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Summary. This article is concerned with stochastic differential equations with dis-
parate temporal scales. We consider cases where the fast mode of the system rarely
switches from one almost invariant set in its state space to another one such that
the time scale of the switching is as slow as the slow modes of the system. In such
cases descriptions for the effective dynamics cannot be derived by means of stan-
dard averaging schemes. Instead a generalization of averaging, called conditional
averaging, allows to describe the effective dynamics appropriately. The basic idea of
conditional averaging is that the fast process can be decomposed into several ’almost
irreducible’ sub-processes, each of which can be treated by standard averaging and
corresponds to one metastable or almost invariant state. Rare transitions between
these states are taken into account by means of an appropriate Markov jump process
that describes the transitions between the states. The article gives a derivation of
conditional averaging for a class of systems where the fast process is a diffusion in
a double well potential.

1 Introduction

In complex system modeling, one often finds mathematical models that consist
of differential equations with different temporal and spatial scales. As a con-
sequence, mathematical techniques for the elimination of some of the smallest
scales have achieved considerable attention in the last years; the derivation
of reduced models by means of averaging techniques [FW84, AKN93, SV85,
Kif02, Fre78, Kif01, Kif92, BLP78], homogenization techniques [BS97, Bor98,
BS99], or stochastic modelling [MTV01, Mor65, Zwa73, MTV02] may serve
as typical links to this discussion.

This article is concerned with stochastic differential equations where the
fast mode of the system rarely switches from one almost invariant set in its
state space to another one such that the time scale of the switching is as
slow as the slow modes of the system. The basic idea is that the fast process
then can be decomposed into several ’almost irreducible’ subprocesses, each
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of which corresponds to one metastable or almost invariant state. To quantify
this principle, the rare transitions between these states are described by means
of the expected exit times that can be used to parametrize a Markov chain
model mimicking the transitions between the states.

The Averaging Principle

Let V : Rm ×Rn → R and consider the SDE

ẋǫ = −DxV (xǫ, yǫ) + σẆ1 (1.1)

ẏǫ = −1

ǫ
DyV (xǫ, yǫ) +

ς√
ǫ

Ẇ2, (1.2)

with ǫ > 0 and Wj (j = 1, 2) standard Brownian motions. If we assume
σ = ς, the above SDE is well-known as the Smoluchowski equation. For ǫ ≪ 1,
this system consists of a fast variable, y, and a slow one, x. Under suitable
conditions on V (cf. [FW84]), averaging completely characterizes the limit x0

of the slow dynamics xǫ for ǫ → 0 by an averaged SDE

ẋ0 = −
∫

Rn

DxV (x0, y)µx0(y)dy + σẆ1, (1.3)

where µx denotes the invariant density of the fast dynamics for fixed x:

µx(y) =
1

Zx
exp(− 2

ς2
V (x, y)), Zx =

∫

Rn

exp(− 2

ς2
V (x, y)) dy, (1.4)

which is assumed for each x to be the unique invariant density.

Metastable Fast Dynamics & Exit Times

Let us now assume that the fast dynamics exhibit metastable states , i.e., that
the effective dynamics in the fast degrees of freedom (DOF) can be described
by (rare) jumps between these sets, while in between the jumps the dynamics
remains within one of these metastable subsets. Under this condition averaging
may fail to reproduce the effective dynamics of the original system, mainly
for the following reason: The averaging principle is based on the fact that
the fast DOF completely explore the accessible state space before any change
in the slow DOF happen; this can fail to hold if metastability is observed in
the fast dynamics; in particular there is some subset of the accessible state
space from which the fast motion will most probably exit only on some scale
of order ord(1) or even larger. Let us make this rigorous by introducing the
mean exit time for the process yǫ

x from one of the metastable subsets, where
yǫ

x is governed by the SDE (1.2) for fixed x. If we assume the existence of two
metastable sets Rn = Bx ∪ Bc

x with Bx ∩ Bc
x = ∅, the mean exit time τ̄ ǫ

x(y)
from Bx is the expected value of the first exit time τ ǫ

x(y) of the process yǫ
x

from Bx started at yǫ
x(t = 0) = y, which is defined by
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τ ǫ
D(y) = inf

{

t ∈ R+ :

∫ t

0

1Dc(yǫ
x(s)) ds > 0, yǫ

x(0) = y

}

(1.5)

τ ǫ
x(y) = τ ǫ

Bx
(y)

where Dc denotes the complement of the set D.
Although we would expect that exit times depend on the starting point,

i.e., yǫ
x(0) = y, it can be shown that there do exist subsets D, for which

the exit time is basically independent for all states y ∈ D. Especially for a
metastable collection of sets Di of the Smoluchowski dynamics, in the limit
of vanishing noise intensity we are able to assign a first exit time τ̄ ǫ to an
entire subset Di rather than to single points y ∈ Di, see [HMS02, SH02,
SH00]. The question of the asymptotic behaviour of the mean exit time for
vanishing noise term ς has been discussed in detail by, for example, Freidlin

and Wentzell in [FW84], from which the following result is taken (up to
some slight modifications tailored to (1.1)&(1.2)) :

Theorem 1.1 ( [FW84, Thm. 4.1 of Chap. 4], [SH00]). Let the potential
V (x, ·) be twice continuously differentiable, let ymin be one of its local minima,
and Bx a metastable subset with sufficiently smooth boundary ∂Bx containing
ymin in its interior, but containing no other local minimum of V (x, ·) within
its interior. Without loss of generality we may assume that V (x, ymin) = 0.
Suppose that y0 is the unique point on the boundary ∂Bx with

V x
bar = V (x, y0) = min{V (x, y) : y ∈ ∂Bx}.

The mean exit time τ̄ ǫ
x for the process yǫ

x with yǫ
x(0) ∈ Bx then satisfies

lim
ς→0

ς2 ln
τ̄ ǫ
x

ǫ
= 2 V x

bar.

As we are interested in the case where the averaging principle fails, let us have
a closer look on the relation between the time scale of the fast motion and the
exit times from metastable subsets in the fast DOF. The result of the above
theorem tells us two things: First, rapid mixing of the fast DOF ( τ̄ ǫ

x ≪ 1) can
be realized by fixing ς and the potential energy function; then we are always
able to find an ǫ small enough such that averaging yields a good approximation
of the effective dynamcis. Second, if we decrease ς or increase the potential
energy barrier, the smallness parameter ǫ has to be chosen exponentially small
such that the averaged system still is a satisfactory approximation. If we want
to study the effect of metastabilities in the fast motion, it is natural to relate
V x

bar/ς2 to ǫ so that the exit times from metastable sets vary on a timescale
of order ord(1), that is, so that

τ̄ ǫ
x ≃ C(x) ǫ exp(

2

ς2
V x

bar) = ord(1), (1.6)

where C(x) denotes the subexponential pre-factor that necessarily depends
on x. Subsequently, the relation symbol ≃ denotes asymptotic equality and
ord is used to indicate comparison to the same order.
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Conditional Averaging

The scaling assumption (1.6) on ς represents a modeling step which will lead
towards the derivation of the principle of conditional averaging that may yield
an appropriate reduced model in cases where the ordinary averaging scheme
fails: Since we observe rapid sampling of the invariant density µx in each of the
metastable subsets, we propose to average over each of these sets alone and to
couple the resulting systems by a Markovian switching process which describes
the flipping behaviour between the metastable sets. Then, in the case of (at

most) two metastable subsets B
(1)
x and B

(2)
x for fixed x, the conditionally

averaged limit dynamics has the form

ẋ0 = −
∫

DxV (x0, y)µ
(Ĩ(t,x0))
x0 (y) dy + σẆ1, (1.7)

µ(1)
x (y) =

1

µx(B
(1)
x )

µx(y)1
B

(1)
x

(y), µ(2)
x (y) =

1

µx(B
(2)
x )

µx(y)1
B

(2)
x

(y),(1.8)

with Ĩ(t, x) denoting the Markov chain model with state space S = {1, 2},
where the rates of the jumps reproduce the transition rates of the original
system. In [SW*03] explicit values for the generating rate matrix are obtained
by using the most dominant eigenvalue λǫ

1(x) < 0 of the generator of the fast

dynamics (1.2) together with the weights µx(B
(i)
x ) of the metastable states on

the fiber of the fast state space.

Approach

The authors of [SW*03] derived the limit dynamics (1.7) in terms of multiscale
analysis of the Fokker-Planck equation, but there is no rigorous proof. The goal
of this paper is to obtain a deeper insight into the nature of the conditionally
averaged system.

Subsequently we consider the SDE

ẋǫ = −DxV (xǫ, yǫ) + σẆ1 (1.9)

ẏǫ = −1

ǫ
DyV (xǫ, yǫ) +

ς√
ǫ

Ẇ2, (1.10)

with ǫ > 0 and Wj (j = 1, 2) standard Brownian motions. We assume the fast

dynamics (1.10) to exhibit metastable states B
(1)
x and B

(2)
x so that the exit

times from the metastable subsets happen on a time scale of order ord(1) or
even larger.

Under these assumptions, we may take advantage of the methodology em-
ployed to extract the effective dynamics (1.7). This result (each metastable
subset of the fast dynamics is connected to one averaged equation) motivates
the idea to construct a system of fast-slow equations which allows for the
incorporation of temporal fast scale effects in a natural way: the fast motion
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within one metastable subset is approximated by an irreducible subprocess
that corresponds to a stochastic differential equation. The result is quanti-
fied by the parametrization of a Markov chain model I(t, x) that controls
the switches from one (sub)process to the other according to the transition
rates between the metastable subsets of the original dynamics. We thus ob-
tain a stochastic process where the slow variable at each instance is coupled
to one of two fast variables but where a stochastic switching process controls
the switches from one fast variable to the other. Then, under appropriate as-
sumptions on the potential V and for ς small, a good approximation of the
original dynamics (1.9)&(1.10) may be given by

ẋǫ = −DxV (xǫ, yǫ) + σẆ1 (1.11)

ẏǫ = −1

ǫ
ω(I(t,xǫ))(xǫ)

(

yǫ −m(I(t,xǫ))(xǫ)
)

+
ς√
ǫ
Ẇ2, (1.12)

where ω(i)(x) denotes curvature of V (x, ·) in the potential minima of the

metastable subsets B
(i)
x for i = 1, 2, and m(i)(x) the respective minima.

