

t=1
cs,t − cs,s (from source s to all targets t except to

source s itself).

It is left to show how we calculate a single-source flow Fs. We use algo-
rithms from diffusion load balancing on distributed processor networks for
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this task, see e.g. [DFM99, EF*99, EMP00]. Here, the problem is to balance
the work load in a distributed processor network such that the volume of data
movement is as low as possible. We use these algorithms in the setting that the
vertex vs models a processor with load

∑n
t=1 cs,t and all other vertices model

a processor with no load. Furthermore, the processors are heterogeneous with
a capacity of cs,t for processor vt [EMP00]. The diffusion algorithms calculate
a balancing flow such that each vertex/processor vt gets a load of cs,t. That is
exactly what we need in our context. The resulting balancing flow has a nice
property: it is minimal in the l2-norm, i.e. the diffusion algorithms minimize

the value
√

∑

1≤v,w≤n |Fs(v, w)|. This ensures that there are no cycles in any

flow Fs. Furthermore, the flows are not restricted along shortest paths and
can avoid high traffic along shortest paths. However, the flows are still fa-
vored to be along reasonably short paths. Thus, it is expected that the overall
edge congestion of the resulting flow is reasonably small and that the flow
congestion is close to the congestion of the graph.

The PARTY library includes efficient code of a variety of diffusion algo-
rithms. We use them to calculate the single-source, multiple-destination flows
for each source s and then add up the values to get the multi-commodity flow.
Numerical experiments indicate that the resulting flow is indeed very small.

An Example: Pentane

To illustrate the meaning of the congestion in the context of dynamical sys-
tems, we again consider as example the graph describing the dynamics of a
pentane molecule from [DH*00]. The graph corresponding to this dynamical
system is shown in the left part of Fig. 3.3. The middle and the right part of
Fig. 3.3 show the edges with low and with high congestion, respectively. The
coloring of the boxes indicates the partition into seven almost invariant sets.
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Fig. 3.3. Congestion of the Pentane. Left: all transitions. Center: only transitions
with a low congestion. Right: only transitions with a high congestion. (See page 695
for a colored version of the figure.)
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It can be observed that – as expected – edges with low congestion can
mainly be found inside the almost invariant sets. On the other hand edges
between different almost invariant sets have a large congestion. Thus, a high
congestion indicates that there are at least two regions in the phase space
which are only loosely coupled. As we will see in Sect. 3.3, this observation
is the basis for using the congestion as an identifier for the number of almost
invariant sets which have to be approximated.

The congestion bound on Cext

We will now see how the concept of congestion of a graph can be used for
the analysis of dynamical systems, in particular for the problem of finding a
partition into almost invariant sets.

The congestion can be used to derive a lower bound on Cext(S) for any
S ⊂ I. As before, we use multi-commodities cs,t = vw(vs) · vw(vt) for each
source vs ∈ V and each destination vt ∈ V . On the one hand side, for any
multi-commodity flow with commodities cs,t as given above, at least µ(S)·µ(S̄)
‘units’ have to cross the cut between S and S̄, and as many in the opposite
direction. On the other hand, with ES,S̄ being the sum of edge weights of
edges crossing the cut, by definition of the congestion, at most cong(G) ·ES,S̄

units can cross the cut. Therefore we have 2 · µ(S) · µ(S̄) ≤ cong(G) · ES,S̄ ,
which at once gives the important inequality

Cext(S) =
ES,S̄

µ(S) · µ(S̄)
≥

2

cong(G)
. (3.4)

Obviously, a high and tight lower bound can only be achieved with a small
congestion. Although the congestion can be computed in polynomial time, it
remains to be very costly. Nevertheless, the congestion can be approximated
by the congestion of any flow. Heuristics for calculating a small congestion
were discussed above. Further discussion of lower bounds based on different
variations of multi-commodity flows can be found in [Sen01].

3.3 Identification of the Number of Almost Invariant Sets

We now discuss the problem of identifying an appropriate number of almost
invariant sets a given space should be partitioned into.

Informally, we want to determine a number p ∈ N such that there is a
partition of V consisting of p parts V = S1∪· · ·∪Sp with a high internal cost.
As the internal cost is monotonically decreasing for the optimal partitions with
an increasing number of parts p, we are looking for a number p such that an
(almost) optimal partition into p−1 parts has an only slightly higher internal
cost than an (almost) optimal partition consisting of p parts while (almost)
optimal partitions into p + 1 parts have a substantially lower internal cost.
The idea is that if we try to split a compact set (one with a small congestion),
the internal cost will drop substantially. Thus, our strategy is to start with
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the whole vertex set as the initial set and keep on bisecting the sets until they
become compact sets. This leads us to a strategy of how to determine the
number of compact parts. It can be phrased as a general method:

Recursively bisect the vertices of the graph until all parts are compact.