A reduced system in the slow variable solely is then obtained by applying
the well-known averaging results from [Pap76, Kur73, FW84] to each of these

stochastic differential equations. Denoting µ
OU(i)
x the (unique) invariant den-

sity of the process defined by (1.12) for fixed x and I(t, x) = i, the averaged
system then has the form

ẋ0 = −
∫

DxV (x0, y)µ
OU(I(t,x0))
x0 (y) dy + σ Ẇ1, (1.13)

where the µ
OU(i)
x denote the invariant densities of the Ornstein-Uhlenbeck

(OU) processes (1.12) (for these we have explicit expressions).
That is, we derive a description of the effective dynamics in two steps. In

a first step we replace the fast dynamics in each of the metastable subsets by
appropriate OU processes which are coupled to each other by a Markovian

switching process that reproduces the transition times between B
(1)
x and B

(2)
x

of the original process. In a second step we simply use the invariant density
of the OU processes in order to obtain the reduced system (1.13) by means of
standard averaging. Recalling the conditionally averaged system

ẋ0 = −
∫

DxV (x0, y)µ
(Ĩ(t,x0))
x0 (y) dy + σẆ1, (1.14)

with µ
(i)
x , i = 1, 2 defined by (1.8), it is of considerable interest to compare the

effective dynamics obtained by the two different approaches, namely (1.13) on
the one hand and (1.14) on the other. Note that the jump processes I that
corresponds to (1.13) will be derived in a different way than the jump process
Ĩ of (1.14). However, we will see that I and Ĩ are comparable in a certain way.
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2 System under Consideration

Subsequently we study the SDE (1.1)&(1.2), where the following basic as-
sumptions about the potential V = V (x, y) are made:

Assumption 2.1 (i) V ∈ C∞(Rm+1);
(ii) V (x, ·) is a double-well potential for all x ∈ Rm with two local minima at

y = m(1), m(2) and one local maximum at y = y0 with m(1) < y0 < m(2);
to point out the dependence on x we will also write m(i)(x), i = 1, 2.

(iii) the position of the saddle point does not depend on x, without loss of
generality we may assume y0(x) = 0 for every x;

(iv) the extrema are non-degenerate uniformly in x, i.e., for i = 1, 2

DyyV (x, m(i)) = ω(i)(x) ≥ ω̃(i) > 0, DyyV (x, y0) = −ω0(x) ≤ −ω̃0 < 0.

Therefore, for fixed x, the particle spends a ’long time’ in one basin (=potential
well), then quickly undergoes a transition into the other basin, in which it
spends another ’long time’, and so on. The condition y0(x) = 0 implies that
for every x ∈ Rm the locations of the two basins do not depend on x such that
the natural decomposition of the entire state space into metastable subsets is
simply given by B(1) ∪B(2), where3

B(1) = {(x, y) ∈ Rm+1 | y < 0}, B(2) = {(x, y) ∈ Rm+1 | y > 0}.(2.1)

The double-well potentials may serve as toy models mimicking a larger sys-
tem whose potential energy surface presents several basins corresponding to
metastable states.

As outlined in the introduction, we proceed in two steps to derive a reduced
model for the effective slow variable dynamics. The key point for the first step
is rooted in the design of V (x, ·) which already suggests that an averaging
procedure should incorporate metastabilities in the fast dynamics that are
induced by the double-well structure: If the noise level in the fast equation is
small, the diffusion sample paths of the fast process are located near the local
minima of the potential wells, and transitions between the two potential wells
can be considered as rare events. Then, the diffusion can be decomposed into
two sub-processes

(xǫ(t), yǫ
(i)(t)) = (xǫ(t), yǫ(t))1B(i)(xǫ(t), yǫ(t)), i = 1, 2,

and a two-state Markov chain I(t, x) mimicking the transitions between B(1)

and B(2) which happen along the y dynamics and thus depend on the position
of the slow one. Our approach is based on a quantification of the rates at

3 In [SW*03], the metastable decomposition for fixed x is defined by the zero z

of the second eigenfunction u1(x, ·) of the fast dynamics generator. It is shown
in [Wal05] that the zero z of u1(x, ·) actually is approximated by the saddle point
of the potential V (x, ·).
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which the fast process moves between the two subsets on the one hand and,
on the other, on an appropriate replacement of the almost irreducible fast
(sub)processes by appropriately chosen OU-processes evolving independently
of each other. Thus, the most basic questions we have to address concern
the fast process (1.2) for fixed slow variable x, which is done in Sect. 3. In so
doing, we basically have to decompose the fast process into the intra-well small
fluctuations of the diffusion around the potential minima and the inter-well
dynamics of the diffusion. For both parts we then obtain by means of small
noise asymptotics basic results that are then picked up in order to assemble
in Sect. 4 the full dynamics approximation (1.11)&(1.12) including the slow
variables motion.

The second step of the approach relies on the small noise approximation
and is based upon averaging results that can be found in a vast number of
articles. A simple application of a theorem in [FW84] then provides us in
Theorem 4.1 with the reduced dynamics (1.13). In the Appendix we show
how the averaged dynamics can be derived by using multiscale asymptotics
of the Fokker-Planck equation corresponding to the small noise approxima-
tion (1.11)&(1.12). In Sect. 5 we compare the averaged dynamics (1.13) to
the conditionally averaged system (1.7).

Another important concern of the approach is the relationship between
the noise level ς in the fast diffusion and the smallness parameter ǫ: The fast
diffusions inter-well and intra-well approximations are justified for vanishing
noise ς, so that we suggest ς → 0 to zero as ǫ → 0. Our considerations will
result in a coupling rule for ς and ǫ that incorporates the asymmetry of the
double-well potential. In Lemma 3.5 the choice of the noise level ς is coupled
to ǫ as well as the slow variable x so that the exit times from the metastable
subsets of the fast dynamics vary on a time scale of ord(1) or larger resulting
in (1.6).

Biomolecules operate at ambient temperature and solvent condition, and
most biomolecular processes can only be understood in a thermodynamical
context. Therefore, most experiments on biomolecular systems are performed
under the equilibrium conditions of constant temperature T , particle num-
ber, and volume. Statistical mechanics tells us that statistical ensembles of
molecular systems with internal energy V under these circumstances should
be modelled by the equilibrium density exp(−βV ). For the Smoluchowski
system (1.1)&(1.2) this means to enforce σ = ς (for fixed ǫ), such that ex-
periments can be arranged with inverse temperature β = −2/ς2. However, if
the noise intensity ς depends on the slow variable x, it is hardly possible to
interpret the model system in the context of equilibrium ensembles. Therefore
our later Lemma 3.5 is not satisfactory as its application removes the system
under consideration far away from the mathematical modeling of biological
processes. Thus, the investigations have to be extended to situations where ς
depends on ǫ solely. This will be done in Appendix B.
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3 Basic Results on Fast Process

Let Assumption 2.1 be valid in all of the following. For small noise intensity
ς, the process yǫ corresponding to the Smoluchowski equation (1.2) for fixed
x is almost decomposable into two subprocesses yǫ

(1), yǫ
(2), each attracted to a

minimum m(i)(x), i = 1, 2 of the function V (x, ·).
Thus, we consider the fast motion yǫ

x(t) for fixed slow variables x ∈ Rm:

ẏǫ
x = −1

ǫ
DyV (x, yǫ

x) +
ς√
ǫ

Ẇ2, (3.1)

and distinguish between the two different regions of attraction O
(1)
x and O

(2)
x

where O
(i)
x is an open subset of B

(i)
x with m(i)(x) in its interior. The subsets

B
(1)
x and B

(2)
x are defined by the potential energy barrier:

B(1)
x = {y ∈ R : y < y0(x)}, and B(2)

x = {y : y > y0(x)}, (3.2)

with y0(x) = 0 denoting the saddle point of the potential V (x, ·).
In the limit of small noise level ς, Theorem 3.1 below will provide us for

small ς with an approximation of the fast dynamics (3.1) restricted to a single
metastable set by a simple Ornstein-Uhlenbeck (OU) process mimicking the
rapid mixing in each of these subsets prior to exiting. There is no information
in these stationary limits about the possible jumps from the branch y =
m(1)(x) to the branch y = m(2)(x), or conversely. To address the question of
the overall behaviour of the stationary state, we will consider in Theorem 3.3
and Corollary 3.4 below the new discrete-space process on {m(1)(x), m(2)(x)}
assigning information about the inter-well dynamics.

3.1 Approximation of Intra-well Dynamics

For vanishing noise intensity ς, in each of the subsets O
(i)
x the fast diffusion will

consist of small fluctuations around the potential minima m(1)(x) and m(2)(x),
respectively. The drift term in (1.2) can now be expanded in a Taylor series
with respect to y. Taylor-expansion of DyV (x, ·) around m(i)(x), i = 1, 2 gives

DyV (x, y) = DyyV (x, m(i)(x)) (y −m(i)(x)) +O(|y −m(i)(x)|2), (3.3)

where we have used DyV (x, m(i)(x)) = 0. For y sufficiently close to m(i)(x),
this provides us with an approximation of the SDE (3.1):

ẏǫ
OU(i) = −1

ǫ
ω(i)(x) (yǫ

OU(i) −m(i)(x)) +
ς√
ǫ

Ẇ2, (3.4)

with ω(i)(x), i = 1, 2 denoting the curvature of V (x, ·) in m(i)(x), see Assump-
tion 2.1. The solution of the stochastic differential equation (3.4) is known as
a process of Ornstein-Uhlenbeck type, or OU process for short. To distinguish



Conditional Averaging Revisited 655

it from the ’decoupled’ processes yǫ
(i) ∈ O

(i)
x , i = 1, 2 that originate from (3.1)

we denote it yǫ
OU(i) for i = 1, 2. We omit the index for the fixed variable x.