Recursive bisection is a widely used technique in graph partitioning. Al-
though there are many partitioning methods which directly partition the ver-
tices of a graph into a number of parts, we cannot apply them here, because
we do not know the number of parts a priora priori. Aditionally, the graph
bisection methods are often much more efficient than their generalized coun-
terparts.

We have seen in the previous section that the congestion of a graph can be
used to derive a lower bound on the external cost of a set bisection, i.e. a large
congestion indicates a large external cost and, therefore, also a small internal
cost. We use the congestion in order to decide whether a set is compact or not.
In our experiments we use a threshhold of 5 and say that if the congestion
is larger than 5 than the set has at least one bottleneck and is not compact.
Thus, our strategy is to subdivide the parts until all parts have a congestion
of at most 5.

One needs to solve two tasks in order to follow the recursive bisection
strategy and we described both in the previous sections. We use the methods
described in Sect. 3.1 to recursively calculate bisections of a graph. Further-
more, we use the congestion in order to indicate whether a part is compact
or not.

Figure 3.4 illustrates the recursive bisection process in the partitioning of
the graph in the pentane molecule example from [DH*00] which we already
used before. From the top left to the bottom right picture, the levels of the
recursive procedure are shown rowwise. As we can observe in the first picture,
the first bisection results in one part of 43 boxes and a very low congestion of
0.88. However, the other part consisting of 212 boxes has a high congestion
of 168.82. We continue to bisect parts with a congestion value higher than 5.
Thus, after a total of 4 bisection levels we get a partition into 7 parts and the
highest congestion of any part is 3.67 .

4 Short Paths

Broadly speaking, the previous section has been concerned with the use of
graph partitioning algorithms to obtain information about almost invariant
sets of a dynamical system. In this section, we will consider the use of another
class of graph algorithms, namely that of shortest-path algorithms, in the
context of dynamical systems. We will see that such algorithms can be used
to compute discrete approximations to transition paths of a dynamical system.
The crucial question for this undertaking is the choice of a weight function that
defines the length of an edge. We will present two such functions for different
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Fig. 3.4. Recursive bisection of the graph for the pentane example. The values
indicate: number of boxes / invariant measure / internal cost Cint / congestion of
subgraph. The graph has 255 vertices and a congestion of 139.67. (See page 696 for
a colored version of the figure.)

types of dynamics. Both have a natural motivation, and we will compare the
results of both approaches.

Definition 4.1. Let G = (V,E) be any graph with edge weights given by a
function ew : E → R. A sequence [(v1, v2), (v2, v3), . . . (vi, vi+1)] of edges
(vj , vj+1) ∈ E, 1 ≤ j ≤ i, is called a path from vertex v1 to vertex vi+1 of

size i and of length l =
∑i

j=1 ew((vj , vj+1)). A shortest path from a vertex
vs to a vertex vd is a path of minimum length from vs to vd. The distance
dist(vs, vd) from vs to vd is the length of a shortest path from vs to vd.

The standard algorithm used for computing shortest paths in graphs is the
Dijkstra algorithm. It solves the so called Single Source Shortest Path Problem
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where the shortest paths from one source vertex vs ∈ V to all other vertices
v ∈ V have to be determined. The Single Source, Single Destination Shortest
Path Problem is a special case in which only one path from vs to a designated
destination vertex vd has to be determined. In both cases the runtime of the
Dijkstra algorithm is O(|V | log(|V |) + |E|). For a profound discussion of this
standard algorithm we refer to e. g. [CLR90], in the following we will only
roughly sketch its basic principle.

Given a vertex vs as starting vertex, the algorithm maintains a list of
distances to vs assigned to every other vertex that is initialised with the value
∞ and in the end contains the lengths of the shortest paths from vs to any
vertex. In the first step, the distances of all neighbors of vs are set to the
weight of the edge connecting them to vs. These vertices form the initial halo
set, i.e. they are the vertices for which one path from vs is known but it
is not known whether this path is a shortest path. In the main loop of the
algorithm, it removes a vertex vmin with the minimum known distance from
the halo set, and considers all neighbors of vmin. If a neighbor is also in the
halo set, the algorithm checks whether a path through vmin would result in a
distance from vs less than the current known distance. If a neighbor is not yet
in the halo set, it is added to it, with its distance value being the sum of the
distance of vmin and the length of the edge connecting the neighbor to vmin.
The algorithm terminates when a prescribed target vertex is reached or when
the halo set becomes empty.

By two slight modifications, the Dijkstra algorithm can be generalized to
find a shortest path from any vertex of a source set Vs ⊂ V to any vertex of
a destination set Vd ⊂ V . The first modification is that in the initialization
step all vertices of Vs are assigned the distance value 0, and that all neighbors
of vertices from Vs that do not themselves belong to Vs form the initial halo
set. The second modification is that in the main loop, every time a vertex v
is removed from the halo set, it is checked whether v ∈ Vd.

4.1 Several Short Paths

For the purposes of this article, the purely graph theoretic consideration of
shortest paths we have seen until now has to be extended by some ideas
related to the specialized setting of graphs describing (temporal and/or spa-
tial) discretizations of continuous dynamical systems. In particular we have in
mind the fact that the numerical realizations of these graphs necessarily come
with a discretization error which makes it doubtful whether the notion of the
shortest path between two vertices vs and vd is really a meaningful quantity
in our applications – even leaving out the possible existence of several shortest
paths. Therefore, we are not only interested in one (or all) precisely shortest
paths, but we are also interested in all paths which are only slightly longer
than a path with the shortest length.

For this reason, we want to calculate all paths from a vertex vs to a vertex
vd which have a length of at most (1 + ǫ) dist(vs, vd). In order to do so, we
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need to apply the Dijkstra algorithm only two times. Firstly, we calculate all
distances from vs to all other vertices and denote these distances by dist1(v)
for all vertices v ∈ V . Among all distances this also includes the distance
between vs and vd. Secondly, we consider a new graph Gr = (V, F ) where
F consists of the edges in E with direction reversed. Then, we calculate all
distances from vd to all other vertices in Gr, and denote these distances by
dist2(v) for all vertices v ∈ V . Note that dist2(v) is also the distance from v
to vd in G for any vertex v ∈ V .

It is now simple to decide whether or not an edge (vi, vj) lies on a path
between vs and vd of length at most dist(vs, vd)(1 + ǫ). Such a path has to
consist of three parts: a path from vs to vi, the edge (vi, vj) itself and a
path from vj to vd. The shortest length for the first part is dist1(vi) and the
shortest length of the last part is dist2(vj). Thus, an edge (vi, vj) lies on a
path between vs and vd of length at most (1 + ǫ) dist(vs, vd) if and only if

dist1(vi) + ew((vi, vj)) + dist2(vj) ≤ (1 + ǫ) dist(vs, vd) .

The result is a subset Esp ⊂ E of edges belonging to the short paths.

4.2 Choices of edge weights

Until now, we have considered graphs with edge weights ew((vi, vj)) = µd
iPji

that where introduced in Sect. 2.4. While this weighting is appropriate for
graph partitioning algorithms which aim to minimize the internal cost of a
partition, it is less useful for shortest path algorithms.

Instead, we want to use an edge weight such that the length of a path
((v1, v2), (v2, v3), . . . , (vi, vi+1)) from a vertex v1 to a vertex vi+1 reflects the
product of the probabilities to choose the next edge along the path, i.e.
∏i

j=1 Pj+1,j . Thus, a high probability to go along this path should be re-
flected by a short path and vice versa.

We can do this by using shortest paths algorithms on the graph with edge
weights

ew(vi, vj) :=
1

log(Pji)
= − log(Pji) .

Then the length of a path ((v1, v2), (v2, v3), . . . , (vi, vi+1)) is

l =

i
∑

j=1

ew((vj , vj+1)) = − log(

i
∏

j=1

Pj+1,j) .

Note that the product of probabilities on the right hand side of this equation
is the probability that the Markov chain described by the matrix P produces
the considered sample path when started in v1.
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A B C

2 1 3 4 5

Fig. 4.1. Schematic representation of the example. The rectangular domain of the
pure diffusion with a reflecting boundary is discretized into 8 boxes.