The quality of the approximation will depend on how close the original
motion stays in the vicinity of the minima m(i)(x), i = 1, 2. This can be made
more precise by applying the small noise expansion method for stochastic
differential equations. The basic assumption of asymptotically expanding the
solution process yǫ

(i) for i = 1, 2 into powers of the noise intensity ς leads to

a reduction of the equation (3.1) into a sequence of time-dependent OU pro-
cesses. Mostly the first order is quite adequate and amounts to a linearisation
of the original equation about the deterministic solution. The reader may refer
to [Gar85], where it is shown that the procedure yields a convergent power
series of ς. Tailored to the approach (3.4), the procedure yields a power series

yǫ
x = yǫ

OU(i) + ς2 R(ς),

where the remainder R(ς, t) is the solution of an SDE and stochastically con-
verges to r(0, t). That is, it exists a limiting SDE with solution R(0, t) such
that for all T ∈ R+

st- lim
ς→0

{ sup
t∈[0,T ]

|R(ς, t)−R(0, t)|} = 0,

where st- limn→∞ ξn = ξ denotes limn→∞ P{|ξn− ξ| ≥ δ} = 0 for every δ > 0
and a sequence {ξn} of random variables.

Theorem 3.1 ( [Gar85, Chapters 6.2, 4.3.7]). Let yǫ
x be given by the

SDE (3.1) where ǫ and x are chosen arbitrary but fixed. Suppose that the

process starts for some i = 1, 2 in an open subset O
(i)
x of B

(i)
x containing

m(i)(x) in its interior, and let yǫ
OU(i) be the solution of (3.4). Then we have

for all T ∈ R+

|yǫ
x(t) − yǫ

OU(i)(t)| = O(ς2),

where O is understood as being satisfied with respect to stochastic convergence
uniformly in t ∈ [0, T ] (as ς → 0).

Remark 3.2. As the OU process (3.4) is ergodic, the stationary density µ
OU(i)
x

is simply given by the Gaussian with mean m(i)(x) and variance ς2/(2ω(i)(x)).

Aiming at a comparison of µ
OU(i)
x and µ

(i)
x , as defined by (1.8) and (1.4), it is

shown in [Wal05] that

lim
ς→0

(µOU(i)
x − µ(i)

x ) = 0 in L1(R).

Note that we do not get convergence in L∞.
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3.2 Asymptotics of Inter-well Dynamics

To give a picture of the essential dynamics in the fast state space, we con-
sider the statistics of the exit times from the metastable sets and approxi-
mate the transition events of the diffusion by jump times of an associated
continuous-time, finite state-space Markov chain (the double-well potential
implies a two-state Markov chain). In principle, one can compute the exit
times via direct numerical simulation. The approximated exit times can then
be used to construct a transition rate matrix Q that generates stochastic
matrices exp(tQ) for all times t > 0. However, the computational effort of
estimating the expected exit times can be avoided by resorting to the rich
literature on the derivation of asymptotic formula for the jump times that
are strongly connected to the dominant spectrum of the corresponding gen-
erator, see e.g. [Pav02, BGK02, BE*02, HKN04]. Whereas the first papers
only gave the asymptotic behaviour of the logarithm of expected exit times
(cf. Theorem 1.1), in [Pav02, BGK02, BE*02] one also finds estimates for the
prefactor.

For small noise intensity ς, transitions between the potential wells occur
at Kramers’ time that is given up to exponential order by exp((2/ς2)∆V ),
where ∆V is the potential barrier that the process must cross to reach the
other potential well. The first exit time of the Markov process yǫ

x(t) from D
started at yǫ

x(0) = y as defined in (1.5) measures only exits that happen for
some non-null time interval and depends on the realization of the Markov
process.

We are interested in the transition times between the metastable subsets
B

(1)
x and B

(2)
x . If the noise intensity does not vanish, they are not identical

to the exit times τ ǫ

B
(i)
x

, i = 1, 2. Instead we have to modify the metastable

subsets slightly such that a (small) neighbourhood around the saddle point is

included, i.e., we consider B
(1)
x + δ = (−∞, δ) and B

(2)
x − δ = (−δ,∞) instead

with δ > 0 being a small parameter. Recall that O
(i)
x ⊂ B

(i)
x , i = 1, 2 are some

regions of attraction (excluding a neighbourhood around the saddle point and

including the potential minima, that is, m(i)(x) ∈ O
(i)
x for i = 1, 2). Then, the

first exit times from B
(1)
x + δ and B

(2)
x − δ are basically independent for all

starting points y ∈ O
(1)
x and y ∈ O

(2)
x , respectively. This enables us to assign

the expected exit times from B
(1)
x + δ and B

(2)
x − δ to the entire subsets O

(1)
x

and O
(2)
x rather than to single points.

In the next theorem, we denote the expected transition times from B
(i)
x to

B
(j)
x with i �= j by T ǫ

i→j(x), i = 1, 2.

Theorem 3.3 ( [Pav02, BGK02]). The metastable inter-well transitions of
the dynamics (3.1) are given by the following precise asymptotic estimates4

as ς → 0:

4 We emphasize again that in the following we will speak of (metastable) transition

times between B
(1)
x and B

(2)
x or metastable exit times instead of exit times from
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T ǫ
1→2(x) = E

y∈O
(1)
x

[τ ǫ

B
(1)
x +δ

] ≃ ǫ
2π

√

ω(1)(x)ω0(x)
exp

( 2

ς2
V

(1)
bar (x)

)

, (3.5)

T ǫ
2→1(x) = E

y∈O
(2)
x

[τ ǫ

B
(2)
x −δ

] ≃ ǫ
2π

√

ω(2)(x)ω0(x)
exp

( 2

ς2
V

(2)
bar (x)

)

, (3.6)

where V
(1)
bar (x) = V (x, y0)−V (x, m(1)(x)) and V

(2)
bar (x) = V (x, y0)−V (x, m(2)(x))

denote the left and right potential barriers.

In [Pav02] the result is obtained in terms of the largest eigenvalue �= 0 of
the associated infinitesimal generator, which corresponds (apart from suitable
weights) to the inverse of the expected diffusion exit times. The connection
will be discussed in the next corollary.

Our goal is to build a two-state Markov chain and view inter-well tran-
sitions of the diffusion as simple jumps of this chain. Correspondence be-
tween the diffusion and the chain will be established by exploiting that exit
times are asymptotically almost exponential random variables which is shown
in [SH02, HMS02]. Relying on this fact, we define the jump rates for the reduc-
ing Markov-chain as the reciprocal of the expected exit times T ǫ

i→j(x), i �= j,
which provides us with the rate matrix Qǫ

x being defined by

Qǫ
x :=

(

−1/T ǫ
1→2(x) 1/T ǫ

1→2(x)
1/T ǫ

2→1(x) −1/T ǫ
2→1(x)

)

, Qǫ
x

(

1
1

)

= 0. (3.7)

The following corollary shows that the invariant density of the reducing
Markov chain is asymptotically given by the weights over the potential wells.

Corollary 3.4. Let us denote the (assumed positive and unique) invariant
density of Qǫ

x by ψ(x) = (ψ1(x), ψ2(x)), that is,

ψ(x)Qǫ
x = 0 with ψ1(x) + ψ2(x) = 1.

Then we find that ψ(x) is given asymptotically as ς → 0 by (µx(B
(1)
x ), µx(B

(2)
x )),

explicitly,

ψi(x) ≃ µx(B(i)
x ), i = 1, 2. (3.8)

The rate matrix Qǫ
x can be expressed in terms of the invariant density by

introducing the second eigenvalue λǫ
1(x) of the infinitesimal generator that

corresponds to the diffusion (3.1). In so doing, we asymptotically obtain

T ǫ
1→2(x) ≃ 1

|λǫ
1(x)|µx(B

(2)
x )

and T ǫ
2→1(x) ≃ 1

|λǫ
1(x)|µx(B

(1)
x )

,

and, conclusively,

B
(i)
x , i = 1, 2, for the asymptotic estimates are given for the mean values of the

first exit times from B
(1)
x + δ and B

(2)
x − δ with δ > 0, where the precise choice of

the parameter δ is not important.
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Qǫ
x ≃ |λǫ(x)|

(

−µx(B
(2)
x ) µx(B

(2)
x )

µx(B
(1)
x ) −µx(B

(1)
x )

)

. (3.9)

Proof. To establish (3.8), we simply have to verify

µx(B
(1)
x )

µx(B
(2)
x )

≃ T ǫ
1→2(x)

T ǫ
2→1(x)

. (3.10)

To this end, we may apply Laplace’s method of asymptotic evaluation of
integrals depending on the parameter ς. According to Laplace , we easily get
the asymptotic estimates in the small noise limit

µx(B
(1)
x )

µx(B
(2)
x )

= (3.11)

√

ω(2)(x)

ω(1)(x)
exp

(

− 2

ς2

(

V (x, m(1)(x)) − V (x, m(2)(x))
)

)

(

1 +O(ς)
)

,

and, by using V (x, m(1)(x))− V (x, m(2)(x)) = −(V
(1)
bar (x)− V

(2)
bar (x)) together

with (3.5)&(3.6), we end up with (3.10). The informations about the behaviour
of λǫ

1(x) are again based on the results of Pavlyukevich in [Pav02] who
derived the asymptotic formula of λǫ

1(x) in the small noise limit by expanding
λǫ

1 into a power series. For asymmetric double-well potential this gives the
accurate asymptotics for λǫ

1(x) in terms of quantities concerning the shallow
well of the potential:

|λǫ
1(x)| = 1

ǫ

√

ω(1)(x)ω0(x)

2π
exp

(

− 2

ς2
V

(1)
bar (x)

) (

1 +O(ς)
)

,

where we assume without loss of generality

V
(1)
bar (x) = min{V (1)

bar (x), V
(2)
bar (x)}.

This result has been derived for asymmetric double-well potentials, such that

the weight on the deep well is approximately 1, that is, µx(B
(2)
x ) ≈ 1. This

obviously is fulfilled for small values of ς due to µx(B
(2)
x ) → 1 as ς → 0.

However, to include the case of symmetric double-well potentials (then we

have µx(B
(2)
x ) = µx(B

(1)
x ) = 0.5) we prefer to rewrite the asymptotics of λǫ

1

according to

|λǫ
1(x)|µx(B(2)

x ) =
1

ǫ

√

ω(1)(x)ω0(x)

2π
exp

(

− 2

ς2
V

(1)
bar (x)

) (

1 +O(ς)
)

,(3.12)

which allows us due to (3.5) to express the transition rate 1 → 2 asymp-

totically by |λǫ
1|µx(B

(2)
x ). Using the asymptotic estimates (3.11) and (3.12)
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provides us with an alternative formulation for the asymptotics of λǫ
1(x) by

using the curvature in the deep well (and the weight over the shallow well):

|λǫ
1(x)|µx(B(1)

x ) =
1

ǫ

√

ω(2)(x)ω0(x)

2π
exp

(

− 2

ς2
V

(2)
bar (x)

) (

1 +O(ς)
)

.

3.3 Freezing Metastable Transitions

We complete the analysis of the fast process (3.1) with establishing a rela-
tionship between the smallness parameter ǫ and the noise level ς such that
the scaling assumption (1.6) is fulfilled. According to Theorem 3.3 this can
explicitly be realized only if exp(−(2/ς2)∆V ) scales like ǫ. Here, ∆V denotes

the barrier that has to be crossed, that is, ∆V = V
(1)
bar (x) or ∆V = V

(2)
bar (x).

A natural way of realizing (1.6) was to rescale the potential energy barrier in
an appropriate manner (see [Wal05]).

However, due to the asymptotic investigations in Theorem 3.3 we leave the
potential untouched and rescale the diffusion ς instead. An easy calculation
leads to the following lemma.

Lemma 3.5. To freeze the metastable transition times on a time scale t ≥
ord(1) for every x as ǫ → 0 it is convenient to set

ς = ς(ǫ, x) =

(

2 min{V (i)
bar(x) | i = 1, 2}
ln(K/ǫ)

)1/2

, K > 0. (3.13)

Remark 3.6. In Lemma 3.5 we actually have to use the minimum of the two

barriers V
(1)
bar , V

(2)
bar : Replacing min{V (i)

bar(x)} by V
(2)
bar = (1 + δ)V

(1)
bar for δ >

0 would lead to T ǫ
1→2 = ord(ǫδ). According to Corollary 3.4, the need for

using the minimal barrier is equally expressed by demanding that the second
eigenvalue λǫ

1(x) asymptotically is part of the dominant spectrum.

As outlined in Sect. 2, it is of considerable interest to study how to avoid
coupling of the diffusion ς to x and still obtain large time conformational
changes in the asymptotic limit ǫ → 0. Based upon Lemma 3.5, the fol-
lowing considerations will lead to meaningful conclusions (a short descrip-
tion is given in Appendix B) that are strongly connected to results obtained
by the approach via multiscale asymptotics with disparate transition scales
(see [Wal05, Chapter 3]): Depending on the noise intensity σ in the slow vari-
able dynamics (1.1), the x trajectory will stay with overwhelming probability
in a bounded domain D(σ) of its state space5; if we choose V small

bar according
to the rule

5 Note that σ is not related to ς, and we do not demand for small values of σ.
However, it should be clear that a choice of V small

bar could depend on the actual
size of σ. This becomes more clear by considering Figures 6.5 and B.1. Therefore,
we write D = D(σ) for the bounded region.
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V small
bar = min{V (i)

bar(x) |x ∈ D(σ), i = 1, 2},

and set

ς(ǫ) =

(

2V small
bar

ln(K/ǫ)

)1/2

, K > 0, (3.14)

we expect the metastable transitions to happen on a time scale t ≥ ord(1). If
the potential energy barriers outside the domain D(σ) are smaller than V small

bar ,
the particle will for very small ǫ instantly jump over the barrier once it has
reached the complement of D(σ). Then, the time of the metastable transitions
will be somehow connected to the expected exit time of the x dynamics from
D(σ). The above idea is justified by rigorously examining the asymptotics of
the metastable transition times considered in the entire state space. Tailored
to exemplary situations we outline the procedure in Appendix B.

4 Derivation of Reduced Dynamics

We return to the dynamics (1.1)&(1.2) and use the results of the preceding
section for the design of a small noise approximation of the original process.
The approximated system is then used in Theorem 4.1 as the basic system for
the application of standard averaging theorems resulting in the reduced slow
variable dynamics.

Small Noise Approximation

In all of the following let (xǫ, yǫ) be the solution of the SDE (1.1)&(1.2).

Exact jump process.

As a first step let us introduce the process Î that describes the jumps between
the metastable sets in y-direction as given by the original dynamics:

Î(t) = 1 + 1
B

(2)

xǫ(t)

(yǫ(t)). (4.1)

With this defined, let us denote by (x̂ǫ
OU, ŷǫ

OU) the random process determined
by

ẋ = −DxV (x, y) + σẆ1 (4.2)

ẏ = −1

ǫ
ω(Î(t))(x)

(

y −m(Î(t))(x)
)

+
ς√
ǫ
Ẇ2, (4.3)

Now, suppose that the initial points are chosen such that (xǫ(0), yǫ(0)) =
(x̂ǫ

OU(0), ŷǫ
OU(0)) = (x, y).
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According to Theorem 3.1 we obtain for any x, y, T > 0 and ǫ > 0 that the
process (xǫ(t), yǫ(t)), t ∈ [0, T ] of the original dynamics and the random
process (x̂ǫ

OU(t), ŷǫ
OU(t)) get arbitrarily close to each other for ς → 0.

However, we will not concentrate on the rigorous mathematical justifica-
tion of this result, mainly for reasons given in the next paragraph.

Approximate jump process.

This result may be very nice. However, it has the crucial disadvantage that
we will never have the process Î without knowing the actual solution of the
original process. Therefore, we replace the jump process Î by its approximate
version I as constructed above. Obviously, this will prevent us from being
able to construct any kind of pathwise convergence. However, it will finally
allow to construct an approximate dynamics that is explicit in the sense that
it does not depend on any knowledge about the original process. To this end,
we denote by (xǫ

OU, yǫ
OU) the random process determined by

ẋ = −DxV (x, y) + σẆ1 (4.4)

ẏ = −1

ǫ
ω(I(t,x))(x)

(

y −m(I(t,x))(x)
)

+
ς√
ǫ
Ẇ2, (4.5)

with I(t, x) ∈ S = {1, 2} denoting the x-dependent Markov chain model whose
transition rate matrix Qǫ

x = (qij)i,j is given by its entries

q11(x) = −q12(x), q22(x) = −q21(x),

q12(x) =
1

ǫ

√

ω(1)(x)ω0(x)

2π
exp(− 2

ς2
V

(1)
bar (x)), (4.6)

q21(x) =
1

ǫ

√

ω(2)(x)ω0(x)

2π
exp(− 2

ς2
V

(2)
bar (x)).

Again, suppose that the initial points are chosen such that (xǫ(0), yǫ(0)) =
(xǫ

OU(0), yǫ
OU(0)) = (x, y) and I(t = 0, x) = i for (x, y) ∈ B(i).

According to Theorems 3.1 and 3.3 and Corollary 3.4 we can expect for
any x, y, T > 0 and ǫ > 0 to obtain a good approximation of (xǫ(t), yǫ(t)), t ∈
[0, T ] by the random process (xǫ

OU(t), yǫ
OU(t)) whenever the noise level ς in

the fast equation is small enough.
We will call the dynamics (4.4)&(4.5) in the following small noise approxima-
tion or OU approximated dynamics.

Averaging

In Theorem 4.1 we finally arrive at the reduced slow variable system by apply-
ing standard averaging theorems to the small noise approximation (4.4)&(4.5)
where the transition rates of the jump process I(t, x) are given by (4.6).
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Theorem 4.1 ( [FW84, Chapter 7]). Let (xǫ
OU, yǫ

OU) be given by (4.4)&(4.5)
and denote by x0(t) the solution of the differential equation

ẋ = −
∫

DxV (x, y)µOU(I(t,x))
x (y) dy + σ Ẇ1, (4.7)

where µ
OU(i)
x is the (unique) invariant density of the process defined by (3.4)

for fixed x. Then for any T > 0 and ς > 0 we have

st- lim
ǫ→0
{ sup

t∈[0,T ]

|xǫ
OU(t)− x0(t)|} = 0.

Subsequently, we refer to the slow variable dynamics (4.7) as the OU averaged
dynamics. In Appendix A we use multiscale asymptotics of the corresponding
Fokker-Planck equation to derive the OU averaged dynamics from the small
noise approximation.

5 Comparison to Conditional Averaging

To complete the discussion and re-establish reference to the conditionally aver-
aged system (1.7) we finally examine its closeness to the OU averaged dynam-
ics (4.7). In so doing, we basically compare the behaviour in the asymptotic
limit ς → 0 of

1. the drift term in (4.7) and (1.7) for fixed Ĩ(t, x) = I(t, x) = i;
2. the corresponding transition chains Ĩ and I that control the switches

between i = 1 and i = 2.