Motivational example

As an example for a type of dynamics for which the edge weight introduced
in the previous section seems inappropriate, we consider diffusion in a flat
potential landscape (i. e. with V ≡ 0, see below). We choose a rectangu-
lar domain and apply reflecting boundary conditions. In Fig. 4.1 we give a
schematic picture of the situation. Suppose, we start the process in box B.
From the symmetry of the domain and the nature of diffusion, it is clear that
the probability to end up in box A is the same as to reach the box C, namely
0.5. But the particular decomposition of the domain, with the boxes 3, 4 and
5 having only two thirds of the width of the boxes 1 and2, implies that the
transition probabilities between boxes 1 and 2 on the one hand side and be-
tween boxes 3 and 4, and 4 and 5 on the other hand are all equal. This means
that the discrete path (B, 3, 4, 5, C) is less probable than the path (B, 1, 2, A),
in contradiction to the continuous picture.

Free Energy

Another important quantity to characterize the transition behavior of a dy-
namics in a complex system is the free energy barrier which the dynamics
has to overcome on its way between two almost invariant sets. Suppose we
consider the Smoluchowsky dynamics generated by the stochastic differential
equation

Ẋ(t) = −∇V (X(t)) +
√

2β−1Ẇ (t) (4.1)

whereX(t) ∈ Rn,W is a standard Browian motion, V : Rn → R is a potential
and β is a parameter that is referred to as the inverse temperature. The
probability to find the equilibrated system in a certain region, say C ⊂ Rn,
is given by

µ(C) = Z−1

∫

C

exp(−βV (x))dx (4.2)

where Z is the normalization factor. The traditional way to define the free
energy is by means of the marginal density with respect to a given reaction
coordinate ξ : Rn 
→ R

Z(q) = Z−1

∫

Rn

exp(−βV (x))δ(ξ(x) − q)dx. (4.3)
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Then the free energy is given by the logarithm of the partition sum Z(q):

F (q) = −β−1 lnZ(q). (4.4)

Discrete free energy

Now consider a reversible Markov process on a finite state space S =
{s1, . . . , sn} and let π = (π1, . . . , πn) its unique stationary distribution. Anal-
ogously to the continuous case, we define the free energy in terms of a prob-
ability distribution

F (i) = − lnπi > 0, i ∈ S. (4.5)

New weight

Given two disjoint sets A,B ⊂ S, we are interested in the state space path
which crosses the lowest free energy barriers on its way from A to B. To this
end, we introduce the new edge weights

w(i, j) = |Fj − Fi|. (4.6)

Let p = (i1, . . . , is) be a path such that

Fij
≤ Fij+1

⇔ πij
≥ πij+1

, j = 1, . . . , s− 1 (4.7)

then the length of the path is

l(p) =

s−1
∑

j=1

wij ,ij+1
= Fis

− Fi1 . (4.8)

This means that the weight of such a path is simply given by the free energy
difference between the last and the first state of the path. Moreover, if we fix
the states i1 and is, then all paths connecting these two states and satisfying
(4.7), have the same length. Next consider a path p = (i1, . . . , in) which can
be decomposed into two parts p1 = (i1, . . . , is) and p2 = (is, . . . , in) such that

{

Fij
≤ Fij+1

, j = 1, . . . , s− 1

Fij
≥ Fij+1

, j = s, . . . , n− 1
. (4.9)

One immediately verifies that the length of such a path is given by

l(p) = 2Fis
− (Fi1 + Fin

) ≥ 0. (4.10)

Again, the length of the path depends only on free energy differences, namely
the barriers Fis

− Fi1 and Fis
− Fin

. Consequently, if we fix the states i1 and
in then the shortest path between i1 and in w.r.t. to the weights (4.6) is the
one which crosses the lowest free energy barriers.
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A B C

2 1 3 4 5

Fig. 4.2. Schematic representation of the modified example.

Interpretation

The first observation is that the new weight allows to find barriers between
invariant sets. Furthermore, it is more insensitive with respect to the under-
lying discretization. To explain this issue, let us go back to example in 4.2.
The probabilities to find the equilibrated dynamics in the boxes 1 and 2 are
equal, and so are the probabilities of the boxes 3, 4 and 5. That means that
there are no free energy barriers for the dynamics on its way to the box A
or C, respectively, conditioned on starting in the box B and thus the paths
are equal. But this exactly results from the new weight: The lengths of both
paths are equal,

l(B, 1, 2, A) = FA − FB = FC − FB = l(B, 3, 4, 5, C) = const.

In the previous example the volumes of the boxes are equal. What happens
if the volumes of the boxes differ? Suppose we decompose the box 4 into two
boxes with equal volume. In Fig. 4.2 we give a schematic representation of
the modified example. For this discretization both weights would tell that the
path (B, 1, 2, A) is the preferred one since both the transition probabilities
w.r.t. the box 4 and its stationary distribution decrease. But nevertheless, the
new weight is more insensitive to the underlying discretization because the
length of a path does not depend on the entire path but only on the barriers
which the path overcomes.