First, let us consider the transition chain Ĩ(t, x) of the conditionally aver-
aged system (1.7) as given in [SW*03]. There, the transition rates of the jump
process Ĩ are defined by the rate matrix

Q̃x = |λǫ
1(x)|

(

−µx(B
(2)
x ) µx(B

(2)
x )

µx(B
(1)
x ) −µx(B

(1)
x )

)

, (5.1)

where λǫ
1(x) is the second eigenvalue of the infinitesimal generator of the dif-

fusion (1.2) that is assumed to be of order ord(1). We compare the entries
in (5.1) to the transition rates qij of the jump process I(t, x) corresponding to
the OU averaged dynamics that are defined in (4.6). Exploiting the asymptotic
results of Corollary 3.4 and under a certain additional assumption, the tran-
sitions rates qij are asymptotically equal to the rates of Q̃x. The additional
assumption that has to be fulfilled concerns the metastable decomposition as
derived by applying conditional averaging: In [SW*03], the limit dynamics are
derived by projecting the ensemble dynamics of the original system onto the
subspace spanned by the dominant spectrum of the infinitesimal generator Lx

of (1.2). Then, the metastable decomposition B
(1)
x and B

(2)
x will be defined in
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Fig. 5.1. Asymmetric double-well potential. Any decomposition defined by a point
z∗ that is situated between the dashed lines leads to asymptotically wrong results if
the decomposition is used for the conditionally averaged dynamics.

terms of the second eigenfunction u1(x, ·) of Lx and not by the saddle point
of the potential V (x, ·) as is done in (3.2). Thus, for the definition of Q̃ we
have to use

B(1)
x = {y : u1(x, y) < 0} and B(2)

x = {y : u1(x, y) > 0},

where we can assume that B
(1)
x is the left subset. It should be clear that the

zero z of u1(x, ·) must be somewhere between the two potential minima m(1)

and m(2), and in fact, it is only a small step from using results in [Pav02]
to show that z asymptotically (as ς → 0) approaches the saddle point y0(x),
cf. [Wal05]. The attentive reader may convince himself that it the result is
of crucial importance, as other choices of the zero z between the potential
minima may lead to fatal approximation errors (not only for the transition
rates but also for the drift term), compare illustration in Fig. 5.1.

Having obtained the asymptotic equality as ς → 0 of the jump rates of
Ĩ and I, we still have to compare the drift terms in (4.7) and (1.7) for fixed
Ĩ(t, x) = I(t, x) = i. The terms vary for fixed x in the probability density that
is used to obtain the averaged force on the slow variable x. We apply standard
Laplacian asymptotics in the limit of vanishing noise ς → 0, which provides
us for i = 1, 2 with the precise estimates

∫

DxV (x, y)µOU(i)
x (y) dy = DxV (x, m(i)(x))

(

1 +O(ς)
)

, (5.2)

∫

DxV (x, y)µ(i)
x (y) dy = DxV (x, m(i)(x))

(

1 +O(ς)
)

,

where the derivative DxV (x, m(i)(x)) is taken wrt. the first component solely.
Conclusively, let us suppose that ς = ς(ǫ) is coupled to ǫ by using (3.14).

Replacing ς by ς(ǫ) in the fast equation (1.2) of the original process will lead
to a time scale separation of the fast dynamics in y and the metastable transi-
tions between the potential wells. Then, application of the ordinary averaging
procedure will destroy the information about slow mixing between the two
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Fig. 6.1. Full potential V .

branches and the result becomes inappropriate to render the effective dynam-
ics. By contrast, application of Theorem 4.1 does not require to fix ς: Even
if ς = ς(ǫ) due to (3.14), the reduced model (4.7) will represent the effective
dynamics of (4.4)&(4.5). We get this result because the averaging procedure
does not affect the Markov chain I(t, x) that stores the distributional infor-
mation of the metastable transitions. Therefore, by examining the averaged
system (4.7) as ς → 0, we will obtain the differential equation

ẋ = DxV (x, m(I(t,x))(x)) + σ Ẇ ,

that is considered as the final limit SDE of the original process (1.1)&(1.2)
with ς = ς(ǫ) given by (3.14) as ǫ → 0.

6 Numerical Experiments

In this section we illustrate the results from the preceding section by numerical
experiments with an appropriate test example.

We consider the Smoluchowski equation (1.1)&(1.2) where the potential
for the numerical analysis is given by:

V (x, y) = 2.5 (y2 − 1)2 − 0.8 x y3 + 0.005 x4 + 1.6, (6.1)
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(2)
bar (x) (dashed line).



Conditional Averaging Revisited 665

0 500 1000 1500 2000
−4

−3

−2

−1

0

1

2

3

4

t

x
ε
(t

) 
w

it
h
 ε

=
0
.0

0
6
4
,

ς
=

0
.7

5
,

σ
=

1

0 500 1000 1500 2000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

y
ε
(t

) 
w

it
h
 ε

=
0
.0

0
6
4
,

ς
=

0
.7

5
,

σ
=

1

Fig. 6.3. Typical realization of the original dynamics for σ = 1.0, ς = 0.75 and
ǫ = 0.0064. Left: trajectories x coordinate; right: trajectories y coordinate.

which clearly satisfies Assumption 2.1. The potential energy surface is shown
in Fig. 6.1. At the left hand side of Fig. 6.2 we illustrate the double-well
potentials V (x, ·) for different values of x. The saddle point always is y0(x) = 0
and takes the value V (x, 0) = 4.1 + 0.005 x4, the potential minima are

m(i)(x) = 0.12 x + (−1)i
√

0.0576 x2 + 4, i = 1, 2.

The right side of Fig. 6.2 shows the potential barriers V
(1)
bar (x) (the left barrier)

and V
(2)
bar (x) (the right barrier) as functions of x.

In Fig. 6.3 we show a typical realization of the dynamics (1.1)&(1.2) with
σ = 1.0, ς = 0.75 and ǫ = 0.0064. For the generation of the trajectories we
use the Euler-Maryuana scheme with internal time step dt = ǫ/100. We
clearly observe that jumps between the metastable decomposition B(1) =
{(x, y) | y < 0} and B(2) = {(x, y) | y > 0} induce metastable transitions
in the x dynamics between x < 0 and x > 0. Comparison with the averaged
trajectory in Fig. 6.4 reveals inappropriateness of the standard averaging pro-
cedure (1.3). In Fig. 6.4 right we illustrate the averaged potential V (known as
Fixman potential or conformational free energy landscape)that is associated
with the realization at the left:
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Fig. 6.4. Left: Typical realization of the simply averaged dynamics (1.3) for σ =
1.0, ς = 0.75. Right: Fixman potential that corresponds to the trajectory at the left.
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V (ς, x) = − ς2

2
ln

∫

exp
(

− 2

ς2
V (x, y)

)

dy.

Using standard Laplace asymptotics provides us with the potential in the limit
ς → 0 of vanishing fast diffusion

V (x) = min
{

V
(

x, m(1)(x)
)

, V
(

x, m(1)(x)
)}

.

In Fig. 6.4 we additionally plotted V (x), which graphically is completely iden-
tical to V (ς = 0.75, x).

Fig. 6.3&6.4 explicitly visualize the simply averaged dynamics to be inap-
propriate to render the effective dynamical behaviour of xǫ(t) as ǫ → 0. For
small ǫ diffusion in y is very fast compared to diffusion in x. However, the im-
portant (and only) barriers of the potential are barriers in y direction. Thus,
for fixed ǫ, decreasing the noise intensity ς in the fast equation increases the
metastability in y. Consequently, by choosing different ς one can analyze the
effect of increasing metastability on averaging. To this end, it is convenient
to use the x averaged values of the expected transition rates 1/T ǫ

i→j(x). As
detailed in Appendix B this provides us in the asymptotic limit ς → 0 with
the expected transition times T ǫ

1→2 between the metastable decomposition
B(1) ∪B(2) in the (x, y) state space.

We generated N = 2000 realizations of the original dynamics for ǫ =
0.0064, σ = 1.0 and ς = 0.75, 0.7, 0.65, 0.60, and waited for the first exit times
from B(1). The top row in Fig. 6.5 illustrates the location of the trajectories
x-coordinate right before the transitions occured; the pictures at the bottom
display the function under the integral in (B.4) (normalized to 1) and nicely
illustrate that the major contribution to the integral in (B.4) will move right-

wards as ς → 0, for V
(1)
bar (x) → 0 as x → ∞. Comparison of the upper and
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Fig. 6.5. Top: Transition location (from B(1) to B(2)) of the trajectories x-
coordinate computed by means of N = 2000 realizations of the conditionally av-
eraged dynamics for σ = 1.0, ǫ = 0.0064 fixed and ς = 0.75, 0.7, 0.65, 0.6. Bottom:
Function under the integral in (B.4) normalized to 1 by using the same parameters
as above.
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Table 6.1. Expectation values of transition times from B(1) to B(2) corresponding
to Fig. 6.5. The values for T

ǫ

1→2 are obtained by using (B.2) or (B.4).

Mean transition times ς = 0.75 ς = 0.7 ς = 0.65 ς = 0.60

mean value from 2000 real. 213 462 1240 4285

averaged value T
ǫ

1→2 119 323 1037 4157

the lower pictures reveals almost coincidence between the contribution to the
integral in (B.4) and the actual location in the x space of the jumps from B(1)

to B(2). Finally, we compare in Table 6.1 the averaged values of the tran-
sition times to the numerically obtained values by means of the N = 2000
realizations. We observe that ς has to be chosen small to get closeness.

Discretization

The pathwise simulation of the dynamics consisting of the two state Markov
jump process I(t, x) is developed by using a specific stochastic particle method
( [HSS01]). To this end, recall the infinitesimal generatorQǫ

x = (qǫ
ij(x))i,j that

allows to calculate the hopping probabilities between the states S = {1, 2}.
The transition matrix P ǫ

τ (x) = (pǫ
ij(τ, x)) at time τ is then obtained by

P ǫ
τ (x) = exp(τQǫ

x).

A straightforward calculation reveals

pǫ
12(τ, x) =

qǫ
12(x)

qǫ
12(x) + qǫ

21(x)
(1− e−τ(qǫ

12(x)+qǫ

21(x))), (6.2)

pǫ
21(τ, x) =

qǫ
21(x)

qǫ
12(x) + qǫ

21(x)
(1− e−τ(qǫ

12(x)+qǫ

21(x))). (6.3)

The entries of Qǫ
x are given in (4.6) by the inverse of the precise estimates of

the expected transition times over the potential energy barrier in y direction.
The stochastic particle method requires two steps. We shortly demonstrate

it for the OU averaged dynamics (4.7).

Step 1: Transport. The first step consists of determining an updated position
x(t + dt) by solving

ẋ = −
∫

DxV (x, y)µOU(i)
x (y) dy + σẆ1,

over [0, dt] with initial point x(t).

Step 2: Exchange. The second step models the exchange between the states
I(t, x) = 1 and I(t, x) = 2. Thus, if i = 1, we set i = 2 with hopping
probability p1→2 = pǫ

12(dt, x(t + dt)) and remain at i = 1 with probability
1 − p1→2. Vice versa, if i = 2, we set i = 1 with hopping probability p2→1 =
pǫ
21(dt, x(t + dt)) and remain at i = 2 with probability 1 − p2→1. Return to

step 1 by setting x(t) = x(t + dt).
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Parameter Choice

Subsequently, we choose the noise intensity in the slow equation σ = 1 and the
smallness parameter is ǫ = 0.0064. Trajectories are illustrated with ς = 0.75,
whereas for comparison of exit times we use different values of ς.

Recalling coupling ς to ǫ according to (3.14), some words seem to be neces-
sary concerning the comparison of the full dynamics to the OU approximated
ones: Without loss of generality we can choose ς arbitrary without considering
the coupling, for the experiments are performed for a fixed value of ǫ. There-
fore, for fixed ǫ = ǫ∗ and fixed ς = ς∗ we can always find a constant K = K∗

(or a barrier V small
bar = V small∗

bar ) such that ς(ǫ∗) = ς∗ under (3.14). Even if we
take (3.13) as the basis of our computation, we can desist from the coupling
rule, for the constant K then can be chosen dependent of x, such that we
still arrive at ς(ǫ∗, x) = ς∗. Actually, the postulation of relating ς to ǫ only
serves as a formal justification of the OU approximation. For the numerical
implementation only the size of ς by its own is of importance, not its relation
to ǫ.

The motivation to choose σ = 1.0 and not σ = ς can be infered from
Fig. 6.5. In case of smaller values of σ, say σ = 0.75, the x-coordinate of
the trajectory will hardly reach the region where the jumps mostly happen.
Then we had to choose ς larger, which on its part would result in a worse
approximation of the intra-well fast dynamics. We will come back to this
problem below.

6.1 Comparison Between Original Dynamics and Small Noise
Approximation

Here, we carry out numerical studies in order to compare the Smoluchowski
dynamics (1.1)&(1.2) with those governed by system (4.4)&(4.5) with fast
OU processes and transition chain I(t, x) that controls the switches between
the two OU processes.

Typical realizations of both the original dynamics and the OU approxi-
mated ones are shown in Fig. 6.6. The trajectories have been generated using
the Euler-Maruyama scheme with time step dt = ǫ/100 for both systems. Ap-
parently, the transition rates between B(1) and B(2) coincide to some extend
and the oscillating motion (around the potential minima in y) inbetween the
transitions seems to be well approximated by using OU processes in the fast
equation. We clearly observe that jumps induce metastable transitions in the
x dynamics between x < 0 and x > 0. However, for the trajectories being in
B(1) we observe that the x-coordinate of the original dynamics spreads con-
siderably further rightwards than the x trajectory of the OU approximated
system (and for the trajectories in B(2) the original dynamics x-coordinate
spreads further leftwards).

The above observation suggests that the original dynamics have noticeable
smaller transition times between B(1) and B(2), as the original dynamics more
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Fig. 6.6. Typical realization of the original dynamics (top) and the approximated
dynamics with fast OU processes (bottom). At the left we see the x, at the right
the y coordinate. The realizations have been computed for the same realization of
the white noise (in the slow and in the fast equation).

often reaches a domain where the potential barriers (in y direction) are small.
This is confirmed by Table 6.2, where we computed the expected transition
times from B(1) to B(2) by means of N = 2000 realizations for two different
values of ς and σ = 1.0, ǫ = 0.0064 fixed. We come back to this problem in
the next section where we include the averaged dynamics into the numerical
examinations. Actually, it will turn out that ς has to be chosen very small to
get perfect coincidence of both the original and the OU approximated system.

6.2 Results Including Averaged Dynamics

We now demonstrate pre-eminence of the OU averaged dynamics (4.7). To
complete the representation we include the conditionally averaged dynam-
ics (1.7).

In Fig. 6.7 we compare realizations of the averaged to the full dynamics’ x-
coordinate. Every trajectory has been computed with the same realization of
white noise Ẇ1, Ẇ2, such that the internal time step has been set to dt = ǫ/100

Table 6.2. Exit times from the set B(1) for the original dynamics and the OU
approximated system.

dynamical model ς = 0.8 ς = 0.75

original dynamics 113 210

OU approximated dynamics 136 265
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Fig. 6.7. Realizations of the original dynamics x coordinate (top, left), the x co-
ordinate of the (full) OU approximated dynamics (top, right), the OU averaged
dynamics (bottom, right), and the conditionally averaged system (bottom, left).

even for the averaged dynamics. The Markov jump process I(t, x) is realized
by using the same realization of random numbers for every concerned system.
Concerning the systems with OU processes (full and OU averaged), we observe
pathwise convergence of the x trajectories, whereas comparison of the orig-
inal dynamics with the conditionally averaged system reveals distributional
coincidence.

In order to present numbers instead of pictures we want to compute the
expectation values of the metastable transition times from x < 0 to x >
0 for different values of ς. It is natural to expect that this is realized by
computing the first exit times from the set S + δ with S = {x ∈ R |x < 0},
where δ > 0 has to be large enough to guarantee that the process effectively
reaches some (small) region of attraction in the complement of S. But Fig. 6.5
nicely shows that the x-coordinate can spread far into the positive region even
when it is restricted to the metastable set S. Thus, we suggest to define the
stopping time as the first exit from B(1) instead, respectively the first jump
from I(t, x) = 1 to I(t, x) = 2. At least for ς ≤ 7.5 (compare Fig. 6.6) this is
equivalent to the metastable transitions from x < 0 to x > 0. From N = 2000
realizations for ǫ = 0.0064 and σ = 1.0 we get a very good agreement between
the OU approximated dynamics and the OU averaged dynamics, and a good
agreement between the original and the conditionally averaged dynamics.

However, there still remains the problem of difference between the OU av-
eraged and the conditionally averaged dynamics. To overcome the problem, we
illustrate in Fig. 6.8 the potentials that correspond to the respective trajecto-
ries for ς = 0.75, 0.60, 0.3. For I(t, x) = i ∈ {1, 2} and ς fixed, the conditionally

averaged potential V
(i)

(ς, x) and the OU averaged potential V
OU(i)

(ς, x) are
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Table 6.3. Comparison of exit times from the metastable set S = {x ∈ R | x < 0}.
For ς = 0.65, it was not possible to compute the exit times of the full dynamics’
motion within a reasonable period of time.

dynamical model ς = 0.8 ς = 0.75 ς = 0.65

original dynamics 113 210 −−

conditinally averaged dynamics 105 213 1240

OU approximated dynamics 136 265 −−

OU averaged dynamics 135 265 1537

defined implicitly by

DxV
OU(i)

(ς, x) =

∫

DxV (x, y)µOU(i)
x (y) dy,

DxV
(i)

(ς, x) =

∫

DxV (x, y)µ(i)
x (y) dy,

and we easily show that

V
(i)

(ς, x) = − ς2

2
ln

∫

B
(i)
x

exp
(

− 2

ς2
V (x, y)

)

dy.

Exploiting the estimation method of Laplace we obtain asymptotical identity
of both potentials:

lim
ς→0

V
(i)

(ς, x) = lim
ς→0

V
OU(i)

(ς, x) = V (x, m(i)(x)).

Fig. 6.8 reveals V (i)(ς, x) ≈ V
OU(i)

(ς, x) for ς ≤ 0.3, whereas they differ
visibly for ς ≥ 0.60 mainly in that region where the jumps from i = 1 to i = 2
mostly happen. This perfectly explains the significant difference concerning
the transition times in Tables 6.2&6.3.

A Derivation of Reduced System by Multiscale Analysis

Here, we show how the averaged system (4.7) can be derived from the sys-
tem (4.4)&(4.5) with fast OU processes by using multiscale asymptotics wrt.
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Fig. 6.8. Comparison of conditinally averaged (full line) to OU averaged potentials
(dashed line). From left to right: ς = 0.75, 0.60, 0.3.
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the smallness parameter ǫ. As the method is applied to ensemble instead of
single dynamics we have to set up before the necessary requirements concern-
ing the evolution of probability densities.

Let us extend the fast-slow system with two OU processes to a finite
number of OU processes. Thus, we consider the process (xǫ

OU, yǫ
OU) ∈ Rm×R

that is determined by the following SDE:

ẋ(t) = −DxV (x, y) + σẆ1, (A.1)

ẏ(t) = −1

ǫ
ω(I(t,x))(x)

(

y −m(I(t,x))(x)
)

+
ς(x)√

ǫ
Ẇ2, (A.2)

where I(t, x) is a right-continuous Markov chain on a probability space taking
values in a finite state space S = {1, 2, ..., N} and ω(i)(x) takes values in
R+ for all i ∈ S. The noise intensity of the fast diffusion may depend on
x, but is assumed to be strictly positive, that is ς(x) ≥ c > 0. To simplify
notation we perform the asymptotic procedure without a possible dependence
of ς on the Markov chain I(t, x); a generalization in this direction had no
effect on the computation. The generator Qx = (qij(x))N×N of the switching
chain I(t, x) depends on the slow variable x and contains the transition rates
qij = qij(x) > 0 from i to j if i �= j while

qii(x) = −
∑

i�=j

qij(x). (A.3)

For fixed x ∈ Rm and i ∈ S the diffusion dynamics (A.2) is known as OU

process and consequently ergodic. The (unique) stationary density µ
OU(i)
x is

given by

µOU(i)
x (y) =

1

ς(x)

√

ω(i)(x)

π
exp

(

− ω(i)(x)

(

y −m(i)(x)
)2

ς(x)2

)

, (A.4)

which is a Gaussian with mean m(i)(x) and variance ς(x)2/(2ω(i)(x)), and
thus independent of ǫ.