4.3 Modified update step in the Dijkstra algorithm

The twofold contribution of a barrier can be seen as reflecting the reversibility
of the process. If it is necessary to know the value of the sum of barriers only
in one direction then this can be done by modifying the update step in the
Dijkstra algorithm. Let v be the current node in the main loop of the Dijkstra
algorithm and let k be a neighbor which has to be updated. Instead of using
the weight w(v, k) we propose to use the weight w̃(v, k) = max{0, Fk − Fv}
for updating the distance of the node k. Doing so, the bidirectional Dijkstra
algorithm with the modified update-step computes the same paths as the
unmodified one, but the length of a path only depends on the barrier in one
direction.
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Fig. 4.3. Left :Contour plot of the three-hole potential. Right: Equilibrium distri-
bution at β = 1.67.

4.4 Illustrative example: diffusion in a potential landscape

In the following example we study the behavior of the bidirectional Dijkstra-
Algorithm in the presents of two possible transition channels. We compare
the families of transition paths resulting from the probability weight and the
free energy weight. For this purpose we choose the three-well potential

V (x, y) = 3e−x2−(y−
1
3 )2 − 3e−x2−(y−

5
3 )2

−5e−(x−1)2−y2

− 5e−(x+1)2−y2

which already has been investigated in [PS*03]. As one can see in the left
picture of Fig. 4.3 the two deep minima at (−1, 0) and (1, 0) are connected
by an upper and a lower channel. We choose the inverse temperature β =
1.67 such that despite the dominance of the two deep minima there is still a
little probability to find the dynamics in the shallow minimum around (0, 5

3 ).
The dynamical bottlenecks in the upper channel are two saddle points with
equal potential energy whereas the dynamics in the lower channel only has
to overcome one saddle point with potential energy higher than that of the
upper ones.

The following experiments are based on a discrete realization of the dy-
namics given in (4.1) for the inverse temperature β = 1.67. To be more precise,
we use the Euler-Maruyama-scheme

xn+1 = xn −∇V (xn)τ +
√

2β−1τ ηn, n = 0, . . . , N − 1 (4.11)

to discretize the SDE (4.1) in time, where xn ∈ R2, τ is the time step and
ηn denotes a realization of a gaussian random variable with mean zero and
variance one. We choose the time step τ = 10−3 and generate a trajectory of
total length τN with N = 106.
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2

4

6

8

10

12

14

16

18

x 10
−3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

5

6

7

8

9

10

11

12

13

Fig. 4.4. Left: Stationary distribution of the transition matrix. Right: The free
energy of the boxes.

Equidistant discretization

Next we decompose the rectangular domain into 30× 30 equidistantly spaced
boxes. In the left picture of Fig. 4.4 we depict the stationary distribution of the
reversible transition matrix and in the right picture we plot the corresponding
free energy.

In Fig. 4.5 we illustrate the results of bidirectional Dijkstra for both
weights, the weights which are based on the transition probability and the
weights (4.6) incorporating the free energy. For all computations we use the
same sets A and B which consists of boxes covering the two deep minima,
respectively. In the two columns of Fig. 4.5 we draw the edges which belong
to the family of shortest paths between the sets A and B. From top to bot-
tom we increase the parameter ǫ which results in increasing number of edges.
The left column shows the edges of the most probable paths, whereas in the
right column we draw the edges of paths which crosses the lowest free energy
barriers.

As one can see, both methods detect for small ǫ the lower transition channel
as the preferred one. But with increasing ǫ the families of transition paths
differ. The family of transition paths resulting from transition probability
weight for ǫ = 0.6 includes paths which overcome the big barrier in the middle
of the potential. Since the probability that the dynamics leaves the basin of
attraction scales exponentially with the barrier which has to be overcame,
the paths over the big barrier make no sense. Although the dynamics could
get trapped in the upper shallow minima, the two lower saddle points rather
should allow the dynamics to make transition than to go over the big barrier
in the middle. This behavior is reflected by the free energy weight as can be
seen in the last picture of the right column.
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Fig. 4.5. Left column: Family of most probable paths between the set A (left
minimum) and the set B (right minimum). From the top to the bottom we choose
ǫ = 0.1, ǫ = 0.3 and ǫ = 0.6. Right column: Family of paths which crosses the lowest
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ǫ = 0.13. (See page 697 for a colored version of the figure.)
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