The evolution of probability densities pǫ ∈ L1(Rm+1 × S) under the dy-
namics given by (A.1)&(A.2) is described by the forward Fokker-Planck equa-
tion. Here, we are working in unweighted function spaces, that is, the density
pǫ gives the physical probability to find the system in state (x, y) at time t.
For later use it may be helpful to slightly change notation for the densities
pǫ: The agreement pǫ

(i)(t, x, y) := pǫ(t, x, y, i) enables us to represent pǫ as an

N -dimensional vector according to pǫ = (pǫ
(1), ..., p

ǫ
(N)) with pǫ

(i) ∈ L1(Rm+1).
Now, the Fokker-Planck equation is regarded on some suitable subspace of
L1(Rm+1 × S), and reads

∂tp
ǫ = Aǫpǫ, Aǫ =

1

ǫ
Ax + Ay + QT , (A.5)
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Ax =













A(1)
x 0 0 0

0 A(2)
x 0 0

0 0
. . . 0

0 0 0 A(N)
x













, Ay =













A(1)
y 0 0 0

0 A(2)
y 0 0

0 0
. . . 0

0 0 0 A(N)
y













where A(i)
x and A(i)

y are given for f ∈ L1(Rm+1) by

A(i)
x f(x, y) =

ς(x)2

2
∆yf(x, y) + Dy

(

ω(i)(x)
(

y −m(i)(x)
)

f(x, y)
)

A(i)
y f(x, y) =

σ2

2
∆xf + Dx

(

DxV (x, y) f(x, y)
)

.

Note that we actually have to use QT in (A.5), for the rate matrix Q is basi-
cally considered to be part of the backward Chapman-Kolmogorov equation,
that is, it describes the evolution of the expectations of functions of the state
of the system. Consequently, the probability to be in state (x, y) is given by

〈pǫ(t, x, y),1〉S =
∑

i∈S

pǫ
(i)(t, x, y),

〈·, ·〉S denoting the Euclidean inner product in RN .
Our aim is to average with respect to the fast variable y and obtain an

averaged equation for the slow variable x alone. To this end, we will use
multiscale analysis.

Projection Operator

We would like to derive an equation for the distribution function in x:

∫

〈pǫ(t, x, y),1〉S dy =
∑

i∈S

∫

pǫ
(i)(t, x, y) dy,

which would be valid in the limit where ǫ becomes very small. To this end, we
introduce the vector pǫ(t, x) = (pǫ

(1), ..., p
ǫ
(N))

T with densities pǫ
(i) ∈ L1(Rm)

defined by

pǫ
(i)(t, x) =

∫

pǫ
(i)(t, x, y) dy.

It is expected that an approximate solution of the full dynamics would be

obtained by multiplying each pǫ
(i)(t, x) by the stationary distribution µ

OU(i)
x of

the SDE (A.2) for fixed I(t, x) = i. We formalize this by defining a projection
operator Π = diag(Π(1), ..., Π(N)) acting on functions f = (f1, ..., fN )T ∈
L1(Rm+1 × S) by

(Πf)(x, y) = diag(µOU(1)
x , ..., µOU(N)

x )

∫

f(x, y) dy.



674 J. Walter, Ch. Schütte

It is obvious that Π projects any function into the subspace of all functions
which can be written in the form

f = (f1, ..., fN)T , fi(x, y) = f i(x)µOU(i)
x (y), (A.6)

where f i is an arbitrary function of L1(Rm), thus f = (f1, ..., fN )T ∈
L1(Rm × S). In the following we study the case where the initial condition
pǫ(t = 0, x, y) can be expressed by

pǫ(t = 0, x, y) = (Πpǫ(t = 0))(x, y).

However, functions f of the form (A.6) are all solutions of

Axf = 0,

that is, the space into which Π projects is the kernel or nullspace of Ax

expressed byAxΠ = 0. Due to the properties ofA(i)
x considered as an operator

acting on functions g in y, that is g = g(y) ∈ L1(R), we furthermore have:

ΠAx = 0 = AxΠ. (A.7)

This is easily seen by introducing the formal adjoint T (i)
x of A(i)

x , i.e., a dif-
ferential operator such that for all u ∈ L1(R), v ∈ L∞ (or u, v ∈ L2(R)) we
have

〈A(i)
x u, v〉L2 = 〈u, T (i)

x v〉L2 , 〈u, v〉L2 :=

∫

u(y) v(y) dy.

If we consider Π(i) – for fixed x – as an operator acting on functions in y, we
can rewrite it by

Π(i)u = 〈u,1〉L2 µOU(i)
x .

Together with the well-known fact that T (i)
x 1 = 0 (see, e.g., [SHD01, Hui01])

we finally get the desired result (A.7).

Multiscale Analysis

We now make the following ansatz for the solution of the Fokker-Planck equa-
tion with the initial conditions described above:

pǫ = p0 + ǫ p1 + ǫ2 p2 + ...

This ansatz is inserted into the Fokker-Planck equation (A.5) and then, by
comparison of coefficients of different powers of ǫ we get:

ǫ−1 : Ax p0 = 0 (A.8)

ǫ0 : Ax p1 + (Ay +QT ) p0 = ∂tp
0 (A.9)

ǫ1 : Ax p2 + (Ay +QT ) p1 = ∂tp
1 (A.10)
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Step 1: (A.8) immediately yields that p0 ∈ N (Ax), i.e.,

Πp0 = p0, equivalently (A.11)

p0(t, x, y) = diag(µOU(1)
x , ..., µOU(N)

x ) p0(t, x),

for a function p0 ∈ L1(Rm × S) depending only on x.

Step 2: Let Π act on (A.9) and use (A.7). This time we get:

Π(Ay +QT )Πp0 = ∂tΠp0. (A.12)

By using (A.11) simple calculations reveal for p0 = (p0
(1), ..., p

0
(N))

T :

∂tp
0 = (A + QT ) p0, (A.13)

with

A =













A(1)
0 0 0

0 A(2)
0 0

0 0
. . . 0

0 0 0 A(N)













,

A(i)
=

σ2

2
∆x + Dx

(

∫

DxV (x, y)µOU(i)
x (y) dy ·

)

,

A acting on L1(Rm×S). Thus p0 is determined by a Fokker-Planck equation,
and its solution gives us pǫ up to error O(ǫ). The associated SDE is given by

ẋ = −
∫

DxV (x, y)µOU(I(t,x))
x (y) dy + σẆ1, (A.14)

with solution process x0(t) where I(t, x) ∈ S controls the switches between
the different OU processes due to the rate matrix Q = Qx. The SDE (A.14)
describes the limit dynamics of (A.1)&(A.2) in the sense that its solution
satisfies xǫ

OU → x0 as ǫ → 0 either pathwise [FW84], or in the distributional
sense [Kur73, MTV99].

B Asymptotics of Transition Times

Here, we come back to the problem addressed in Sect. 3.3. In order to avoid
coupling ς to the slow variable dynamics x we relax the postulation T ǫ

i→j(x) ≥
ord(1), i �= j in Lemma 3.5 that is required for every x and i = 1, 2. Instead
of considering the transition times on every fibre of the fast state space for
fixed x, we introduce the expected transition times T ǫ

1→2 and T ǫ

2→1 between
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the metastable decomposition B(1)∪B(2) in the entire (x, y) state space. This
enables us to identify large time conformational changes with the stipulation

T ǫ

1→2, T
ǫ

2→1 ≥ ord(1).

We obviously have

T ǫ
i→j(x) ≥ ord(1) =⇒ T ǫ

1→2, T
ǫ

2→1 ≥ ord(1),

whereas the other direction need not to be valid.
With these preparations we claim the following: If we define the relation-

ship between ς and ǫ by

ς(ǫ) =

(

2V small
bar

ln(K/ǫ)

)1/2

, (B.1)

V small
bar = min{V (i)

bar(x) |x ∈ D(σ), i = 1, 2},

where D(σ) is some appropriately chosen bounded connected domain6 of the
slow variable state space, the metastable transitions T ǫ

1→2, T
ǫ

2→1 are of order
one or even larger.

In what follows we show how to compute T ǫ

i→j which is strongly con-
nected to the asymptotic order of the transition times T ǫ

i→j(x) on every fiber.
We will consider two possible situations that are exemplary for the different
approaches. We first examine the consequences of the asymptotic order of

T ǫ
i→j(x) in general, and afterwards relate the results to the functions V

(i)
bar(x)

and a coupling ς = ς(ǫ) given by (B.1).
In Theorem B.1 below we assume the transition times T ǫ

i→j(x) to asymp-
totically go to infinity, where we do not specify wherefrom the asymptotic
investigations come from, that is, we leave open which parameter causes the
asymptotic behaviour. Thus, possible (and reasonable) choices were ς → 0
and ǫ fixed, ǫ → 0 so that ς(ǫ) → 0, or, not less supposable, we could as-
sume a scaling of the potential barrier. The next result becomes apparent
in [Wal05, Chapter 3], where the approach is justified by means of multi-
scale analysis for distinguished time scales. There the metastable transitions
are assumed to happen on the longest time scale, which requires the averag-
ing of the metastable transition rates (represented by the second eigenvalue
of the corresponding generator) for fixed x wrt. the invariant density of the
conditionally averaged potentials.

Theorem B.1 ( [Wal05, Chapter 3.3.3]). Suppose T ǫ
i→j(x) → ∞ almost

everywhere for i, j = 1, 2 and i �= j. Then the metastable transition times T ǫ

i→j

are basically independent of the starting point and are asymptotically derived
by means of averaging the x-dependent transition rates7 against the invariant

6 See explanation in Sect. 3.3.
7 Note, that we actually have to average the transition rates and not the transition

times.
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probability distribution of the x dynamics conditioned upon remaining within
the metastable set B(i) and taking the inverse of the averaged transition rates,
that is,

T ǫ

i→j ≃
1

Eµ̄(i) [1/T ǫ
i→j(x)]

,

where the quantity Eµ̄(i) [1/T ǫ
i→j(x)] is given by

Eµ̄(i) [1/T ǫ
i→j(x)] =

∫

1/T ǫ
i→j(x) µ̄(i)(x) dx, (B.2)

µ̄(i)(x) =
1

Z(i)
exp

(

− 2

σ2

(

− ς2

2
ln

∫

B
(i)
x

exp
(

− 2

ς2
V (x, y)

)

dy
)

)

. (B.3)

Here, Z(i) denotes the normalization constant and depends on ς as well.
Define the jump process I(t) by its transition rates 1/T ǫ

i→j . Then we find that
the random process (xǫ

OU, yǫ
OU) determined by system (4.4)&(4.5) is asymp-

totically given by the SDE

ẋ = −DxV (x, y) + σẆ1

ẏ = −1

ǫ
ω(I(t))(x)

(

y −m(I(t))(x)
)

+
ς√
ǫ
Ẇ2.

In the limit of small noise ς the evaluation of the expression (B.2) asymptot-
ically reduces to

Eµ̄(i) [1/T ǫ
i→j(x)] ≃ (B.4)

1

ǫ

1

Z(i)

∫

√

ω(i)(x)ω0(x)

2 π
exp(− 2

ς2
V

(i)
bar(x)) exp(− 2

σ2
V (x, m(i)(x))) dx.

Proof. We only have to show (B.4). The rest is verified in [Wal05]. First, we
consider the averaged density µ̄(i)(x): Using standard Laplacian asymptotics,
we get for ς small
∫

B
(i)
x

exp
(

− 2

ς2
V (x, y)

)

dy = ς

√

π

ω(i)(x)
exp

(

− 2

ς2
V (x, m(i)(x))

)(

1+O(ς)
)

,

and, exploiting (ς2/2) ln(ς
√

π/ω(i)(x)) → 0 as ς → 0, we end up with the
asymptotic limit (from (B.3))

µ̄(i)(x) ≃ 1

Z(i)
exp

(

− 2

σ2
V (x, m(i)(x))

)

.

Together with Theorem 3.3 we immediately obtain (B.4).

Remark B.2. If we consider the asymptotics of the transition times for van-
ishing ς and ǫ fixed, it is easily seen that the assumptions of Theorem B.1 are
fulfilled. However, if we consider the asymptotic limit for ǫ → 0 and ς = ς(ǫ)
as given by (B.1), the behaviour of T ǫ

i→j(x) will depend on the course of the

functions V
(i)
bar(x), i = 1, 2.
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Fig. B.1. Exemplary possibilities for the functions V
(i)
bar(x), i = 1, 2. In the left

picture we find that the left and right potential barriers are bounded away from
zero by a positive constant. This is prevented in the picture at the right, for V

(1)
bar

converges to zero.

In the situation illustrated in the left panel of Fig. B.1 we may apply the
approach in Theorem for sure, if the relationship between ς and ǫ is defined
in an appropriate way. This is formulated in the next corollary.

Corollary B.3. Suppose that inf{V (i)
bar(x) |x ∈ R, i = 1, 2} = V small

bar > 0 and

V
(i)
bar > V small

bar almost everywhere. Let us define the small noise intensity ς by

ς(ǫ) =

(

2V small
bar

ln(K/ǫ)

)1/2

, K > 0. (B.5)

Then, we obtain in the asymptotic limit ǫ → 0

T ǫ

i→j ≃
(∫

1/T ǫ
i→j(x) µ̄(i)(x) dx

)−1

Assume in addition that V
(1)
bar attains its smallest value and let the minimum

of V
(1)
bar occur at, say, x0. Moreover, we assume V

(1)
bar > V

(1)
bar (x0) ≥ V small

bar for

all x �= x0 and DxxV
(1)
bar (x0) �= 0. Then

Eµ̄(1) [1/T ǫ
1→2(x)] ≃ (B.6)

√

ω(1)(x0)ω0(x0)

4 π ∂2
xV

(1)
bar (x0)

1

Z(1)
exp(− 2

σ2
V (x0, m

(1)(x0)))
ς

ǫ
exp(− 2

ς2
V

(1)
bar (x0)).

For δ ≥ 0 so that V
(1)
bar (x0) = (1 + δ)V small

bar , we finally obtain

T ǫ

1→2 = ord(ǫ−δ
√

ln(1/ǫ)). (B.7)

Proof. The first part immediately follows from Theorem B.1, for we have
almost everywhere

V
(i)
bar(x) = (1 + δ(i)

x )V small
bar , δ(i)

x > 0 =⇒ T ǫ
i→j(x) = ord(ǫ−δ(i)

x ).
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(B.6) follows from (B.4) by using Laplace’s method in the limit of vanishing
noise ς. With the assumed coupling of ς according to (B.5), we then obtain
from (B.6)

Eµ̄(1) [1/T ǫ
1→2(x)] = ord(ǫ−δ

√

ln(1/ǫ)).

One could also contemplate a situation, such as that schematically indi-

cated at the right-hand side of Fig. B.1. Here, V
(1)
bar (x) → 0 as x → ∞, and

there is no local minimum V small
bar such that V small

bar ≤ V
(1)
bar (x) for all x. Access

to this problem is established in the next proposition where the argumenta-
tion has to be carried out rather intuitively. As outlined in Remark B.2, in
Proposition B.4 it is coercive to consider the asymptotic behaviour as ǫ → 0

together with a reasonable coupling of V
(i)
bar(x)/ς2 that is not yet specified.

Proposition B.4. Suppose that min{T ǫ
1→2(x), T ǫ

2→1(x)} → 0 asymptotically
for x ∈ D where D is some subset of positive Lebesgue measure. We define a
decomposition of D = D1 ∪D2 by

D1 = {x ∈ D | min{T ǫ
1→2(x), T ǫ

2→1(x)} = T ǫ
1→2(x)},

D2 = {x ∈ D | min{T ǫ
1→2(x), T ǫ

2→1(x)} = T ǫ
2→1(x)}.

To simplify argumentation, we assume that Di, i = 1, 2 are connected sub-
sets of D and (D1 ∩ D2)\∂(D1 ∩ D2) = ∅. Moreover, we restrict to the
case where for x ∈ Dc with Dc denoting the complement of D we have
min{T ǫ

1→2(x), T ǫ
2→1(x)} → ∞. Now, the following is satisfied: The metastable

transition times T ǫ

i→j from B(i) to B(j) will depend on the starting point

x0 = xǫ(0) and we write T ǫ

i→j [x0]. For (xǫ(0), yǫ(0)) ∈ B(1) with xǫ(0) = x0

we asymptotically obtain

T ǫ

1→2[x0] ≃ Ex0 [τDc∪D2(x
ǫ(t))], (B.8)

where τDc∪D2(xǫ(t)) denotes first exit time of the process xǫ(t) from the set
Dc ∪D2. Instead of considering the exit times of the process xǫ(t), we can
equally well consider the exit times of the conditionally averaged dynam-
ics (1.7) with I(t, x) = 1 fixed. In the limit of ς → 0 we will be allowed
to replace xǫ in (B.8) by the small noise approximation or the OU averaged
dynamics as defined in Sect. 4 and still obtain the correct asymptotics. And,
conclusively, by using (5.2), we arrive for vanishing ς at

T ǫ

1→2[x0] ≃ Ex0[τDc∪D2(x
0(t))] = ord(1)

where x0(t) is determined by

ẋ = −DxV (x, m(1)) + σẆ1.

In exact the same way we obtain asymptotics for T ǫ

2→1.
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Fig. B.2. left: Illustration of V
(i)
bar, i = 1, 2 and V small

bar and the resulting subsets
D1, D2, D

c; middle: transition probabilities (time step dt = 0.01) corresponding

to (B.1) with V small
bar < V

(1)
bar (m) and ǫ = 10−3; right: transition probabilities with

ǫ = 10−12.

Proof. A careful inspection of the transition probabilities pǫ
12(t, x) as defined

in (6.2) and (6.3) with qǫ
ij(x) = 1/T ǫ

i→j reveals for each time step dt pointwise
convergence for almost every x

lim
ǫ→0

pǫ
12(dt, x) = 0, x ∈ D2 ∪Dc, lim

ǫ→0
pǫ
12(dt, x) = 1, x ∈ D1.

This shows that for ǫ small enough, the particle in B(1) will instantly jump
over the barrier once it has reached D1 and as long as it stays in D2 ∪ Dc

nothing will happen.

Example B.5. Let V
(i)
bar be given as illustrated in the left picture8 of Fig. B.2,

that is, V
(1)
bar is strictly monotonically decreasing with V

(1)
bar (x) → 0 as x→∞,

and V
(2)
bar is strictly monotonically increasing with V

(2)
bar (x) → 0 as x → −∞.

Then there exists an intersection point m such that V
(1)
bar (m) = V

(2)
bar (m). Now,

choose V small
bar such that V small

bar < V
(i)
bar(m) and define the relation between ǫ

and ς according to (B.1). The resulting subsets D1, D2 and Dc = (D1 ∪
D2)

c are shown in Fig. B.2. The picture in the middle shows the transition
probabilities p1→2 = pǫ

12(dt, x), p2→1 = pǫ
21(dt, x) to jump over the barrier

for moderately chosen ǫ = 10−3 and time step dt = 1/100. At the right we
illustrate the transition probabilities for very small ǫ = 10−12. We clearly
observe that for vanishing ǫ the particle will jump over the barrier once it has
reached D1 and D2, respectively.

Example B.6. Let the assumptions be given as in Example B.5, but this time

we choose V small
bar > V

(i)
bar(m). In this case, Dc = ∅ and the state space is

decomposed into the sets D1 and D2 that are separated by the point m with

V
(1)
bar (m) = V

(2)
bar (m). An illustration is given in Fig. B.3. Again, the transition

probabilities for ǫ = 10−12 at the right-hand side reveal

p1→2 = pǫ
12(dt, x) ≈ 0 for x ∈ D2, p2→1 = pǫ

12(dt, x) ≈ 1 for x ∈ D1.

8 We have chosen the potential from Sect. 6.
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Fig. B.3. Same as Fig. B.2, but this time V small
bar > V

(1)
bar (m).
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